
Math 260: Python programming in math

Fall 2020

Signal processing: The Fourier transform

1 / 51

An example...

A motivating example: Here’s a sound wave plotted over time

It’s a piano playing notes of a minor chord (G#, B, D#).

We can’t tell the notes being played from this picture (sound vs. time)...

The wave is comprised of sounds of various frequencies - we instead want to
plot the spectrum (showing the components of each frequency) for the notes.

2 / 51

An example...

For the first two notes:

Peaks: 206Hz (G#3),
412Hz (G#4), 618Hz (D#4)

Peaks: 245Hz (B3),
490Hz (B4), 735Hz (D#4)

• Higher harmonics: multiples of the bases frequency present!

• Frequency plot gives valuable information about the signal...

• Our goal: what is the underlying theory?

image from https://www.musical-u.com/learn/learn-to-recognise-chords-free-mp3-pack/, plots in audacity

3 / 51

https://www.musical-u.com/learn/learn-to-recognise-chords-free-mp3-pack/

Complex numbers: review

• z = x + iy is at a point (x , y) in the complex plane C
- real/imaginary parts Re(z) = x and Im(z) = y

• Multiplication: (a + ib)(c + id) = ac − bd + i(bc + ad) (from i2 = −1)

• Conjugate: z = x + iy =⇒ z = x − iy

Euler’s formula: e iθ = cos θ + i sin θ

• Polar form(use Euler’s formula):

x + iy = re iθ,

{
r 2 = x2 + y 2,

θ = tan−1(y/x)

• Note that re iθ = re−iθ

• The magnitude of z = x + iy is

|z | =
√

x2 + y 2 = r .

• θ: the argument or phase (physics)

4 / 51

Complex numbers in python

Python has a built-in complex type!

• Multiplication, etc. are all defined (z*w etc.)

• The imaginary unit is j (not i !); the number i is 1j.

z = 1 + 2j
b = 4
w = 1 + b*(1j)

• numpy arrays are float by default. To make complex arrays:

z_values = np.array(0, dtype=complex)

• numpy functions like exp are defined for complex numbers:

z = np.exp(pi*1j)
print(z) # z is -1 + 1.22e-16j
x = float(z) # now a real number

Best practices (complex numbers have two parts):

Results that ‘should be’ real may be real up to rounding error

• Sometimes, you need to convert to an actual real number with float(z)

• This may hide errors... check real/imaginary parts before converting!

5 / 51

Fourier series: context

A physical interpretation... standing waves h(x) for a string

• Case one: fixed at both ends (h(0) = h(L) = 0)

• Case two: free to slide up and down (h′(0) = h′(L) = 0)

Any vibration is a superposition (linear combination) of these modes.

6 / 51

Fourier series: context

A fundamental theorem from math: Fourier series representation

• Non-trivial to prove! Take as true here...

• Deep insights into physical systems and more (waves, ...)

Suppose f (x) is a (not terrible) function defined on the interval [−π, π].

Then it has a (complex) Fourier series representation

f (x) =
∞∑

n=−∞

cne
inx

where the coefficients are given by

cn =
1

2π

∫ 2π

0

f (x)e−inx dx .

Note that if f is a real function, then coefficients come in ‘pairs’:

c−n =
1

2π

∫ 2π

0

f (x)e inx dx =
1

2π

∫ 2π

0

f (x)e−inx dx = cn

since z1z2 = z1z2 and f is real (so f = f).

7 / 51

Fourier series: complex to real

Assuming that f is real, we get c−n = cn. Recall that

cos x =
1

2
(e ix + e−ix), sin x = − i

2
(e ix − e−ix).

Now pair up +n and −n terms and write cn as

cn =
1

2
(an − ibn).

Then

f (x) = c0 +
∞∑
n=1

(
cne

inx + cne
−inx
)

=⇒ f (x) =
a0
2

+
∞∑
n=1

(an cos nx + bn sin nx) .

