
Math 260: Python programming in math

Fall 2020

Intro to ODEs:
Euler’s method, systems of ODEs
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ODEs: introduction

A motivating example: population growth

• An amount p(t) of bacteria live on a petri dish, starting with p(0) = p0
• Unconstrained, the growth rate at time t is rp(t)

• But the petri dish can onld hold K bacteria...

A plausible model is the ordinary differential equation (ODE)

dp

dt
= rp(1− p/K),

With the ‘initial condition’ p(0) = p0, we get an initial value problem (IVP)

dp

dt
= rp(1− p/K), p(0) = p0.

Simple case: In an infinitely large petri dish,

dp

dt
= rp =⇒ p(t) = p0e

rt (exponential growth!)

Notation (derivatives):

We will use x ′(t) and dx/dt for derivatives.
Second order, etc. are denoted by x ′′(t) or d2x/dt2.
m-th order derivatives are x (m)(t) or dmx/dtm.
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Aside: separable ODEs

Simple ODEs can be solved by ‘separating variables’. For instance,

dy

dt
= ry =⇒ 1

y
dy = r =⇒ ln |y | = rt + C =⇒ |y | = Cert

In general, a separable equation for y(t) can be written the form

f (y)
dy

dt
= g(t)

which can be solved, informally, by integrating both sides:

f (y) dy = g(t) dt =⇒
∫

f (y) dy =

∫
g(t) dt

• Not many ODEs of interest are separable

• We need other techniques or numerics (the point of this module!)
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ODEs: numerics

We will see how to solve the ‘standard’ initial value problem for y(t),

y ′ = f (t, y), y(a) = c, a ≤ t ≤ b.

First, what is a numerical solution?

• We need to dicretize the item interval into
discrete points, called a mesh:

a = t0 < t1 < · · · < tN = b.

• A numerical solution approximates y(t)
at the mesh points:

num. solution un ≈ y(tn) for n = 0, · · · ,N.

Definition (errors)

• Local error at a mesh point: en = |yn − un|
• Global error in [a, b]: the largest of the errors at mesh points in the interval:

E = max
tn∈[a,b]

|un − y(tn)| = max
0≤n≤N

en
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ODEs: numerics

IVP: y ′ = f (t, y), y(a) = c
Exact solution: y(t)

At mesh points: yn = y(tn),
approximation: un ≈ y(tn)

To solve, we ‘integrate forwards’ from t0 to t1, then to t2, etc.
For simplicity, let’s assume that the spacing is h (constant).

Approach 1: Estimate y ′. The simplest way uses tn and tn+1:

yn+1 − yn
h

≈ y ′(tn) = f (tn, yn).

This becomes a formula for the approx. un:

un+1 − un
h

= f (tn, un).

which is (Euler’s method).
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ODEs: numerics

IVP: y ′ = f (t, y), y(a) = c
Exact solution: y(t)

At mesh points: yn = y(tn),
approximation: un ≈ y(tn)

Approach 2: Integrate from tn to tn+1, use the FTC:

yn+1 − yn =

∫ tn+1

tn

y ′ dt =

∫ tn+1

tn

f (s, y(s)) ds.

Now we estimate the integral (e.g. trapezoidal rule...). Using the ‘left hand
rule’, we get

yn+1 − yn ≈ hf (tn, yn)

which is Euler’s method again.
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Euler’s method

Thus, to solve the differential equation

y ′ = f (t, y), y(a) = c

we can use the ‘difference equation’ given by Euler’s method

un+1 = un + hf (tn, un), u0 = c.

Two typical examples (solved with h = 0.3):
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y ′ = −2ty , y(0) = 1
Exact: y(t) = exp(−t2)

• Error stays small for all t
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y ′ = 2ty , y(0) = 1

Exact: y(t) = exp(t2)

• error grows with t (by alot)

7 / 31



Euler’s method

The approximation converges as h→ 0 (mesh spacing → 0)

This is true on any fixed interval (even in bad cases):
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(h = 0.2, 0.05, 0.00125, · · · here)
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Euler’s method

Implementation is easy - just iterate the formula.

IVP: y ′ = f (t, y), y(a) = c

Difference eq: un+1 = un + hf (tn, un), u0 = c.

