Math 260: Python programming in math

Fall 2020

Intro to ODEs:
Euler's method, systems of ODEs

ODEs: introduction

A motivating example: population growth
e An amount p(t) of bacteria live on a petri dish, starting with p(0) = po
e Unconstrained, the growth rate at time t is rp(t)
e But the petri dish can onld hold K bacteria...

A plausible model is the ordinary differential equation (ODE)

dp
— =rm(l-p/K
o = P(L=p/K),
With the ‘initial condition’ p(0) = po, we get an initial value problem (IVP)
d
o= P(L=p/K). p(0)= po.
Simple case: In an infinitely large petri dish,
% =rp = p(t) = poe” (exponential growth!)

Notation (derivatives):

We will use x'(t) and dx/dt for derivatives.
Second order, etc. are denoted by x”/(t) or d°x/dt?.
m-th order derivatives are x\™(t) or d™x/dt™.

Aside: separable ODEs

Simple ODEs can be solved by ‘separating variables'. For instance,

1 I
%:ry — ;dyzr — Inly|=rt+C = |y|=Ce"

In general, a separable equation for y(t) can be written the form
dy
A t
fly) 4, = &(t)
which can be solved, informally, by integrating both sides:
) dy =glt)de — [fly)dy = [g(o)et

e Not many ODEs of interest are separable

e We need other techniques or numerics (the point of this module!)

We will see how to solve the ‘standard’ initial value problem for y(t),
y'=f(ty), y(@=c, a<t<bh

First, what is a numerical solution?

e We need to dicretize the item interval into Yy YN
discrete points, called a mesh:)
len
1
a=t<t<--<ty=bh o
.o""’UN
e A numerical solution approximates y(t)
at the mesh points:
.] | t
num. solution u, =~ y(t,) for n=20,--- , N. L
In-1 INn

Definition (errors)

e Local error at a mesh point: e, = |yn — un|

e Global error in [a, b]: the largest of the errors at mesh points in the interval:

E: — =
A

Y

IVP: y' = f(t,y), y(a)=c
Exact solution: y(t)

At mesh points: y, = y(ta),
approximation: up & y(t,)

o)
o UN

T I I I } t
to t1 t2 -+ tn-1 tN

To solve, we ‘integrate forwards’ from t to t1, then to t, etc.
For simplicity, let's assume that the spacing is h (constant).

Approach 1: Estimate y’. The simplest way uses t, and t,.1:

Y+l — Yn

h

This becomes a formula for the approx. un:

Upt+1 — Up

which is (Euler’s method).

y'(ta) = f(tn, yn)-

= f(tn, Un).

IVP: y' = f(t,y), y(a)=c
Exact solution: y(t)

At mesh points: y, = y(ta),
approximation: up & y(t,)

/o)
o UN

T I I I J t
to t1 t2 - tn—1 iN

Approach 2: Integrate from t, to t,i1, use the FTC:

thy1 , thy1
Yol — Yn = / y dt = / f(s,y(s)) ds.
t, t)

n

n

Now we estimate the integral (e.g. trapezoidal rule...). Using the ‘left hand

rule’, we get

Ynt1 — Yn & hf (tn, yn)

which is Euler's method again.

Euler's method

Thus, to solve the differential equation
y =f(ty), y@)=c
we can use the ‘difference equation’ given by Euler’'s method

Unt1 = Un + hf (tn, Un), up = c.

Two typical examples (solved with h = 0.3):

1.00 40
0.75 1 30
> 0.50 > 20
0.25 1 104
0.004_ _ ole
0 2 4 0 1 2 3
t t
y = —2ty, y(0) =1 y'=2ty, y(0) =1
Exact: y(t) = exp(—t?) Exact: y(t) = exp(t?)

e Error stays small for all ¢ e error grows with ¢ (by alot)

Euler's method

The approximation converges as h — 0 (mesh spacing — 0)

This is true on any fixed interval (even in bad cases):

50 1
40 A
s, 301

20 1

10 A

O_

00 05 10 15 20
(h=0.2,0.05,0.00125, - - here)

Euler's method

Implementation is easy - just iterate the formula.

IVP: y' = f(t,y), y(a)=c
Difference eq: un+1 = up + hf(tn, up), up = c.