This is the real form of the Fourier series.

We use this idea often to convert between...

• ...the complex form (more elegant, convenient)

• ...the real form (often more meaningful for results)

8 / 51

From (continuous) Fourier series to the
discrete...

9 / 51

Fourier series: orthogonality

f (x) =
∞∑

n=−∞

cne
inx , cn =

1

2π

∫ 2π

0

f (x)e−inx dx .

Why is this formula true? The key is that the functions e inx are an orthogonal
basis (in the linear algebra sense). It is true that∫ 2π

0

e imxe−inx dx =

{
2π m = n

0 m 6= n
.

Define the ‘inner product’ (by analogy to the dot product)

〈f , g〉 =

∫ 2π

0

f (x)g(x) dx (like ~x · ~y =
n∑

k=1

xkyk)

Then the functions e inx are ‘orthogonal’:

〈e imx , e inx〉 = 0form 6= n.

10 / 51

Fourier series: orthogonality

Now we can see how the coefficient formula works:

f (x) =
∞∑

n=−∞

cne
inx , cn =

1

2π

∫ 2π

0

f (x)e−inx dx .

Take the inner product of the Fourier series with one of the exponentials:

〈f , e imx〉 =
∞∑

n=−∞

cn

∫ 2π

0

e inxe−imx dx

=
∞∑

n=−∞

cn

({
2π m = n

0 m 6= n

)
= 2πcm.

This means that the coefficient cm depends only on the e imx part (the
‘components’ of the series do not overlap, like perpendicular vectors)

But enough theory; here we are looking to compute transforms...

11 / 51

Discrete Fourier transform: context

f (x) =
∞∑

n=−∞

cne
inx , cn =

1

2π

∫ 2π

0

f (x)e−inx dx .

How do we get a computational version of the Fourier series?

• We can approximate the integrals for cn

• We need a ‘discrete’ version of orthogonality

To get there, pick N and consider using grid points (‘samples’)

xj = 2πj/N, j = 0, 1, · · · ,N − 1.

Now use the trapezoidal rule to approximate cn:

cn =
1

2π

∫ 2π

0

f (x)e−inx dx ≈ 1

2π
· 2π

N

(
1

2
f (0) +

N−1∑
k=1

f (xk)e−inxk +
1

2
f (2π)

)
The endpoints are a problem - but if f has period 2π then f (0) = f (2π) and

cn ≈
1

N

N∑
k=0

f (xk)e−inxk .

This is the basis of the discrete Fourier transform.
12 / 51

Discrete Fourier transform: definition

Now let’s define the discrete transform. As an example, consider the ‘signal’

f (x) = 2 cos 2x + 6 sin x , x ∈ [0, 2π]

and suppose we have samples of f at the (standard) sample points:

fj = f (xj) is known , xj = 2πj/N, j = 0, 1, · · · ,N − 1.

We want to identify the frequencies (2 and 1) and amplitudes (2 and 6).

Key observation: orthogonality

For functions sampled at the xj ’s, define the ‘dot product’

〈f , g〉d =
N−1∑
j=0

f (xj)g(xj)

i.e. the dot product of f and g at the sample points. Then the e inx ’s are
orthogonal in this dot product, i.e.

〈e imx , e inx〉d =
N−1∑
j=0

e imxj e−inxj =

{
0 m 6= n

N m = n
.

13 / 51

Discrete Fourier transform: definition

Definition:

The Discrete Fourier transform (DFT) of a vector ~f = (f0, · · · , fN−1) is

Fk =
1

N

N−1∑
j=0

fje
−2πikj/N =

1

N
〈f , e ikx〉d

which is also a vector ~F of length N.
The inverse transform (IDFT) is given by

fj =
N−1∑
k=0

Fke
2πikj/N

Caution:

There are several slightly different ways to write this pair of formulas.

