Math 260: Python programming in math

Fall 2020

Signal processing: The Fourier transform

An example...

A motivating example: Here's a sound wave plotted over time

It's a piano playing notes of a minor chord (G¥, B, D#).
We can't tell the notes being played from this picture (sound vs. time)...

The wave is comprised of sounds of various frequencies - we instead want to
plot the spectrum (showing the components of each frequency) for the notes.

An example...

For the first two notes:

600.00Hz

200.00Hz 300.00Hz 400.00Hz

Peaks: 206Hz (G*3), Peaks: 245Hz (B3),
412Hz (G*4), 618Hz (D*4) 490Hz (B4), 735Hz (D*4)
e Higher harmonics: multiples of the bases frequency present!

e Frequency plot gives valuable information about the signal...

e Our goal: what is the underlying theory?

image from https://www.musical-u.com/learn/learn-to-recognise-chords-free-mp3-pack/, plots in audacity

https://www.musical-u.com/learn/learn-to-recognise-chords-free-mp3-pack/

Complex numbers: review

e z = x+ iy is at a point (x, y) in the complex plane C

- real/imaginary parts Re(z) = x and Im(z) = y
e Multiplication: (a + ib)(c + id) = ac — bd + i(bc + ad) (from > = —1)
e Conjugate: z=x+1iy = Z=x—1ly

0

Euler's formula: €'Y = cosf + isin6

e Polar form(use Euler's formula):

2_ 2, 2
. io rr=x+y°,
X411y =re’,
Y {9:tan—1(y/x)

Im(z)

i

e Note that re® = re™

e The magnitude of z = x + iy is e

|z| = V/x24+y2=r.

e 0: the argument or phase (physics)

Complex numbers in python

Python has a built-in complex type!
e Multiplication, etc. are all defined (z*w etc.)
e The imaginary unit is j (not i!); the number i is 1j.

z =1+ 2j
b=4
w =1+ bx(1j)

e numpy arrays are float by default. To make complex arrays:

z_values = np.array(0, dtype=complex)

e numpy functions like exp are defined for complex numbers:

z = np.exp(pi*1j)
print(z) # z is -1 + 1.22e-16j
x = float(z) # now a real number

Best practices (complex numbers have two parts):

Results that ‘should be’ real may be real up to rounding error

e Sometimes, you need to convert to an actual real number with float (z)

e This may hide errors... check real/imaginary parts before converting!

Fourier series: context

A physical interpretation... standing waves h(x) for a string
e Case one: fixed at both ends (h(0) = h(L) = 0)
e Case two: free to slide up and down (h’(0) = A'(L) = 0)

freq mode (sin) mode (cos)

S N
N7 TG
AN AN AN
S A VAR VKA VARVA
o DAN AN
VRVAVARN BVAVA

Any vibration is a superposition (linear combination) of these modes.

Fourier series: context

A fundamental theorem from math: Fourier series representation
e Non-trivial to prove! Take as true here...
e Deep insights into physical systems and more (waves, ...)

Suppose f(x) is a (not terrible) function defined on the interval [—, 7].

Then it has a (complex) Fourier series representation

f(x) = Z cne

n=—o0
where the coefficients are given by
1 am f() —inxd
Ch = — xX)e X.
2 Jo

Note that if f is a real function, then coefficients come in ‘pairs’:

1 21 i 1 2w
= f inx _ = f inx =C
c o /0 (x)e"™ dx 7 /0 (x)e=imdx = ¢

since zZizz = 7127 and f is real (so f = f).

Fourier series: complex to real

Assuming that f is real, we get c_, = ¢,. Recall that
_ 1 ix —ix . _ i ix —ix
cosx—i(e +e "), S|nx——§(e —e).

Now pair up +n and —n terms and write ¢, as

Then

= f(x) = % +Z(ancosnx+bnsin nx) .

n=1

This is the real form of the Fourier series.

We use this idea often to convert between...
e ...the complex form (more elegant, convenient)

e ...the real form (often more meaningful for results)

From (continuous) Fourier series to the
discrete...