Two structures: for or while loop. Roughly:

def fwd_euler(f, a, b, y0, h):
n = round((b-a)/h)
h = (b-a)/n # fix if (b-a)/h
t = [0]*(n+1) # was not an int
y = [0]*(n+1)
t[0] = a
y[0] = y0
for k in range(0, n):

y[k+1] = y[k] + h*f(t[k],y[k])
t[k+1] = t[k] + h

return t, y

def fwd_euler(f, a, b, y0, h):
t = a
y = y0
tvals = [t]
yvals = [y]
while t < b - 1e-12:

y += h*f(t, y)
t += h
tvals.append(t)
yvals.append(y)

return tvals, yvals

The ‘while’ structure is more versatile, e.g. for changing the step size h during
the loop (so the number of steps is not known).
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Euler’s method: error

How do we determine how the error behaves?

• Consider the error due to approximation in going from tn to tn+1

• Plug the exact solution y(tn) into the difference equation:

un+1 = un + hf (tn, un)

y(tn+1) = y(tn) + hf (tn, y(tn)) + τn

since y(t) does not satisfy the difference equation exactly.

The ‘leftover’ τn is the local truncation error.

• Now we can use Taylor’s theorem to find τn (let yn = y(tn) etc.)

τn = yn+1 − yn − hf (tn, yn)

= (yn + hy ′n +
h2

2
y ′′n + O(h3))− yn − hf (tn, yn)

= hy ′n − hf (tn, yn) +
h2

2
y ′′n + O(h3)

=
h2

2
y ′′n + O(h3)

since the ODE says that y ′n = f (tn, yn). In particular, τn = O(h2) .
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Euler’s method: error

Thus, for the IVP
y ′ = f (t, y), y(a) = c,

Euler’s method has a local truncation error τn = O(h2).

What about the global error?

• The local error en = |un − yn| depends on two parts:

- truncation error (the error from approximating tn−1 → tn)

- propagated error (error building up from previous steps).

• After some work, we can show that in an interval [a, b],

en ≤
C

h
max |τk | for all n such that tn ∈ [a, b]

• max |τk | = largest truncation error , C = some constant
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Euler’s method: error

• Idea: O(h2) at each step, and N = (b − a)/h steps

global error ∼ 1

h
· (local error)

• This means that the global error is O(h), that is

E(h) := max
tn∈[a,b]

|un − yn| = O(h) as h→ 0.

We say the Euler’s method is first order.

• For typical ODE methods, E(h) ∼ Chp as h→ 0.
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Euler’s method: error

We can check the order in the usual two ways...

Approach 1: Use the global error

E(h) := max
tn∈[a,b]

|un − yn| = O(h) as h→ 0.

and plot (with a log-log plot) vs. h or n.
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Euler’s method: error

Approach 2: Take the error at a single point (easiest: t = b)

• Note that changing h also changes the mesh points - except t = b

• The ‘p-estimate’ trick also works, since

u(b; h) ≈ y(b) + Ch

where u(b; h) is the approx. solution at t = b with step size h.

N u at t = b p
4 1.93e + 00 0.63
8 2.26e + 00 0.79

16 2.46e + 00 0.89
32 2.58e + 00 0.94
64 2.65e + 00 0.97

128 2.68e + 00 0.98
256 2.70e + 00 0.99

Example: y ′ = 2ty , at t = 2 (with h = 2/N), and

p ≈ − log2

(
u(4N)− u(2N)

u(2N)− u(N)

)
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ODEs: some linear systems
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ODEs: introduction

Another example: simple harmonic motion - oscillating systems!

• Mass-spring system:

- spring restoring force: −kx(t)

- damping force −cv(t)

- Newton’s law F = ma

=⇒ m
d2x

dt2
= −kx − c

dx

dt

• Simple pendulum:

- Angular displacement θ(t)

- restoring force (gravity): mg sin θ

- damping force (friction) −c dθ/dt

=⇒ L
d2θ

dt2
= −mg sin θ − c

dθ

dt

‘Simple’ case: displacement is small, so sin θ ≈ θ + O(θ3):

L
d2θ

dt2
= −mgθ − c

dθ

dt
.

16 / 31



Aside: linear systems

We can demystify the solution to

ay ′′ + by ′ + cy = 0 (A)

by converting it to a linear system (also useful for numerics!).

Define x1 = y and x2 = y ′ and the vector x = (y , y ′). Then y ′′ = x ′2 so

x ′1 = x2, x ′2 = −(c/a)x1 − (b/a)x2.

In matrix form, this is the linear system

x′ = Ax, A :=

[
0 1
−c/a −b/a

]
To solve, look for exponential solutions

x(t) = eλtv

and plug in to find that this is a solution if and only if

Av = λv.
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Aside: linear systems

Thus, we have found that for the LCC system

x′ = Ax ,

the eigenvalues λ and eigenvectors v yield solutions

x(t) = eλtv

and these solutions are linearly independent for distinct λ (from linear algebra).