• The ‘plus’ and ‘minus’ exponentials (e ikx vs. e−ikx) can be switched

• The product of the factors in front of the sum must be 1/N. You may see
1/N, 1 or 1, 1/N or 1/

√
N, 1/

√
N for the DFT/IDFT.

Always check documentation before using a DFT routine!

14 / 51

The discrete Fourier transform

15 / 51

Discrete Fourier transform: definition

Definition:

The Discrete Fourier transform (DFT) of a vector ~f = (f0, · · · , fN−1) is

Fk =
1

N

N−1∑
j=0

fje
−2πikj/N =

1

N
〈f , e ikx〉d

which is also a vector ~F of length N.
The inverse transform (IDFT) is given by

fj =
N−1∑
k=0

Fke
2πikj/N

• We think of ~f as coming from sampling data in [0, 2π] at the sample points.

• Letting ω = e−2πi/N , we can write the DFT/IDFT nicely as

Fk =
1

N

N−1∑
j=0

fjω
jk , fj =

N−1∑
k=0

Fkω
−jk .

16 / 51

A first example

The DFT {Fk} gives amplitudes of frequencies in the signal. Example:
consider

f (x) = 3e ix + 5e4ix .

Sample f with N = 8 to get samples ~f = (f0, f1 · · · , f7)... then take the DFT:

Fk =
1

N

N−1∑
j=0

fje
−2πikj/N

0 2 4 6
x

5

0

5

f

Re(f)
 Im(f)

0 2 4 6
k

0

1

2

3

4

5

f

By the discrete orthogonality rule, Fk 6= 0 only for k = 1, k = 4 so

~F = (0, 3, 0, 0, 5, 0, 0, 0)

17 / 51

Selection

You can think of the DFT formula for the k-th component,

signal→ 1

N
〈signal, e ikx〉d

as ‘selecting’ that frequency and returning its amplitude
(or from linear algebra: projection...)

The DFT is then selecting each frequency to get the amplitudes at each and
returning them as a vector. For instance, consider

f (x) = 2 cos 2x + 6 sin x

= e2ix + e−2ix − 3ie ix + 3ie−ix

with N = 6. Letting φk(x) = e ikx , we get

〈f , φ0〉/N → 0 (not present!)

〈f , φ1〉/N → −3i

〈f , φ2〉/N → 1

〈f , φ3〉/N → 0 (not present!)

〈f , φ4〉/N → 1

〈f , φ5〉/N → 3i

18 / 51

The complication: aliasing

It is important to know which frequencies are present in the DFT.
This is subtle because the DFT only knows about the sample points.

• The exponentials in the DFT are

e0x , e ix , · · · , e i(N−1)x

• Notice that at any sample point, by Euler’s formula

e iNxj = e iN(2πj/N) = (e2πi)j = 1

We can use this to ‘shift’ exponentials in the DFT for free:

e−ikxj = e iNxj e−ikxj = e i(N−k)xj .

Thus, the DFT ‘sees’ frequency −k as N − k.

• Similarly, k + N, k + 2N, · · · , are all seen as k

• This effect is called aliasing

19 / 51

Aliasing

Consider sampling
f (x) = cos 2x + 2 sin 4x .

From Euler’s formula,

cos 2x =
1

2
e2ix +

1

2
e−2ix , sin x = − i

2
(e4ix − e−4ix).

Thus the frequencies present are ±2 and ±1.

The DFT with N = 10 does what we want:

0 2 4 6 8
k

1.0

0.5

0.0

0.5

1.0
Real part

0 2 4 6 8
k

1.0

0.5

0.0

0.5

1.0
Imag part

Real part: 1/2 and 2 and −2 + 10 = 8
Imag part: −1/2 and 4 and 1/2 at −4 + 10 = 6

20 / 51

Aliasing

Consider sampling
f (x) = cos 2x + 2 sin 4x .

However, N = 6 is not enough samples!