Fourier series: orthogonality

oo . 1 27
f(x) = Z cne™, Ch

n=—o0o

f(x)e™ ™ dx.

:EO

Why is this formula true? The key is that the functions e™ are an orthogonal
basis (in the linear algebra sense). It is true that

/2ﬂeimxe”"xdx: am m=n
0 0 m#n

Define the ‘inner product’ (by analogy to the dot product)

n

(f,g) :/OZW f(x)g(x)dx (like X- 7= x¥k)

Then the functions €™ are ‘orthogonal’:

(™ &™) = Oform # n.

Fourier series: orthogonality

Now we can see how the coefficient formula works:

f(x)= i cne™, Cn L

:go

2m .
f(x)e™"™ dx.

n—=—oo

Take the inner product of the Fourier series with one of the exponentials:

<f7 elmx> _ 2 : Cn/ ™ e imX s
0

n=—o00

> 2T m=n
n;oocn <{0 m#n)

= 27TCm.

This means that the coefficient ¢, depends only on the ™ part (the
‘components’ of the series do not overlap, like perpendicular vectors)

But enough theory; here we are looking to compute transforms...

Discrete Fourier transform: context

- inx 12 —inx
f(x)= Z cre™, &= ; f(x)e™ "™ dx.
n=—o0
How do we get a computational version of the Fourier series?
e \We can approximate the integrals for c,
e We need a ‘discrete’ version of orthogonality

To get there, pick N and consider using grid points (‘samples’)
x =2mj/N, j=0,1,--- ,N—1.
Now use the trapezoidal rule to approximate c¢,:

1 [i 1 27 (1 — Cimg 1
= — mx ~ .= - nx, 7f 2
&= | f(x)e™ "™ dx N <2f(0)+ kgzl f(xk)e +5 (2m)

The endpoints are a problem - but if f has period 27 then f(0) = f(27) and

1< :
C,,%NkZ:Of(Xk)e k.

This is the basis of the discrete Fourier transform.

Discrete Fourier transform: definition

Now let's define the discrete transform. As an example, consider the ‘signal’
f(x) = 2cos2x + 6sin x, x € [0, 27]
and suppose we have samples of f at the (standard) sample points:
fi = f(x;) is known , x; =2mj/N, j=0,1,--- /N—1.
We want to identify the frequencies (2 and 1) and amplitudes (2 and 6).

Key observation: orthogonality

For functions sampled at the x;'s, define the ‘dot product’

N—-1

(f.g)a =Y flx)elx)

Jj=0

i.e. the dot product of f and g at the sample points. Then the e™'s are
orthogonal in this dot product, i.e.

N m=n

N—1
<eimx7 einx>d _ § :eimxj-efinxj _ {0 m 7é n
=0

Discrete Fourier transform: definition

The Discrete Fourier transform (DFT) of a vector f = (fo,--- , fy_1) is
N—1
1 —2mikj 1 ikx
Fxk = N 2 fe 2T/ — N('c’ek)d

which is also a vector F of length N.
The inverse transform (IDFT) is given by

There are several slightly different ways to write this pair of formulas.

e The ‘plus’ and ‘minus’ exponentials (™ vs. e=™) can be switched

e The product of the factors in front of the sum must be 1/N. You may see
1/N,1or 1,1/N or 1/v/N,1/+/N for the DFT/IDFT.

Always check documentation before using a DFT routine!

The discrete Fourier transform

Discrete Fourier transform: definition

The Discrete Fourier transform (DFT) of a vector f= (fo, -, fn—1) is
= 1
_ - —27mikji/N - ikx
Fom o S e /M = (F,)

=

which is also a vector F of length N.
The inverse transform (IDFT) is given by

=

-1
27ikj /N
F.e ikj/

G
I

»
Il

0

e We think of f as coming from sampling data in [0, 27] at the sample points.
o Letting w = e 2™/N \we can write the DFT/IDFT nicely as

1 N—-1))
Fm gy 6% =3 R

A first example

The DFT {Fi} gives amplitudes of frequencies in the signal. Example:
consider ' .

f(x) = 3e™ + 5e*”.
Sample f with N = 8 to get samples f= (fo, i+, f7)... then take the DFT:

1 —2mikj /N
Fk:N fje wik/
Jj=0
5 []
51 4
3_
Y- o_ Y-
2_
-5 14
T T T T 0_l T T T
0 2 4 6 0 2 4 6
X k

By the discrete orthogonality rule, Fix # 0 only for k =1,k = 4 so
F =(0,3,0,0,5,0,0,0)

You can think of the DFT formula for the k-th component,
signal — %(signal, ™)

as ‘selecting’ that frequency and returning its amplitude
(or from linear algebra: projection...)