• For the second-order converted system

x′ = Ax, A :=

[
0 1
−c/a −b/a

]
The eigenvalues satisfy det(A− λI ) = 0, or

aλ2 + bλ+ c = 0

which is exactly the characteristic equation from before!

• The full solution is a linear combination of these exponentials, e.g.

x(t) = c1e
λ1tv1 + c2e

λ2tv2.

• (Note: for repeated eigenvalues, more work is required)
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The pendulum (linear case)

• Simple pendulum:

- Angular displacement θ(t)

- restoring force (gravity): mg sin θ

- damping force (friction) −c dθ/dt

=⇒ L
d2θ

dt2
= −mg sin θ − c

dθ

dt

After rescaling, we get a (nonlinear) ODE

θ′′ = − sin θ − 2βθ′

with some initial displacement θ(0) and angular velocity θ′(0).

In the ‘small displacement’ case, we get

θ′′ = −θ − 2βθ′.

The exact solution tells us about the behavior...
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The pendulum (linear case)

ODE: θ′′ = −θ − 2βθ′.

Looking for solutions θ = ert we get

r 2 + 2βr + 1 = 0.

This has roots

r = −β ±
√
β2 − 1.

There are two important cases:

• Overdamped: If β > 1, both r ′s are real and
negative - decaying (non-oscillating) solutions

• Underdamped: But if 0 < β < 1, then

r = −β ± i
√

1− β2 = −β ± ωi

which gives solutions e−βt(cosωt + i sinωt)
(decaying oscillations)

.
In either case, solutions will decay to θ = 0 (the pendulum slows down)
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Euler’s method: systems

To solve such ODEs, we must extend Euler’s method to the first order system

y′ = F (t, y), y(a) = ~c

where y(t) is a vector in Rm for each t.

• This is easy! Simply replace scalars with vectors:

un+1 = un + hF (tn, un), u0 = ~c.

• The ‘error’ en is then the max of the errors for each component.

Conversion: any n-th order ODE

y (m) = f (t, y , · · · , y (n−1))

can be converted to this standard form by setting

x1 = y , x2 = y ′, · · · xm = y (m−1)

and x = (x1, · · · , xm) so that x ′1 = x2 and so on, giving
x1
...

xm−1

xm


′

=


x2
...
xm

f (t, x1, · · · , xm)

 =⇒ x′ = F (t, x)
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Euler’s method: systems

We can use operator overloading for the code (numpy arrays are good here!)...

For scalar ODEs:

def fwd_euler(f, t, b, y0, h):
y = y0
tvals = [t]
yvals = [y]
while t < b:

y += h*f(t, y)
t += h
tvals.append(t)
yvals.append(y)

return tvals, yvals

A quick version for systems:

def fwd_euler(f, t, b, y0, h):
y = np.array(y0) # copy
tvals = [t]
yvals = [[v] for v in y]
while t < b:

y += h*f(t, y)
t += h
for k in range(len(y)):

yvals[k].append(y[k])
tvals.append(t)

return tvals, yvals

# example f (must return a numpy array)!
def f(t, y):

return np.array((y[0]*y[1], y[1]**2))
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Euler’s method: systems

def fwd_euler(f, t, b, y0, h):
y = np.array(y0) # copy
tvals = [t]
yvals = [[v] for v in y]
while t < b:

y += h*f(t, y)
t += h
for k in range(len(y)):

yvals[k].append(y[k])
tvals.append(t)

return tvals, yvals

• You have to make a choice on the ‘shape’ of the return...

• Two options (e.g. for y = (x , y) in 2d)
x0
x1
...
xn



y0
y1
...
yn

 or


[x0, y0]
[x1, y1]

...
[xn, yn]


• (You could use a numpy array, but it has no append...)
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The pendulum: computation

Now back to the pendulum...

θ′′ = −θ − 2βθ′

To compute, convert to a first order system.
Let x1 = θ and x2 = θ′, Then

x ′1 = x2

x ′2 = −x1 − 2βx2.

with initial position/velocity (x1(0), x2(0))

b = 0.1
def pend(t, x):

return np.array((x[1], -x[0] - 2*b*x[1]))

# typical call
t, x = fwd_euler(pend, 0, 20, [1.0,0], 0.1)
plt.plot(t, x[0], '-k', t, x[1], '-b')

0 5 10 15
t

0.5

0.0

0.5

damping: b=0.2
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damping: b=1.2

(t)
′(t)

• Note that the output shape depends on implementation (here x[0] is x1(t)).
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The pendulum: computation

It’s also useful to plot a system in phase space.