0 2 4
k

1.0

0.5

0.0

0.5

1.0
Real part

0 2 4
k

1.0

0.5

0.0

0.5

1.0
Imag part

Real part: 1/2 and 2 and −2 + 6 = 4 (okay)
Imag part: −1/2 and 4 and 1/2 at −4 + 6 = 2 (bad!)

This data does not distinguish f (x) from

f̃ (x) = cos 2x−2 sin 2x .

21 / 51

Sampling

0 2 4 6

2

0

2

0 2 4 6

2

0

2

To fit all the frequencies, we need to take

N > 2 max(frequencies in signal)

which is called the Nyquist rate.
Otherwise, the sampling is too slow to ‘see’ the higher frequency parts.

(Example: filming a spinning wheel... the ‘wagon-wheel effect’)

22 / 51

Shifting frequencies

The fact that the −k frequencies go to N − k suggests that

k = 0, 1, · · · ,N − 1

are wrong for real signals: we need matched + and − parts. Instead:

freqs = −N

2
,
N

2
+ 1, · · · ,−1, 0 · · · , N

2
− 1

are the right frequencies.

We can also shift the k’s by N/2 to get

freqsshifted = −N/2, −N/2 + 1, · · · ,−1, 0, 1 · · ·N/2− 1

The transform ~F must then be shifted the same way to line up with the k’s...

~F = F0,F1, · · · ,FN/2−1, FN/2,FN/2+1 · · ·FN−1

=⇒ ~Fshifted = FN/2,FN/2+1 · · · ,FN−1, F0,F1, · · ·FN/2−1

The shifted freq vector will have freq[N//2] = 0 (the ‘center’ point).

23 / 51

Shifting frequencies

An example - take N = 6...

The DFT yields {
F0,F1,F2,F3,F4,F5

0, 1, 2, 3, 4, 5

The true frequencies (assuming a real signal) are:{
F0,F1,F2,F3,F4,F5

0, 1, 2,−3,−2,−1

After shifting, the result is{
F3, F4, F5, F0,F1,F2

−3,−2,−1, 0, 1, 2

• In python, this is done using two functions fftfreq and fftshift

• You could place N/2 on either end (e.g. +3 or −3)

• (check the convention in your code carefully; python uses −N/2)

24 / 51

Shifting frequencies: example

For N = 10 f (x) = cos 2x + 2 sin 4x , the DFT uses the frequencies

k = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

kshifted = −5,−4,−3,−2,−1, 0, 1, 2, 3, 4

0 2 4 6 8 10
k

1.0

0.5

0.0

0.5

1.0
Real part

0 2 4 6 8
k

1.0

0.5

0.0

0.5

1.0
Imag part

4 2 0 2 4
k

1.0

0.5

0.0

0.5

1.0
Real part (SHIFTED)

4 2 0 2 4
k

1.0

0.5

0.0

0.5

1.0
Imag part (SHIFTED)

25 / 51

Computation: the Fast fourier transform

26 / 51

Implementation...

Now let’s view the formulas just as ‘sums to compute’:

DFT: Fk =
1

N

N−1∑
j=0

fje
−2πikj/N , IDFT: fj =

N−1∑
k=0

Fke
2πikj/N

First note that the IDFT is actually a DFT. Taking the conjugate:

IDFT(~F)j =
N−1∑
j=0

Fke
−2πikj/N

which is just the DFT of Fk (up to the 1/N factor).

Thus we only need a way to compute the DFT.

The slow method: Brute force - just compute the sum directly.
How many operations (O(· · ·)) are required?

Answer: O(N2).
This seems okay, but we can do much better...

27 / 51

Implementation...

DFT: Fk =
N−1∑
j=0

fjω
jk , ω = e−2πi/N .

