
Math 260: Python programming in math

Fall 2020

Intro to ODEs:
Euler’s method, systems of ODEs

1 / 31

ODEs: introduction

A motivating example: population growth

• An amount p(t) of bacteria live on a petri dish, starting with p(0) = p0
• Unconstrained, the growth rate at time t is rp(t)

• But the petri dish can onld hold K bacteria...

A plausible model is the ordinary differential equation (ODE)

dp

dt
= rp(1− p/K),

With the ‘initial condition’ p(0) = p0, we get an initial value problem (IVP)

dp

dt
= rp(1− p/K), p(0) = p0.

Simple case: In an infinitely large petri dish,

dp

dt
= rp =⇒ p(t) = p0e

rt (exponential growth!)

Notation (derivatives):

We will use x ′(t) and dx/dt for derivatives.
Second order, etc. are denoted by x ′′(t) or d2x/dt2.
m-th order derivatives are x (m)(t) or dmx/dtm.

2 / 31

Aside: separable ODEs

Simple ODEs can be solved by ‘separating variables’. For instance,

dy

dt
= ry =⇒ 1

y
dy = r =⇒ ln |y | = rt + C =⇒ |y | = Cert

In general, a separable equation for y(t) can be written the form

f (y)
dy

dt
= g(t)

which can be solved, informally, by integrating both sides:

f (y) dy = g(t) dt =⇒
∫

f (y) dy =

∫
g(t) dt

• Not many ODEs of interest are separable

• We need other techniques or numerics (the point of this module!)

3 / 31

ODEs: numerics

We will see how to solve the ‘standard’ initial value problem for y(t),

y ′ = f (t, y), y(a) = c, a ≤ t ≤ b.

First, what is a numerical solution?

• We need to dicretize the item interval into
discrete points, called a mesh:

a = t0 < t1 < · · · < tN = b.

• A numerical solution approximates y(t)
at the mesh points:

num. solution un ≈ y(tn) for n = 0, · · · ,N.

Definition (errors)

• Local error at a mesh point: en = |yn − un|
• Global error in [a, b]: the largest of the errors at mesh points in the interval:

E = max
tn∈[a,b]

|un − y(tn)| = max
0≤n≤N

en

4 / 31

ODEs: numerics

IVP: y ′ = f (t, y), y(a) = c
Exact solution: y(t)

At mesh points: yn = y(tn),
approximation: un ≈ y(tn)

To solve, we ‘integrate forwards’ from t0 to t1, then to t2, etc.
For simplicity, let’s assume that the spacing is h (constant).

Approach 1: Estimate y ′. The simplest way uses tn and tn+1:

yn+1 − yn
h

≈ y ′(tn) = f (tn, yn).

This becomes a formula for the approx. un:

un+1 − un
h

= f (tn, un).

which is (Euler’s method).
5 / 31

ODEs: numerics

IVP: y ′ = f (t, y), y(a) = c
Exact solution: y(t)

At mesh points: yn = y(tn),
approximation: un ≈ y(tn)

Approach 2: Integrate from tn to tn+1, use the FTC:

yn+1 − yn =

∫ tn+1

tn

y ′ dt =

∫ tn+1

tn

f (s, y(s)) ds.

Now we estimate the integral (e.g. trapezoidal rule...). Using the ‘left hand
rule’, we get

yn+1 − yn ≈ hf (tn, yn)

which is Euler’s method again.

6 / 31

Euler’s method

Thus, to solve the differential equation

y ′ = f (t, y), y(a) = c

we can use the ‘difference equation’ given by Euler’s method

un+1 = un + hf (tn, un), u0 = c.

Two typical examples (solved with h = 0.3):

0 2 4
t

0.00

0.25

0.50

0.75

1.00

y

y ′ = −2ty , y(0) = 1
Exact: y(t) = exp(−t2)

• Error stays small for all t

0 1 2 3
t

0

10

20

30

40

y
y ′ = 2ty , y(0) = 1

Exact: y(t) = exp(t2)

• error grows with t (by alot)

7 / 31

Euler’s method

The approximation converges as h→ 0 (mesh spacing → 0)

This is true on any fixed interval (even in bad cases):

0.0 0.5 1.0 1.5 2.0
t

0

10

20

30

40

50
y

(h = 0.2, 0.05, 0.00125, · · · here)

8 / 31

Euler’s method

Implementation is easy - just iterate the formula.

IVP: y ′ = f (t, y), y(a) = c

Difference eq: un+1 = un + hf (tn, un), u0 = c.