The DFT is then selecting each frequency to get the amplitudes at each and
returning them as a vector. For instance, consider
f(x) =2cos2x + 6sinx
2ix 25

=™ 4 e P = 3ie™ 4 3ie™ "
with N = 6. Letting ¢x(x) = €™, we get

The complication: aliasing

It is important to know which frequencies are present in the DFT.
This is subtle because the DFT only knows about the sample points.

e The exponentials in the DFT are

0. i i(N—1
eX,e'X,--~,e'()x

e Notice that at any sample point, by Euler's formula

efNXj _ efN(27rj/N) _ (e27ri)j -1

We can use this to ‘shift’ exponentials in the DFT for free:

—ikxj eiNXjefika i(ka)Xj.

e =€

Thus, the DFT ‘sees’ frequency —k as N — k.
e Similarly, k + N,k +2N,--- | are all seen as k
e This effect is called aliasing

Consider sampling
f(x) = cos 2x + 2sin 4x.
From Euler’s formula,

1 ix 1 _ ix .] ix
c052x:§e2 +§e R smx:—é(e4 -

Thus the frequencies present are +2 and =+1.

e—4l‘X).

The DFT with N = 10 does what we want:

Real part Imag part

1.0 P 1.0 9P

N H—I—O—H—O—OJ—‘ N

0.0 0.0 {e—e—o—¢ ® <o
—0.5 1 —0.51
-1.0 T T T T —-1.0 = T T T

0 2 4 6 8 0 2 4 6 8
k k

Real part: 1/2 and 2 and —2+10 =38
Imag part: —1/2 and 4 and 1/2 at —4+10=06

Consider sampling
f(x) = cos 2x + 2sin 4x.

However, N = 6 is not enough samples!

Real part Imag part

1.0 P 1.0 9P

N ’—O—I—OJ—‘ |

0.0 0.0{e—e < 2
—0.5 A —-0.5 1
-1.0 = T T -1.0 = r

0 2 4 0 2 4
k k

Real part: 1/2 and 2 and —2 + 6 = 4 (okay)
Imag part: —1/2 and 4 and 1/2 at —4 + 6 = 2 (bad!)

This data does not distinguish f(x) from

f(x) = cos2x—2sin 2x.

To fit all the frequencies, we need to take
N > 2 max(frequencies in signal)

which is called the Nyquist rate.
Otherwise, the sampling is too slow to ‘see’ the higher frequency parts.

(Example: filming a spinning wheel... the ‘wagon-wheel effect’)

Shifting frequencies

The fact that the —k frequencies go to N — k suggests that
k=0,1,--- ,N—-1
are wrong for real signals: we need matched + and — parts. Instead:

N N N
freq577§,§+1,...’,1’0...,571

are the right frequencies.
We can also shift the k's by N/2 to get
freqsgfeg = —N/2, —N/2+1,--- ,—1,0,1---N/2 -1
The transform F must then be shifted the same way to line up with the k’s...

F=Fo,Fi, - Fnjo1, Fnjo. Fujosn - Fuet
— Finifted = Fny2y Fnjaa -+ s Fu—1, Fo, Py Fujaa

The shifted freq vector will have freq[N//2] = 0 (the ‘center’ point).

Shifting frequencies

An example - take N = 6...