The trick: divide and conquer! Example: let N = 8 and ω = e−2πi/8. Then

Fk = DFT(f0, · · · , f7)k

=
1

N

8∑
j=0

fjω
jk , k = 0, · · · , 7,

=
1

N

(
f0 + f2ω

2k + f4ω
4k + f6ω

6k
)

+
1

N
ωk
(
f1 + f3ω

2k + f5ω
4k + f7ω

6k
)

=
1

2

2

N

(
f0 + f2ξ

k + f4ξ
2k + f6ξ

3k
)

+
1

2
ωk 2

N

(
f1 + f3ξ

k + f5ξ
2k + f7ξ

3k
)

where ξ = ω2. But ξ = e−2πi/4. which is the ‘omega’ for N = 4....
Thus both sums in parentheses are DFT’s for N = 4! We then have

Fk =
1

2
DFT(f0, f2, f4, f6)k +

1

2
ωkDFT(f1, f3, f5, f7)k . k = 0, · · · , 7.

Note: on the right side, k is taken ‘mod 4’ in the subscripts (4, 5 are 0, 1, etc.).
28 / 51

The fast Fourier transform

More generally, suppose N is a power of 2. Then

DFT(f0, f1, · · · , fN−1) =

1
2
DFT(f0, f2, · · · , fN−2) + 1

2
ωkDFT(f1, f3, · · · , fN−1) (F)

Thus the DFT can be computed as follows:

• Split the vector into two half-sized vectors: odds and evens

• Take the DFT of the odd and even parts (recursively)

• Combine them according to the formula (F).

This is the basis of the fast Fourier transform (FFT).

Why ‘fast’? Suppose N = 2p and let C(N) be the cost of the transform.
Then - just as we saw for mergesort,

C(N) = aN + 2C(N/2)

=⇒ C(N) = aN + 2a(N/2) + 4a(N/4) + · · · = paN.

It follows that the FFT requires O(N logN) operations!

29 / 51

The fast Fourier transform

• This is much faster than the slow O(N2) method.

- For N = 104, the slow method is ≈ 104/ log2(104) ≈ 750 times slower!

• The FFT is one of the most important algorithms of the twentieth century -
essential for signal processing, data analysis...

• First version usually credited to Cooley & Tukey (1965)

(Side note: was known to Gauss in the 1800s...)

There are more details to making the FFT work (the messy part):

• What if N is not a power of 2?

• What is the right base case? (Answer: ‘small’ cases like N = 3...)

• How do we un-recursion it? (Answer: some clever encoding, plus a stack...)

Scientific computing packages will have an fft available -
In numpy: numpy.fft has all the FFT features.

30 / 51

The fast Fourier transform: python

A quick tour of numpy.fft....

• FFT/IFFT: fft(x) and ifft(x) (convention: 1/N on IFFT)

n = 6
t = np.linspace(0, 2*np.pi, n, endpoint=False) # 0, pi/6, ... 5pi/6
d = 2*np.pi/n # sample spacing
samples = some_function(t)
c = fft.fft(samples)
freq = fft.fftfreq(n, d) #[0,1,2,-3,-2,-1]/(2*pi)
freq = fft.fftshift(freq) # now [-3,-2,-1,0,1,2]/(2*pi)
c = fft.fftshift(c) # now c is shifted the same way

• ifft(fft(x) ≈ x [up to rounding]

• fftfreq(n, d) gets the ‘frequencies’ for the length N FFT.

- d is the sample spacing L/N (for samples in [0, L])

- If d is in seconds, then the freqs. are in cycles/second (Hz).

-This in the original order (not shifted). If N is even:

fftfreq(N) = [0, 1, 2, · · ·N/2− 1,−N/2,−N/2 + 1, · · · − 1]/L

• fftshift(v) centers the data (as discussed)

31 / 51

A practical example: filtering

32 / 51

FFT: physical units

It’s worth clarifying the issue of units for frequency...

If we sample N values from t = 0 to t = L seconds,
the values k = 0,±1, · · · correspond to k/L cycles per second (Hz).

To see this, look at the DFT with N samples on an interval [0, L]...