Two structures: for or while loop. Roughly:

def fwd_euler(f, a, b, yO, h): def fwd_euler(f, a, b, yO, h):
n = round((b-a)/h) t=a
h = (b-a)/n # fix if (b-a)/h y = yo0
t = [0]*(n+1) # was not an int tvals = [t]
y = [0]*(n+1) yvals = [y]
t[0] = a while t < b - le-12:
ylol = yo y += hxf(t, ¥)
for k in range(0, n): t+=h
yk+1] = y[k] + h*f(t[k],y[k]) tvals.append(t)
tlk+1] = t[k] +h yvals.append(y)
return t, y return tvals, yvals

The ‘while’ structure is more versatile, e.g. for changing the step size h during
the loop (so the number of steps is not known).

Euler's method: error

How do we determine how the error behaves?
e Consider the error due to approximation in going from t, to t,i1
e Plug the exact solution y(t,) into the difference equation:

Upt1 = Up + hf(tm un)
Y(tn+1) = y(ta) + hf (ta, y(tn)) + 7n

since y(t) does not satisfy the difference equation exactly.

The ‘leftover’ 7, is the local truncation error.
e Now we can use Taylor's theorem to find 7, (let y, = y(ta) etc.)

Tn = Yn+1 — Yn — hf(tnvy")
h?
= (yn + hy, + 5 i+ 0(h3)) — hf(tn, yn)

= hyn - hf(t"7y'7) + 7yn + O(h3)

hz//
= Sy +0(h)

since the ODE says that yj, = f(t, ya). In particular, | 7, = O(h?) |

Euler's method: error

Thus, for the IVP
y' =f(ty), y(@=c,

Euler's method has a local truncation error 7, = O(h?).

What about the global error?

e The local error e, = |u, — ya| depends on two parts:
- truncation error (the error from approximating tp—1 — tn)
- propagated error (error building up from previous steps).

e After some work, we can show that in an interval [a, b],
C
en < 5 max |7«| for all n such that t, € [a, b]

e max |7x| = largest truncation error , C = some constant

Euler's method: error

e Idea: O(h?) at each step, and N = (b — a)/h steps

1
global error ~ h (local error)

e This means that the global error is O(h), that is

E(h) := max |u,, Ya| = O(h) as h — 0.

th€[a,b]

We say the Euler's method is first order.
e For typical ODE methods, E(h) ~ Ch? as h — 0.

Euler's method: error

We can check the order in the usual two ways...

Approach 1: Use the global error
E(h) := max |u, — ya| = O(h) as h — 0.
tp€la,b]

and plot (with a log-log plot) vs. h or n.

10°
.
//'
e &
1071 4 7 //
= e
i PR
/,, ’
: —-&- max. err
10-2 4
,/ -== slope 1
o
1073 1072 107t

h

Euler's method: error

Approach 2: Take the error at a single point (easiest: t = b)

e Note that changing h also changes the mesh points - except t = b

e The 'p-estimate’ trick also works, since

u(b; h) ~ y(b) + Ch

where u(b; h) is the approx. solution at t = b with step size h.

N | uvuatt=5>b P
4 1.93e+00 | 0.63
8 | 2.26e+00 | 0.79
16 | 2.46e+ 00 | 0.89
32 | 2.58e +00 | 0.94
64 | 2.65e+ 00 | 0.97
128 | 2.68e + 00 | 0.98
256 | 2.70e +00 | 0.99

Example: y’ = 2ty, at t = 2 (with h =2/N), and

P%_k’gz(

u(4N) — u(2N)
u(2N) — u(N)

)

ODEs: some linear systems

ODEs: introduction

Another example: simple harmonic motion - oscillating systems!
e Mass-spring system: —kz

- spring restoring force: —kx(t)

- damping force —cv(t)

- Newton’s law F = ma

== m& = —kx — c%
dt? dt
e Simple pendulum:
- Angular displacement 6(t)
- restoring force (gravity): mgsinf

- damping force (friction) —c df/dt

d*¢ . dg
= Lﬁ = —mgsinf — CE mgsin 0

‘Simple’ case: displacement is small, so sin§ ~ 6 + O(6°):

d6 do
Lﬁ = —mg@ — CE.

Aside: linear systems

We can demystify the solution to
ay" +by +cy=0 (A)
by converting it to a linear system (also useful for numerics!).
Define x; = y and x, = y and the vector x = (y,y’). Then y”" = x5 so
X = X, x5 = —(c/a)x1 — (b/a)x.

In matrix form, this is the linear system

!/ _ R 0 1
X = Ax, A= [—c/a —b/a}
To solve, look for exponential solutions
x(t) = v

and plug in to find that this is a solution if and only if

Av = Av.

Aside: linear systems

Thus, we have found that for the LCC system
x' = Ax,
the eigenvalues A\ and eigenvectors v yield solutions
x(t) = v

and these solutions are linearly independent for distinct A (from linear algebra).
e For the second-order converted system

x' = Ax, A= [_3/3 —é/a}
The eigenvalues satisfy det(A — Al) =0, or
a4+ bA+c=0
which is exactly the characteristic equation from before!

e The full solution is a linear combination of these exponentials, e.g.