The DFT yields

Fo, F1, F2, F3, Fa, Fs
0, 1, 2, 3, 4 5

The true frequencies (assuming a real signal) are:

Fo, F1, F2, F3, Fa, Fs
0, 1, 2,-3,-2,—1
After shifting, the result is
Fs, Fa, Fs, Fo,F1, F>
-3,-2,-1,0, 1, 2

e In python, this is done using two functions fftfreq and fftshift
e You could place N/2 on either end (e.g. +3 or —3)

e (check the convention in your code carefully; python uses —N/2)

Shifting frequencies: example

For N =10 f(x) = cos2x + 2sin4x, the DFT uses the frequencies
k=0,1,2,3,4,5,6,7,8,9,10
Kshifted = _5; _47 _33 _2; _1a 07 17 23 37 4

Real part Imag part
1.0 1.0 °
0.51 0.5 1
o.o-o—o—T—o-o-o—Q—oL 0.0 {e—e—eo—Tooo0
—0.5 A —0.5 1
-1.04 : : : : 1.0, — :
0 2 4 6 8 10 0 2 4 6 8
Real part (SHIFTED) Imag part (SHIFTED)
1.0 @
0.54 0.5
o.o-’—o—o—Lo—o—o—Lo—q 0.0 {e——-eooooooe
-0.5 - =0.51
-1.0 Oy N
-4 -2 0 2 4 -4 -2 0 2 4

Computation: the Fast fourier transform

Implementation...

Now let’s view the formulas just as ‘sums to compute’:

=
-

N—-1
1 —2mikj ikj
DFT: Fi = ZO fie > /N IDFT: f; =) Fe®™ /N
p=

x~
Il

First note that the IDFT is actually a DFT. Taking the conjugate:
. N-1 N
IDFT(F), = > Fee 2mH/N
j=0

which is just the DFT of F (up to the 1/N factor).
Thus we only need a way to compute the DFT.

The slow method: Brute force - just compute the sum directly.
How many operations (O(---)) are required?

Answer: O(N?).
This seems okay, but we can do much better...

Implementation...

The trick: divide and conquer! Example: let N = 8 and w = e~ 2/8. Then

Fi = DFT(fo, -, f7)«

8
:%Zf;"‘j}k7 k:07"'777
j=0

1
N <fo + hw? + Hw* + f6W6k> +

e
T2N

1
N
1

W (i + ™ + it + ™)

k2

(f+ A + e + fef3k> +w (ﬂ T RES R 4 ﬁs“)

where £ = w?. But £ = e ?"/*_ which is the ‘omega’ for N = 4....
Thus both sums in parentheses are DFT's for N = 4! We then have

1 1
Fo= SDFT(f £ fi)i + @ DF (R, £ B, f)e. k=0, 7.

Note: on the right side, k is taken ‘mod 4’ in the subscripts (4,5 are 0, 1, etc.).

The fast Fourier transform

More generally, suppose N is a power of 2. Then

DFT(fba fla) fN—l) =
IDFT(fy, fo, -+, fu—2) + 2w DFT(f, 5, -, fu_1) (F)
Thus the DFT can be computed as follows:
e Split the vector into two half-sized vectors: odds and evens
e Take the DFT of the odd and even parts (recursively)

e Combine them according to the formula (F).
This is the basis of the fast Fourier transform (FFT).

Why ‘fast’? Suppose N = 2P and let C(N) be the cost of the transform.
Then - just as we saw for mergesort,

C(N) = aN +2C(N/2)
= C(N)=aN +2a(N/2) + 4a(N/4) + --- = paN.
It follows that the FFT requires O(N log N) operations!

The fast Fourier transform

e This is much faster than the slow O(N?) method.
- For N = 10*, the slow method is =~ 10*/ log,(10*) = 750 times slower!

e The FFT is one of the most important algorithms of the twentieth century -
essential for signal processing, data analysis...

e First version usually credited to Cooley & Tukey (1965)

(Side note: was known to Gauss in the 1800s...)

There are more details to making the FFT work (the messy part):
e What if N is not a power of 27

e What is the right base case? (Answer: ‘small’ cases like N = 3...)
e How do we un-recursion it? (Answer: some clever encoding, plus a stack...)

Scientific computing packages will have an fft available -
In numpy: numpy.£fft has all the FFT features.