Fk =
1

N

N−1∑
j=0

f (xj)e
−2πikj/N

=
1

N

N−1∑
j=0

f (xj)e
−(2πik/L)(Lj/N)

=
1

N
〈f , e2πikx/L〉d , 〈f , g〉 =

N−1∑
j=0

f (xj)g(xj).

Conclusion: the frequencies for this DFT are 2πk/L (rad/s) or k/L (cycles/s).

33 / 51

FFT: physical units - interpretation

Again, suppose we sample N values from t = 0 to t = L time.

The fundamental frequency

ω0 = 1/L cycles/time = 2π/L rad./time

is the lowest frequency ω such that e iωt is periodic.

The other frequencies are multiples of the fundamental one.

• For a Fourier series
f =

∑
n

cne
iωnx ,

frequencies are an infinite sequence (enough to represent f).

• For the DFT, frequencies go up to N/2L, and higher ones are aliased

34 / 51

FFT: physical units - interpretation

Yet another intuition for the scaling with L...

Consider a sound wave sampled in [[0, L] with N samples; the frequencies are

1

L
, · · · N

2L
.

Now play the sound in double speed, taking N samples again (interval:
[0, L/2]). The frequencies are:

2 · 1

L
, · · · 2 · N

2L
.

This matches what you know of sound!

35 / 51

FFT: physical units

Example: Consider the ‘pure’ middle-C tone

f (t) = sin(524πt), frequency = 262Hz.

Sample N = 1024 points in the interval [0, 1] and take the DFT. Then

Fk =
1

N

N−1∑
j=0

f (xj)e
−2πikj =

1

N
〈f , e2πikx〉d .

The set {e2πikx} is orthogonal in the inner product and

f (t) = − i

2
e262·2πit +

i

2
e−262·2πit

Thus, the DFT selects the right frequencies, and we get

F262 = − i

2
, F−262+N =

i

2
, Fk = 0 otherwise

corresponding to the frequency 262/L = 262Hz.

36 / 51

An example: low pass filter

Now let’s look at a real example. Let’s construct a low pass filter, which
removes all frequencies above a cutoff value fc (Hz) in the signal.

Info on the signal:

• Over a time [0, L] with a sample rate r = 44100Hz (the wav standard)

• The real frequencies are related to k by freq[k] = k/L

• Spacing between samples: 1/r seconds

The algorithm:

1) Load an audio file (data) (here a .wav, using scipy.io.wavfile)

2) Compute the FFT, df, and associated dimensional frequencies freq (Hz)

3) et df[k] to zero for all k’s with |freq[k]| > fc .

4) Inverse transform with the IFFT, save the result as a wav!

In short: transform, then filter, then inverse transform back.

37 / 51

An example: low pass filter

The algorithm:

• Load an audio file (data) (here a .wav, using scipy.io.wavfile)

• Compute the FFT, df, and associated dimensional frequencies freq (Hz)

• Set df[k] to zero for all k’s with |freq[k]| > fc .

• Inverse transform with the IFFT, save the result as a wav!

102 103 104

freq (Hz)

10 3

10 1

101

m
ag

ni
tu

de

original

102 103 104

freq (Hz)

10 14

10 10

10 6

10 2

m
ag

ni
tu

de

cut=500 Hz

Note: We plot the power spectrum: |Fk | vs. freq. for the ‘positive’ k’s.

(Why not also plot Fk for the ‘negative’ k’s?)

38 / 51

Convolutions

An important operation in mathematics
is the convolution

(f ∗ g)(x) =

∫ ∞
−∞

f (y)g(x − y) dy .

for functions f , g defined for real
numbers.

Often, g is a ‘window’ that slides by
the graph of f , picking out a part of f
weighted by some shape.

Example: f and g are boxes, H = 1...

39 / 51

Convolutions

For periodic functions with period 2π, we instead use

(f ∗ g)(x) =

∫ 2π

0

f (y)g(x − y) dy .

We can think of the argument x − y as periodic, so it ‘wraps around’ the
interval [0, 2π] (e.g. −π/2 is 3π/2).