Two structures: for or while loop. Roughly:

def fwd_euler(f, a, b, y0, h):
n = round((b-a)/h)
h = (b-a)/n # fix if (b-a)/h
t = [0]*(n+1) # was not an int
y = [0]*(n+1)
t[0] = a
y[0] = y0
for k in range(0, n):

y[k+1] = y[k] + h*f(t[k],y[k])
t[k+1] = t[k] + h

return t, y

def fwd_euler(f, a, b, y0, h):
t = a
y = y0
tvals = [t]
yvals = [y]
while t < b - 1e-12:

y += h*f(t, y)
t += h
tvals.append(t)
yvals.append(y)

return tvals, yvals

The ‘while’ structure is more versatile, e.g. for changing the step size h during
the loop (so the number of steps is not known).

9 / 31

Euler’s method: error

How do we determine how the error behaves?

• Consider the error due to approximation in going from tn to tn+1

• Plug the exact solution y(tn) into the difference equation:

un+1 = un + hf (tn, un)

y(tn+1) = y(tn) + hf (tn, y(tn)) + τn

since y(t) does not satisfy the difference equation exactly.

The ‘leftover’ τn is the local truncation error.

• Now we can use Taylor’s theorem to find τn (let yn = y(tn) etc.)

τn = yn+1 − yn − hf (tn, yn)

= (yn + hy ′n +
h2

2
y ′′n + O(h3))− yn − hf (tn, yn)

= hy ′n − hf (tn, yn) +
h2

2
y ′′n + O(h3)

=
h2

2
y ′′n + O(h3)

since the ODE says that y ′n = f (tn, yn). In particular, τn = O(h2) .

10 / 31

Euler’s method: error

Thus, for the IVP
y ′ = f (t, y), y(a) = c,

Euler’s method has a local truncation error τn = O(h2).

What about the global error?

• The local error en = |un − yn| depends on two parts:

- truncation error (the error from approximating tn−1 → tn)

- propagated error (error building up from previous steps).

• After some work, we can show that in an interval [a, b],

en ≤
C

h
max |τk | for all n such that tn ∈ [a, b]

• max |τk | = largest truncation error , C = some constant

11 / 31

Euler’s method: error

• Idea: O(h2) at each step, and N = (b − a)/h steps

global error ∼ 1

h
· (local error)

• This means that the global error is O(h), that is

E(h) := max
tn∈[a,b]

|un − yn| = O(h) as h→ 0.

We say the Euler’s method is first order.

• For typical ODE methods, E(h) ∼ Chp as h→ 0.

12 / 31

Euler’s method: error

We can check the order in the usual two ways...

Approach 1: Use the global error

E(h) := max
tn∈[a,b]

|un − yn| = O(h) as h→ 0.

and plot (with a log-log plot) vs. h or n.

10 3 10 2 10 1

h

10 2

10 1

100
E(

h)

max. err
slope 1

13 / 31

Euler’s method: error

Approach 2: Take the error at a single point (easiest: t = b)

• Note that changing h also changes the mesh points - except t = b

• The ‘p-estimate’ trick also works, since

u(b; h) ≈ y(b) + Ch

where u(b; h) is the approx. solution at t = b with step size h.

N u at t = b p
4 1.93e + 00 0.63
8 2.26e + 00 0.79

16 2.46e + 00 0.89
32 2.58e + 00 0.94
64 2.65e + 00 0.97

128 2.68e + 00 0.98
256 2.70e + 00 0.99

Example: y ′ = 2ty , at t = 2 (with h = 2/N), and

p ≈ − log2

(
u(4N)− u(2N)

u(2N)− u(N)

)

14 / 31

ODEs: some linear systems

15 / 31

ODEs: introduction

Another example: simple harmonic motion - oscillating systems!

• Mass-spring system:

- spring restoring force: −kx(t)

- damping force −cv(t)

- Newton’s law F = ma

=⇒ m
d2x

dt2
= −kx − c

dx

dt

• Simple pendulum:

- Angular displacement θ(t)

- restoring force (gravity): mg sin θ

- damping force (friction) −c dθ/dt

=⇒ L
d2θ

dt2
= −mg sin θ − c

dθ

dt

‘Simple’ case: displacement is small, so sin θ ≈ θ + O(θ3):

L
d2θ

dt2
= −mgθ − c

dθ

dt
.

16 / 31

Aside: linear systems

We can demystify the solution to

ay ′′ + by ′ + cy = 0 (A)

by converting it to a linear system (also useful for numerics!).

Define x1 = y and x2 = y ′ and the vector x = (y , y ′). Then y ′′ = x ′2 so

x ′1 = x2, x ′2 = −(c/a)x1 − (b/a)x2.

In matrix form, this is the linear system

x′ = Ax, A :=

[
0 1
−c/a −b/a

]
To solve, look for exponential solutions

x(t) = eλtv

and plug in to find that this is a solution if and only if

Av = λv.

17 / 31

Aside: linear systems

Thus, we have found that for the LCC system

x′ = Ax ,

the eigenvalues λ and eigenvectors v yield solutions

x(t) = eλtv

and these solutions are linearly independent for distinct λ (from linear algebra).