The fast Fourier transform: python

A quick tour of numpy.fft....
e FFT/IFFT: ££ft(x) and ifft(x) (convention: 1/N on IFFT)

n=2=6
t = np.linspace(0, 2#np.pi, n, endpoint=False) # O, pi/6, ... 5pi/6
d = 2*np.pi/n # sample spacing

samples = some_function(t)

c = fft.fft(samples)

freq = fft.fftfreq(n, d) #[0,1,2,-3,-2,-1]1/(2*pi)

freq = fft.fftshift(freq) # now [-3,-2,-1,0,1,2]1/(2%pi)
c = fft.fftshift(c) # now c is shifted the same way

e ifft(fft(x) ~ x [up to rounding]

e fftfreq(n, d) gets the ‘frequencies’ for the length N FFT.
- d is the sample spacing L/N (for samples in [0, L])
- If d is in seconds, then the fregs. are in cycles/second (Hz).

-This in the original order (not shifted). If N is even:
fftfreq(N) =[0,1,2,---N/2—-1,—-N/2,—N/2+1,--- —1]/L

e fftshift(v) centers the data (as discussed)

A practical example: filtering

FFT: physical units

It's worth clarifying the issue of units for frequency...

If we sample N values from t = 0 to t = L seconds,

the values k = 0,41, -- correspond to k/L cycles per second (Hz).

To see this, look at the DFT with N samples on an interval [0, L]...
N—1

1 —27ikj
Fk:NZf(Xj)e 2mikj/N

1 N—-1

= L€ he (g =) Fx)a(x).
=0

Conclusion: the frequencies for this DFT are 2wk/L (rad/s) or k/L (cycles/s).

FFT: physical units - interpretation

Again, suppose we sample N values from t =0 to t = L time.

The fundamental frequency
wo = 1/L cycles/time = 27 /L rad./time

t

is the lowest frequency w such that e/“! is periodic.

The other frequencies are multiples of the fundamental one.

w = wo w = 2wy

0/\\/’3 0/\\/ V2

e For a Fourier series
fwpx
f= E che' ™,
n

frequencies are an infinite sequence (enough to represent f).

e For the DFT, frequencies go up to N /2L, and higher ones are aliased

FFT: physical units - interpretation

Yet another intuition for the scaling with L...

Consider a sound wave sampled in [[0, L] with N samples; the frequencies are

r N
L’ 2L
Now play the sound in double speed, taking N samples again (interval:
[0, L/2]). The frequencies are:
1N
L’ 2L

This matches what you know of sound!

2

FFT: physical units

Example: Consider the ‘pure’ middle-C tone
f(t) = sin(524rt), frequency = 262Hz.
Sample N = 1024 points in the interval [0,1] and take the DFT. Then

N—-1

1 —2mikj
Fk:NZf(Xj)e ik —

j=0

<"‘—7 e27rikx> J-

=~

The set {€*™*} is orthogonal in the inner product and

I o620mit | | —262.2mit
f(t)y=—<e + -e
(t)=—5 3

Thus, the DFT selects the right frequencies, and we get

Foer = —é, F_oso4n = é, Fi =0 otherwise

corresponding to the frequency 262/L = 262Hz.

An example: low pass filter

Now let's look at a real example. Let's construct a low pass filter, which
removes all frequencies above a cutoff value f. (Hz) in the signal.

Info on the signal:
e Over a time [0, L] with a sample rate r = 44100Hz (the wav standard)
e The real frequencies are related to k by freq[k] = k/L

e Spacing between samples: 1/r seconds

The algorithm:
1) Load an audio file (data) (here a .wav, using scipy.io.wavfile)
2) Compute the FFT, df, and associated dimensional frequencies freq (Hz)
3) et df [k] to zero for all k's with |freq[k]| > f..

4) Inverse transform with the IFFT, save the result as a wav!

In short: transform, then filter, then inverse transform back.