The discrete analogue is the circular convolution

(~f ∗ ~g)j =
N−1∑
m=0

fmgj−m

where subscripts are taken ‘with period N’ (so −1 is N − 1 and so on).

Theorem (convolution and DFT)

The DFT of a convolution is the element-wise product of the DFTs...

DFT(~f ∗ ~g)k = DFT(F)kDFT(G)k

(Proof: a direct computation...)

40 / 51

Convolutions

Theorem

The DFT of a convolution is the element-wise product of the DFTs...

DFT(~f ∗ ~g)k = DFT(F)kDFT(G)k

• Thus ‘pointwise’ multiplication of frequencies is convolution in real space

• Convolutions, like the DFT, are O(N logN) (not O(N2))!

• ‘Filters’ (like low pass, etc.) are convolutions in real space

Example: consider the DFT in [0, 2π] with spacing h = 2π/N and

~g = [−1

h
,

1

h
, 0, 0, · · ·].

F1 = f0g1 + f1g0 + · · · =
f (x1)− f (x1 − h)

h
≈ f ′(x1)

F2 = f0g2 + f1g1 + f2g0 + · · · =
f (x2)− f (x2 − h)

h
≈ f ′(x2)

Fj = zeros + fj−1g1 + fjg0 + zeros =
f (xj)− f (xj − h)

h
≈ f ′(xj)

so the convolution gives the backward difference approximation to f’(x)!
41 / 51

A few more notes on the Fourier transform

42 / 51

More on the Fourier transform

A power spectrum plot shows |Fk | vs. frequency (or k). For this,

f (t) = sin t, g(t) = cos t have the same Fk .

We can also plot the ‘angle’ or ‘phase’ of F , i.e.

Fk = rke
iθk , =⇒ plot rk vs. k , plot θk vs. k.

Observe that θ = ±1 corresponds to pure cosines, and θ = ±π
2

to pure sines.

f (t) = 4 cos t + 2 sin 2t, F = (2,−i , 0, · · · , 0, i , 2)

0 2 4 6 8 9
k

0.0

0.5

1.0

1.5

2.0

|F
|

mag. of F

0 2 4 6 8 9
k

/2

0

/2

an
gl

e(
F)

phase of F

cosine: 2e it =⇒ arg = 0, sine: −ie2it = e−iπ/2e2it =⇒ arg = −π/2
43 / 51

More on the Fourier transform

More generally, suppose we translate (‘phase shift’) the signal...

sin 2t =⇒ sin 2(t − φ) = cos 2φ sin 2t − sin 2φ cos 2t.

The magnitude is 1/2 - which shows up in the plot of |F |. Since

sin 2(t−φ) = − i

2

(
e−2iφe2it − e2iφe−2it

)
φ shows up in the phase plot (∓2φ at ± frequencies).

This means that the frequency k may show up as a mix of sines and cosines.

sin vs. cos depends on the starting point of the sampling (shift in t).

44 / 51

More on the Fourier transform

Example: f (t) = sin(2t) shifted by π/8 (so f (t − π/8) = sin(2(t − π/8)):

0 2 4 6 8 9
k

0.3

0.2

0.1

0.0
Re

(F
)

real part

0 2 4 6 8 9
k

0.2

0.0

0.2

Im
(F

)

imag part

0 2 4 6 8 9
k

0.0

0.2

0.4

|F
|

mag. of F

0 2 4 6 8 9
k

/2

0

/2
an

gl
e(

F)

phase of F

45 / 51

Bonus application: multiplying numbers

Recall that we also define the circular convolution

(~f ∗c ~g)k =
N−1∑
j=0

fjgk−j

Observe that the periodic nature is avoided if the data is ‘padded’.
Claim: If

fj = gj = 0 for j > N/2

(or a similar padding scheme) then

(~f ∗c ~g)k =
N−1∑
j=0

fjgk−j =
k∑

j=0

fjgk−j .