Art Aot

x(t) = cie™'vy + e vy,

e (Note: for repeated eigenvalues, more work is required)

The pendulum (linear case)

e Simple pendulum:
- Angular displacement 6(t)
- restoring force (gravity): mgsin@
- damping force (friction) —c df/dt

Ld20 _ o cdf
. W = —mgsint — CE mgsin 0

After rescaling, we get a (nonlinear) ODE
0" = —sind — 286’
with some initial displacement 6(0) and angular velocity 6'(0).
In the ‘small displacement’ case, we get
0" = —0— 280

The exact solution tells us about the behavior...

The pendulum (linear case)

ODE: 0" = —0 — 23¢'.
Looking for solutions § = e™ we get
P +28r+1=0.
This has roots
r=—-B++B—1

There are two important cases:

e Overdamped: If 3 > 1, both r’s are real and overdamped
negative - decaying (non-oscillating) solutions
e Underdamped: But if 0 < 5 < 1, then 6
r=—-0+iy1-p2=—-0Ftwi \;*\
which gives solutions e #f(coswt + isinwt) -

(decaying oscillations)

In either case, solutions will decay to 6 = 0 (the pendulum slows down)

Euler’'s method: systems

To solve such ODEs, we must extend Euler’s method to the first order system
y' =F(tyy), y@=¢

where y(t) is a vector in R™ for each t.

e This is easy! Simply replace scalars with vectors:

Unt1 = up + hF(ts,un), ug =C.

e The ‘error’ e, is then the max of the errors for each component.

Conversion: any n-th order ODE

y(m) = f(ta)/7"' 7y(n71))

can be converted to this standard form by setting

_ _ _ ,(m=1)
X1=Y,X2=Y, " Xm=Y
and x = (x1,- -+ , Xm) SO that x{ = x; and so on, giving
!
X1 X2
= = x' = F(t,x)
Xm—1 Xm

Xm f(t,x1, s Xm)

Euler’'s method: systems

We can use operator overloading for the code (numpy arrays are good here!)...

For scalar ODEs: A quick version for systems:
def fwd_euler(f, t, b, yO, h): def fwd_euler(f, t, b, yO, h):
y = yo0 y = np.array(y0) # copy
tvals = [t] tvals = [t]
yvals = [y] yvals = [[v] for v in y]
while t < b: while t < b:
y += hxf(t, y) y += hxf(t, y)
t+=h t+=h
tvals.append(t) for k in range(len(y)):
yvals.append(y) yvals[k] .append(y[k])
return tvals, yvals tvals.append(t)

return tvals, yvals

example f (must return a numpy array) !
def £(t, y):
return np.array((y[0]*y[1], y[1]1**2))

Euler’'s method: systems

def fwd_euler(f, t, b, yO, h):
y = np.array(y0) # copy

tvals = [t]
yvals = [[v] for v in y]
while t < b:
y += hxf(t, y)
t+=h

for k in range(len(y)):
yvals[k] .append(y[k])
tvals.append(t)
return tvals, yvals

e You have to make a choice on the ‘shape’ of the return...

e Two options (e.g. for y = (x,y) in 2d)

x| [yo [x0, Yol

x| [y [x1, y1]
. . or .

Xn n [Xﬂ 3 Y ﬂ]

e (You could use a numpy array, but it has no append...)

The pendulum: computation

Now back to the pendulum... damping: b=0.2

—
6” — 70 _ 2B0/ 0.5 1 — 0'(t)
To compute, convert to a first order system. 0.0
Let x; =0 and x» = 0’, Then
, ~0.5
X1 = X2 .
0 5 10 15
xﬁ = —x1 — 20x2. ¢

damping: b=1.2

with initial position/velocity (x1(0),x2(0))

0.8
— 0(t)
b=0.1 0.6 1 — (1)
def pend(t, x): 0.4
return np.array((x[1], -x[0] - 2*b*x[1])) 02
typical call 0.0
t, x = fwd_euler(pend, 0, 20, [1.0,0], 0.1) 0.2
plt.plot(t, x[0], '-k', t, x[1], '-b") T T
0 5 10 15

o Note that the output shape depends on implementation (here x[0] is xi(t)).

The pendulum: computation

It's also useful to plot a system in phase space.

Plot in the (6,6") plane (plot 0'(t) vs. 6(t))

Quick example: simple harmonic motion...