An example: low pass filter

The algorithm:
e Load an audio file (data) (here a .wav, using scipy.io.wavfile)
e Compute the FFT, df, and associated dimensional frequencies freq (Hz)
e Set df [k] to zero for all k's with |freq[k]| > f..

e Inverse transform with the IFFT, save the result as a wav!

original cut=500 Hz
101 4
10—2 4
() L)
3107 S 107° 1
c [=
g 8 10-10 4
€ 10- €
10—14 4
102 103 104 102 103 104
freq (Hz) freq (Hz)

Note: We plot the power spectrum: |Fi| vs. freq. for the ‘positive’ k's.

(Why not also plot Fy for the ‘negative’ k's?)

Convolutions

9(=y)
An important operation in mathematics
is the convolution 0 2 Y
- 9(x —y) fw)

f = f —y)dy.

(F=8)00= [Fetx=y)dy
for functions f, g defined for real (Fra)(2)=0 0 B Y
numbers.
Often, g is a ‘window’ that slides by >
the graph of f, picking out a part of f
weighted by some shape. (f+9)(0) =13 0 2 Y
Example: f and g are boxes, H =1... L1,

(frgm=1 0 LI

Convolutions

For periodic functions with period 27, we instead use

27

(fxg)(x) = ; f(y)g(x —y)dy.

We can think of the argument x — y as periodic, so it ‘wraps around’ the
interval [0, 27] (e.g. —7/2 is 37/2).

The discrete analogue is the circular convolution

N—-1

(Fx8)i =) fogi-m
m=0

where subscripts are taken ‘with period N’ (so —1is N — 1 and so on).

Theorem (convolution and DFT)

The DFT of a convolution is the element-wise product of the DFTs...
DFT(f *)« = DFT(F)«DFT(G)xk

(Proof: a direct computation...)

Convolutions

The DFT of a convolution is the element-wise product of the DFTs...

DFT(f *)k = DFT(F)«DFT(G)k

e Thus ‘pointwise’ multiplication of frequencies is convolution in real space
e Convolutions, like the DFT, are O(Nlog N) (not O(N?))!
o ‘Filters’ (like low pass, etc.) are convolutions in real space

Example: consider the DFT in [0, 27] with spacing h = 27 /N and

o 11

7[_E7E30)07“.]'

f(Xl) — f(Xl — h)

Fi=feg +hg+- = A ~ f'(x1)
f —f(xx—nh
F2=fogo + figi + hgo+ -+ = fla) = o =) h(X2) ~ f'(x2)
Fj = zeros + fi_1g1 + fjgo + zeros = M ~ f'(x)

so the convolution gives the backward difference approximation to f'(x)!

A few more notes on the Fourier transform

More on the Fourier transform

A power spectrum plot shows |F| vs. frequency (or k). For this,
f(t) =sint, g(t) =cost have the same F.
We can also plot the ‘angle’ or ‘phase’ of F, i.e.
Fi = rke"‘gk7 = plot rc vs. k , plot 6 vs. k.
Observe that 6 = £1 corresponds to pure cosines, and § = 7 to pure sines.

f(t) =4cost+2sin2t, F=(2,—i,0,---,0,i,2)

mag. of F phase of F
20{ ® (] /2 - ®
1.5 _
w
L 1.0 < 0{e—e—Te0oe0eo—o
C
m©
0.5 1
00 ——eeoeo — B .
0 4 6 8 9 0 2 4 6 8 9
k k
cosine: 2e" = arg =0, sine: —ie* = e "/2e? — arg = —7/2

More on the Fourier transform

More generally, suppose we translate (‘phase shift’) the signal...
sin2t = sin2(t — ¢) = cos2¢sin 2t — sin 2¢ cos 2t.
The magnitude is 1/2 - which shows up in the plot of |F|. Since
sin2(t—¢) = —é (e_2i®e2it - e2"‘”e‘2"’)
¢ shows up in the phase plot (F2¢ at £ frequencies).
This means that the frequency k may show up as a mix of sines and cosines.

sin vs. cos depends on the starting point of the sampling (shift in t).