That is, if only half the vectors are filled, they don’t interact when ‘looped’.

Details to check:

• If j > N/2 then fj = 0 =⇒ zero term.

• If 0 < j < N/2 and k − j < 0 then k − j becomes > N/2 =⇒ gk−j = 0.

Thus the sum ‘mod N’ is just a regular sum (no negative indices!).
46 / 51

Bonus application: multiplying numbers

Thus, with enough padding, we can use the circular convolution to compute

(~f ∗ ~g)k =
∞∑

j=−∞

fjgk−j

if ~f , ~g have finitely many non-zero entries, or the variant

(~f ∗ ~g)k =
k∑

j=0

fjgk−j

for length N vectors (all the same thing, but using slight variations)...

That is: with enough padding, the ‘boundary’ interactions don’t matter.

47 / 51

Bonus application: multiplying numbers

Now why does this matter? We saw that for the FFT,

fft(~f ∗c ~g)k = FkGk , F = fft(~f), G = fft(~g).

The FFT of the convolution is the (element-wise) product of each FFT.

Thus, to compute the circular or other convolution, we can

• Setup:

-Identify vectors ~f , ~g with all the non-zero data

-Pad the vectors with extra zeros as needed

• FFT part:

-Take the FFT of the padded vectors to get F and G

-Compute the (trivial) product FkGk

-Take the IFFT to get the convolution

(For the circular convolution, just skip to the FFT part) (‘Fourier’s law’)

48 / 51

Bonus application: multiplying numbers

Suppose I want to compute the product of two n digit numbers with digits

cn−1, · · · c0, dn−1, · · · d0.

Then the numbers are

c =
n−1∑
j=0

cj10j , d =
n−1∑
j=0

dj10j .

Taking the product cd , we see that

(cj10j) · dk−j10k−j goes to the 10k term of cd

which accounts for all the terms (once multiplied out),and so

cd =
2n∑
k=0

ak10k , ak =
k∑

j=0

cjdk−j .

although the ak ’s here are not digits. For instance, for 123× 45 = 5535,

c = 1× 102 + 2× 101 + 3, d = 4× 101 + 5,

a0 = 3 · 5, a1 = 3 · 4 + 2 · 5, a2 = 1 · 5 + 2 · 4, a3 = 1 · 4

15 + 22 · 10 + 13 · 100 + 4 · 1000 = 5535.

49 / 51

Bonus application: multiplying numbers

So, for numbers,

c =
n−1∑
j=0

cj10j , d =
n−1∑
j=0

dj10j .

we have that

cd =
2n∑
k=0

ak10k , ak =
k∑

j=0

cjdk−j

which means cd can be computed from the circular convolution

~a = ~c ∗c ~d

where ~c and ~d are padded enough.
Example:

c = 1× 102 + 2× 101 + 3, d = 4× 101 + 5,

~c = (3, 2, 1, 0, 0), ~d = (5, 4, 0, 0, 0)

a2 = (~c ∗ ~d)2 = c0d2 + c1d1 + c2d0 + c3d4 + c4d3

‘periodic’ terms vanish (red), and a2 = 3 · 0 + 2 · 4 + 1 · 5 = 13.

50 / 51

Bonus application: multiplying numbers

cd =
2n∑
k=0

ak10k , ak =
k∑

j=0

cjdk−j

This gives a strange way to find cd :

Multiplication by FFT

Let c, d be n-digit integers. To compute cd , we can...

• Construct vectors ~c, ~d of their digits, padded with zeros (N = 2n)

• Take the FFT of ~c nad ~d to get C ,D

• Compute CD and then IFFT

- the non-zero entries are then the coefficients ak

• Finally, compute
∑2n

k=0 ak10k , round to an integer

• The ‘by hand’ way: O(n2) operations

• This way: O(n log n) operations (sort of)!

• Unfortunate fact: this isn’t really worth it except for very large n, plus
rounding issues (and there are other ways to deal with large numbers...)

51 / 51