• For the second-order converted system

x′ = Ax, A :=

[
0 1
−c/a −b/a

]
The eigenvalues satisfy det(A− λI) = 0, or

aλ2 + bλ+ c = 0

which is exactly the characteristic equation from before!

• The full solution is a linear combination of these exponentials, e.g.

x(t) = c1e
λ1tv1 + c2e

λ2tv2.

• (Note: for repeated eigenvalues, more work is required)

18 / 31

The pendulum (linear case)

• Simple pendulum:

- Angular displacement θ(t)

- restoring force (gravity): mg sin θ

- damping force (friction) −c dθ/dt

=⇒ L
d2θ

dt2
= −mg sin θ − c

dθ

dt

After rescaling, we get a (nonlinear) ODE

θ′′ = − sin θ − 2βθ′

with some initial displacement θ(0) and angular velocity θ′(0).

In the ‘small displacement’ case, we get

θ′′ = −θ − 2βθ′.

The exact solution tells us about the behavior...

19 / 31

The pendulum (linear case)

ODE: θ′′ = −θ − 2βθ′.

Looking for solutions θ = ert we get

r 2 + 2βr + 1 = 0.

This has roots

r = −β ±
√
β2 − 1.

There are two important cases:

• Overdamped: If β > 1, both r ′s are real and
negative - decaying (non-oscillating) solutions

• Underdamped: But if 0 < β < 1, then

r = −β ± i
√

1− β2 = −β ± ωi

which gives solutions e−βt(cosωt + i sinωt)
(decaying oscillations)

.
In either case, solutions will decay to θ = 0 (the pendulum slows down)

20 / 31

Euler’s method: systems

To solve such ODEs, we must extend Euler’s method to the first order system

y′ = F (t, y), y(a) = ~c

where y(t) is a vector in Rm for each t.

• This is easy! Simply replace scalars with vectors:

un+1 = un + hF (tn, un), u0 = ~c.

• The ‘error’ en is then the max of the errors for each component.

Conversion: any n-th order ODE

y (m) = f (t, y , · · · , y (n−1))

can be converted to this standard form by setting

x1 = y , x2 = y ′, · · · xm = y (m−1)

and x = (x1, · · · , xm) so that x ′1 = x2 and so on, giving
x1
...

xm−1

xm


′

=


x2
...
xm

f (t, x1, · · · , xm)

 =⇒ x′ = F (t, x)

21 / 31

Euler’s method: systems

We can use operator overloading for the code (numpy arrays are good here!)...

For scalar ODEs:

def fwd_euler(f, t, b, y0, h):
y = y0
tvals = [t]
yvals = [y]
while t < b:

y += h*f(t, y)
t += h
tvals.append(t)
yvals.append(y)

return tvals, yvals

A quick version for systems:

def fwd_euler(f, t, b, y0, h):
y = np.array(y0) # copy
tvals = [t]
yvals = [[v] for v in y]
while t < b:

y += h*f(t, y)
t += h
for k in range(len(y)):

yvals[k].append(y[k])
tvals.append(t)

return tvals, yvals

example f (must return a numpy array)!
def f(t, y):

return np.array((y[0]*y[1], y[1]**2))

22 / 31

Euler’s method: systems

def fwd_euler(f, t, b, y0, h):
y = np.array(y0) # copy
tvals = [t]
yvals = [[v] for v in y]
while t < b:

y += h*f(t, y)
t += h
for k in range(len(y)):

yvals[k].append(y[k])
tvals.append(t)

return tvals, yvals

• You have to make a choice on the ‘shape’ of the return...

• Two options (e.g. for y = (x , y) in 2d)
x0
x1
...
xn



y0
y1
...
yn

 or


[x0, y0]
[x1, y1]

...
[xn, yn]


• (You could use a numpy array, but it has no append...)

23 / 31

The pendulum: computation

Now back to the pendulum...

θ′′ = −θ − 2βθ′

To compute, convert to a first order system.
Let x1 = θ and x2 = θ′, Then

x ′1 = x2

x ′2 = −x1 − 2βx2.

with initial position/velocity (x1(0), x2(0))

b = 0.1
def pend(t, x):

return np.array((x[1], -x[0] - 2*b*x[1]))

typical call
t, x = fwd_euler(pend, 0, 20, [1.0,0], 0.1)
plt.plot(t, x[0], '-k', t, x[1], '-b')

0 5 10 15
t

0.5

0.0

0.5

damping: b=0.2
(t)
′(t)

0 5 10 15
t

0.2

0.0

0.2

0.4

0.6

0.8
damping: b=1.2

(t)
′(t)

• Note that the output shape depends on implementation (here x[0] is x1(t)).

24 / 31

The pendulum: computation

It’s also useful to plot a system in phase space.