(8 =0 case)

17 ! !
0" =—0 = x1=x, o =—x1

Plugin " = r =4

e Solutions oscillate - (theta, ') is a circle!

def f(t, x):
return np.array((x[1], -x[0]))

typical call

pos = 1.0 # initial displacement

vel = 0 # initial velocity

t, x = fwd_euler(f, 0, 10, [pos, vell, 0.1)
plt.plot(x[0], x[1], '-k")

1.01

0.5

0.0

—0.51

-1.01

/X

— 6()
— 0'(t)

—— approx.

--- exact

-1.0 -0.5 0.0 0.5 1.0

X1

The pendulum: computation

Be careful with the choice of h...
Euler's method may not behave the same way as the true solution!

1.01
1.0 A
0.5 1
0.5
- - | —— approx.
x 0.0 x 0.0 -=-=- exact
—0.51
_0.5 -
-1.01
_1.0 -
T T T T T T T T
-1.0 -0.5 0.0 0.5 1.0 -1 0 1
X1 X1

(Left: h=0.01 up to t = 2m... right: h =0.01 up to t = 10m)

The forced pendulum

Now consider the non-linear pendulum equation
0" = —sinf — po’.

When 6 is not small, this term is quite different!
e The pendulum may swing ‘over’ the top (6 is really periodic)
e More complex behavior - but not more complex numerics!

e We can add a forcing to this as well:
6" = —sinf — BO + Asinwot
e A more accurate method is needed here to see the finer details without an

unacceptably small h (see next slides).

e For certain parameters, the system is extremely sensitive
(a big problem for not-so-accurate solvers like Euler's method!)

(see python code)

ODEs: more numerical methods

Let's go back to the integral derivation of Euler's method

y ' =1f(t,y)

integrated from t, to t,41 gives

tht1
Yn+1 = Yn + / f(57 y(S)) ds
t,

n

We got Euler's method from the (not very accurate) left hand rule

/ g(x)dx ~ (b— a)g(a).

Instead, let's use the trapezoidal rule

[etax =272 e(a) + £(6)

to obtain b
Yn+1 = Yn + E(f(tnyyn) + f(tn+17y"+1) + O(h3)

using the result we derived for the error (O(h?) for an h-sized interval).

ODEs: more numerical methods

h
Yn+1 = Yn + E(f(tnyyn) + f(tn+1,_)/n+1) + O(h3)
This yields the trapezoidal method

h
Up+1 = Un + E(f(tn, un) + f(tn+1, Uni1))

Unlike Euler, the method is implicit: the RHS depends on the unknown wupy1.
O(h®) trunc. error => O(h*) - (1/h) = O(h?) global error (second order!)
We must use a zero-finder to solve for u,11 at each step.

(Why bother? The method has nice properties on some nasty ODEs...)

Can we avoid the implicit part? Idea: use an approximation.
e The order is preserved as long as the approximation is within O(h?)
e We know how to do this: use Euler’s method!

This idea yields the explicit trapezoidal rule

an+1 = Uup + hf(tn, un)

h -
7(f(tn, Un) + f(tn+17 Un+1))

Upy1 = Up +
2

Runge-Kutta methods

More generally, we can construct ‘one step methods' that

e Start at u,
e compute some sub-steps i from u, and multiples of f at these sub-steps

e Add them up in the right way to get u,11
which are called Runge-Kutta methods.
For example, we can write the explicit rule from the previous slide as,

fl = f(tny un)
B+ o+ h, up + hfi)

h h
Unt1 = Up + —h+ -h.

2 2
More sub-steps = higher order methods, like ‘classical’ RK4 method:
fi = f(tn, un)
h h
f2 - f(tn + Eyun‘i’ Efl)
h h
f.3 - f(tn + Eyun‘i’ Efé)

fo = f(tn + h,)/n + hfé)

h
Un+1:Un+6(f1+2f2+2f3+ﬂl)

Runge-Kutta methods

Classical RK4:
fi = f(tn, un)
h h
fo = f(ta + 5, un + 511)

h h
f; = f(tn+§7Un+§f-2)
fa = f(tn+h7yn+hf§)
h
Unt1 = Un+6(fi+2f2+2f3+ﬂl)

e RK4 is fourth order (!) and a good method to use with a fixed step size h.
o (More or less) strictly better than Euler's method

e Similar methods are better for changing h (e.g. the Runge-Kutta-Fehlberg
method, which has a similar form and is used in scipy.integrate).

o RK methods are great general purpose solvers - good accuracy, easy to
implement, easy to implement for systems...

e The catch: for some ODEs, there are estrictions on h that can be bad...