• Plot in the (θ, θ′) plane (plot θ′(t) vs. θ(t))

• Quick example: simple harmonic motion...
(β = 0 case)

θ′′ = −θ =⇒ x ′1 = x2, x ′2 = −x1

• Plug in ert =⇒ r = ±i
• Solutions oscillate - (theta, θ′) is a circle!

def f(t, x):
return np.array((x[1], -x[0]))

# typical call
pos = 1.0 # initial displacement
vel = 0 # initial velocity
t, x = fwd_euler(f, 0, 10, [pos, vel], 0.1)
plt.plot(x[0], x[1], '-k')
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The pendulum: computation

Be careful with the choice of h...
Euler’s method may not behave the same way as the true solution!

1.0 0.5 0.0 0.5 1.0
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x 2
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exact

1 0 1
x1

1.0

0.5
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0.5

1.0

x 2

approx.
exact

(Left: h = 0.01 up to t = 2π... right: h = 0.01 up to t = 10π)
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The forced pendulum

Now consider the non-linear pendulum equation

θ′′ = − sin θ − βθ′.

When θ is not small, this term is quite different!

• The pendulum may swing ‘over’ the top (θ is really periodic)

• More complex behavior - but not more complex numerics!

• We can add a forcing to this as well:

θ′′ = − sin θ − βθ + A sinω0t

• A more accurate method is needed here to see the finer details without an
unacceptably small h (see next slides).

• For certain parameters, the system is extremely sensitive
(a big problem for not-so-accurate solvers like Euler’s method!)

(see python code)
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ODEs: more numerical methods

Let’s go back to the integral derivation of Euler’s method

y ′ = f (t, y)

integrated from tn to tn+1 gives

yn+1 = yn +

∫ tn+1

tn

f (s, y(s)) ds

We got Euler’s method from the (not very accurate) left hand rule∫ b

a

g(x) dx ≈ (b − a)g(a).

Instead, let’s use the trapezoidal rule∫ b

a

g(x) dx =
b − a

2
(g(a) + g(b))

to obtain

yn+1 = yn +
h

2
(f (tn, yn) + f (tn+1, yn+1) + O(h3)

using the result we derived for the error (O(h3) for an h-sized interval).

28 / 31



ODEs: more numerical methods

yn+1 = yn +
h

2
(f (tn, yn) + f (tn+1, yn+1) + O(h3)

• This yields the trapezoidal method

un+1 = un +
h

2
(f (tn, un) + f (tn+1, un+1))

• Unlike Euler, the method is implicit: the RHS depends on the unknown un+1.

• O(h3) trunc. error =⇒ O(h3) · (1/h) = O(h2) global error (second order!)

• We must use a zero-finder to solve for un+1 at each step.

• (Why bother? The method has nice properties on some nasty ODEs...)

Can we avoid the implicit part? Idea: use an approximation.

• The order is preserved as long as the approximation is within O(h2)

• We know how to do this: use Euler’s method!

This idea yields the explicit trapezoidal rule

ũn+1 = un + hf (tn, un)

un+1 = un +
h

2
(f (tn, un) + f (tn+1, ũn+1))
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Runge-Kutta methods

More generally, we can construct ‘one step methods’ that

• Start at un
• compute some sub-steps ũ from un and multiples of f at these sub-steps
• Add them up in the right way to get un+1

which are called Runge-Kutta methods.
For example, we can write the explicit rule from the previous slide as,

f1 = f (tn, un)

f2 + f (tn + h, un + hf1)

un+1 = un +
h

2
f1 +

h

2
f2.

More sub-steps =⇒ higher order methods, like ‘classical’ RK4 method:

f1 = f (tn, un)

f2 = f (tn +
h

2
, un +

h

2
f1)

f3 = f (tn +
h

2
, un +

h

2
f2)

f4 = f (tn + h, yn + hf3)

un+1 = un +
h

6
(f1 + 2f2 + 2f3 + f4)
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Runge-Kutta methods

Classical RK4:

f1 = f (tn, un)

f2 = f (tn +
h

2
, un +

h

2
f1)

f3 = f (tn +
h

2
, un +

h

2
f2)

f4 = f (tn + h, yn + hf3)

un+1 = un +
h

6
(f1 + 2f2 + 2f3 + f4)

• RK4 is fourth order (!) and a good method to use with a fixed step size h.

• (More or less) strictly better than Euler’s method

• Similar methods are better for changing h (e.g. the Runge-Kutta-Fehlberg
method, which has a similar form and is used in scipy.integrate).

• RK methods are great general purpose solvers - good accuracy, easy to
implement, easy to implement for systems...

• The catch: for some ODEs, there are estrictions on h that can be bad...
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