More on the Fourier transform

Example: f(t) = sin(2t) shifted by 7/8 (so f(t —7/8) = sin(2(t — 7/8)):

real part imag part
0.0 {e—o—o—o—0—00—0 ®
014 0.2 4
€ € jolee—oeeeele
3 02 E 00(eeTeeeeo o
—034 -0.2 1
T " T T "l T " T T T T
0 2 4 6 89 0 2 4 6 89
k k
mag. of F phase of F
® [n
0.4+ /2 A
o
o Q 0
T 0.2 2
©
—n/2 A
0.010-0——0-0-0-¢-0——¢ r—
0 2 4 6 89 0 2 4 6 89

Bonus application: multiplying numbers

Recall that we also define the circular convolution
N—1

(Fre &= figij

Jj=0

Observe that the periodic nature is avoided if the data is ‘padded’.
Claim: If
fi=g =0forj>N/2

(or a similar padding scheme) then

k
(F *c &)« = Z figk—j.

J=

Il
=
I
-:h

.
I
<)

That is, if only half the vectors are filled, they don't interact when ‘looped’.

Details to check:
o If j > N/2 then f =0 = zero term.
e If0<j< N/2and k —j <0 then k — j becomes > N/2 — gi_; =0.

Thus the sum ‘mod N’ is just a regular sum (no negative indices!).

Bonus application: multiplying numbers

Thus, with enough padding, we can use the circular convolution to compute

if F,g have finitely many non-zero entries, or the variant

k
(Fx&) =D fagn,

Jj=0

for length N vectors (all the same thing, but using slight variations)...

That is: with enough padding, the ‘boundary’ interactions don’t matter.

Bonus application: multiplying numbers

Now why does this matter? We saw that for the FFT,
££6(F e @)k = FGr, F = £££(f), G = £££(g).
The FFT of the convolution is the (element-wise) product of each FFT.

Thus, to compute the circular or other convolution, we can
e Setup:
-ldentify vectors f, g with all the non-zero data
-Pad the vectors with extra zeros as needed
e FFT part:
-Take the FFT of the padded vectors to get F and G
-Compute the (trivial) product Fy Gk
-Take the IFFT to get the convolution

(For the circular convolution, just skip to the FFT part) (‘Fourier's law")

Bonus application: multiplying numbers

Suppose | want to compute the product of two n digit numbers with digits
Cn—1," " C0, dn717...d07

Then the numbers are
n—1 n—1
c=> glt, d=> d10.
j=0 j=0
Taking the product cd, we see that

(10’) - di—j10°7 goes to the 10* term of cd

which accounts for all the terms (once multiplied out),and so

2n k
k
cd = E ax107, ax = E Gidk—j.
k=0 j=0

although the ax's here are not digits. For instance, for 123 x 45 = 5535,
c=1x10"42x 10" + 3, d=4x10"+5,
=35 a=3-442-5 a=1-5+2-4 a3=1-4

15422104 13-100 + 4 - 1000 = 5535.

Bonus application: multiplying numbers

So, for numbers,
n—1 n—1
C:chloj, d:Zdjloj.
j=0 j=0
we have that

2n k
k
cd = E aklo s dx = E dekfj
k=0 Jj=0

which means cd can be computed from the circular convolution
a=Cx.d

where € and d are padded enough.
Example:
c=1x10"+2x10"+3, d=4x10"+5,
¢=(3,2,1,0,0), d=(5,4,0,0,0)

ay = (Cxd)2 = cdh + c1di + c2do + c3ds + cads
‘periodic’ terms vanish (red), and &2 =3-04+2-441-5=13.

Bonus application: multiplying numbers

2n k
cd = Zaklok, ax = Z dek,j
k=0 j=0
This gives a strange way to find cd:

Multiplication by FFT

Let ¢, d be n-digit integers. To compute cd, we can...
e Construct vectors ¢, d of their digits, padded with zeros (N = 2n)
e Take the FFT of & nad d to get C, D
e Compute CD and then IFFT
- the non-zero entries are then the coefficients ax

e Finally, compute Zi":o a,10%, round to an integer
e The ‘by hand’ way: O(n?) operations
e This way: O(nlog n) operations (sort of)!

e Unfortunate fact: this isn't really worth it except for very large n, plus
rounding issues (and there are other ways to deal with large numbers...)

