
Math 260: Python programming in math

Fall 2020

More on ODEs:
Stiff equations, implicit methods

1 / 6



Stiff ODEs: the problem

Solving
y ′ = −20(y − sin t) + cos t, y(0) = 1

with exact solution
y(t) = Ce−20t + sin t.

The numerical solution should approach sin t!

FE with h = 0.12 and h = 0.1:

0.0 0.5 1.0 1.5 2.0
t

0.5

0.0

0.5

1.0

1.5

2.0

y

0.0 0.5 1.0 1.5 2.0
t

0.5

0.0

0.5

1.0

1.5

2.0

y

Oscillations grow in t (disaster!); bounded when h = 0.1.

2 / 6



Stiff ODEs: the problem

Solving
y ′ = −20(y − sin t) + cos t, y(0) = 1

with exact solution
y(t) = Ce−20t + sin t.

... and with h = 0.08 and h = 0.05:

0.0 0.5 1.0 1.5 2.0
t

0.5

0.0

0.5

1.0

1.5

2.0

y

0.0 0.5 1.0 1.5 2.0
t

0.5

0.0

0.5

1.0

1.5

2.0

y

Suddenly, the solver does fine (approaches sin t).

3 / 6



Stiff ODEs: stability

What’s going on?

• The y(t) ≈ sin t solution hides the ODE behavior

• nearby solutions (starting near sin t) quickly approach sin t

0.0 0.5 1.0 1.5 2.0
t

0.5

0.0

0.5

1.0

1.5

2.0

y

0.0 0.5 1.0 1.5 2.0
t

0.5

0.0

0.5

1.0

1.5

2.0

y

• Forward Euler ‘follows’ the slope of these solutions

• It overshoots repeatedly - it sees the sharp slopes of the nearby solutions.

• How can we do better? Use a different method!

4 / 6



Stiff ODEs: stability

Forward and backward Euler:

Forward Euler: un+1 = un + hf (tn, un)

Backward Euler: un+1 = un + hf (tn, un+1)

Applied to the linear constant coefficient ODE y ′ = λy ...

FE: un+1 = un + hλun

BE: un+1 = un + hλun+1

=⇒ FE: un+1 = (1 + hλ)un

BE: un+1 =
1

1− hλ
un

Example: take λ = −10 and h = 0.3. Then hλ = −3 so

FE : un+1 = 2un, BE : un+1 =
1

4
un

and the exact solution is y = y0e
−10t .

Key point:

The qualitative behavior (grows? decays?) can be different from the ODE.

• Growth decay depends on h and λ

• Not related to convergence - a new type of concern

• Sharp transition from ‘bad’ to ‘good’ (stability)

5 / 6



Stiff ODEs: linear systems

More generally, for linear systems like

x′ = Ax, x(0) = ~c,

we can directly solve’ for the next step...

BE: un+1 = un + hF (tn, un+1)

=⇒ un+1 = (I − hA)−1un.

In practice, we use a linear system solver (e.g. LU factorization).

• to go from tn → tn+1...

• Solve (I − hA)un+1 = un for the unknown un+1.

For the trapezoidal rule:

un+1 = un +
h

2
(F (tn, un) + Fn+1(tn+1, un+1))

=⇒ (I − h

2
A)un+1 = (I +

h

2
A)un.

This method (in the context of PDEs) is called Crank-Nicolson.

6 / 6