• Plot in the (θ, θ′) plane (plot θ′(t) vs. θ(t))

• Quick example: simple harmonic motion...
(β = 0 case)

θ′′ = −θ =⇒ x ′1 = x2, x ′2 = −x1

• Plug in ert =⇒ r = ±i
• Solutions oscillate - (theta, θ′) is a circle!

def f(t, x):
return np.array((x[1], -x[0]))

typical call
pos = 1.0 # initial displacement
vel = 0 # initial velocity
t, x = fwd_euler(f, 0, 10, [pos, vel], 0.1)
plt.plot(x[0], x[1], '-k')

0 5 10
t

1.0

0.5

0.0

0.5

1.0

(t)
′(t)

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

approx.
exact

25 / 31

The pendulum: computation

Be careful with the choice of h...
Euler’s method may not behave the same way as the true solution!

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

approx.
exact

1 0 1
x1

1.0

0.5

0.0

0.5

1.0

x 2

approx.
exact

(Left: h = 0.01 up to t = 2π... right: h = 0.01 up to t = 10π)

26 / 31

The forced pendulum

Now consider the non-linear pendulum equation

θ′′ = − sin θ − βθ′.

When θ is not small, this term is quite different!

• The pendulum may swing ‘over’ the top (θ is really periodic)

• More complex behavior - but not more complex numerics!

• We can add a forcing to this as well:

θ′′ = − sin θ − βθ + A sinω0t

• A more accurate method is needed here to see the finer details without an
unacceptably small h (see next slides).

• For certain parameters, the system is extremely sensitive
(a big problem for not-so-accurate solvers like Euler’s method!)

(see python code)

27 / 31

ODEs: more numerical methods

Let’s go back to the integral derivation of Euler’s method

y ′ = f (t, y)

integrated from tn to tn+1 gives

yn+1 = yn +

∫ tn+1

tn

f (s, y(s)) ds

We got Euler’s method from the (not very accurate) left hand rule∫ b

a

g(x) dx ≈ (b − a)g(a).

Instead, let’s use the trapezoidal rule∫ b

a

g(x) dx =
b − a

2
(g(a) + g(b))

to obtain

yn+1 = yn +
h

2
(f (tn, yn) + f (tn+1, yn+1) + O(h3)

using the result we derived for the error (O(h3) for an h-sized interval).

28 / 31

ODEs: more numerical methods

yn+1 = yn +
h

2
(f (tn, yn) + f (tn+1, yn+1) + O(h3)

• This yields the trapezoidal method

un+1 = un +
h

2
(f (tn, un) + f (tn+1, un+1))

• Unlike Euler, the method is implicit: the RHS depends on the unknown un+1.

• O(h3) trunc. error =⇒ O(h3) · (1/h) = O(h2) global error (second order!)

• We must use a zero-finder to solve for un+1 at each step.

• (Why bother? The method has nice properties on some nasty ODEs...)

Can we avoid the implicit part? Idea: use an approximation.

• The order is preserved as long as the approximation is within O(h2)

• We know how to do this: use Euler’s method!

This idea yields the explicit trapezoidal rule

ũn+1 = un + hf (tn, un)

un+1 = un +
h

2
(f (tn, un) + f (tn+1, ũn+1))

29 / 31

Runge-Kutta methods

More generally, we can construct ‘one step methods’ that

• Start at un
• compute some sub-steps ũ from un and multiples of f at these sub-steps
• Add them up in the right way to get un+1

which are called Runge-Kutta methods.
For example, we can write the explicit rule from the previous slide as,

f1 = f (tn, un)

f2 + f (tn + h, un + hf1)

un+1 = un +
h

2
f1 +

h

2
f2.

More sub-steps =⇒ higher order methods, like ‘classical’ RK4 method:

f1 = f (tn, un)

f2 = f (tn +
h

2
, un +

h

2
f1)

f3 = f (tn +
h

2
, un +

h

2
f2)

f4 = f (tn + h, yn + hf3)

un+1 = un +
h

6
(f1 + 2f2 + 2f3 + f4)

30 / 31

Runge-Kutta methods

Classical RK4:

f1 = f (tn, un)

f2 = f (tn +
h

2
, un +

h

2
f1)

f3 = f (tn +
h

2
, un +

h

2
f2)

f4 = f (tn + h, yn + hf3)

un+1 = un +
h

6
(f1 + 2f2 + 2f3 + f4)

• RK4 is fourth order (!) and a good method to use with a fixed step size h.

• (More or less) strictly better than Euler’s method

• Similar methods are better for changing h (e.g. the Runge-Kutta-Fehlberg
method, which has a similar form and is used in scipy.integrate).

• RK methods are great general purpose solvers - good accuracy, easy to
implement, easy to implement for systems...

• The catch: for some ODEs, there are estrictions on h that can be bad...

31 / 31

