
Math 260: Python programming in math

Even more python features:
default args. and error handling

1 / 9

default arguments

• Often, an argument is usually a known ‘default’ value

• We don’t want the user to have to specify the default!

• You set a default value in the function definition:

def bisection(func, a, b, tol=1e-8):
...

x = bisection(func, 0, 1) # uses tol = 1e-8
x = bisection(func, 0, 1, 1e-2) #uses tol = 1e-2

• As a rule, default arguments must be last in the definition:

def f(a, b=1, c=2): # ok

def g(a, b=1, c): # error!

More generally...

• There are two types of arguments:

positional arguments: the normal kind. Assigned by order in the call.

• keyword arguments: Assigned by name; order does not matter.

Note that args. with defaults are positional, e.g.
x = bisection(func,0,1,1e-2)

2 / 9

Aside: default arguments

We can use var=value in the input to indicate a keyword arg:

def func(a, b):
return a, b

print(func(1, 2)) # 1 2
print(func(b=2, a=1)) # also 1 2

These variables are set by name, not position.

• Consider using parameters with defaults as keyword args for clarity!

def bisection(func, a, b, tol=1e-8, max_iter=10):
...

x = bisection(func, 0, 1, 1e-2, 50)
x = bisection(func, 0, 1, max_iter=50, tol=1e-2) # works!
x = bisection(func, 0, 1, max_iter=50) # works!

• (Best practice: try to keep everything ordered anyway)

• Further aside: you can have un-ordered keyword args in function definitions
also - see the kwargs syntax for details.

3 / 9

default arguments

There’s one snag, however - mutable defaults may not do what you expect.

def glue(elements, base=[]):
""" adds elements to the end of base

and returns the reference """
base.extend(elements)
return base

a = [3,4]
b = glue(a) # b is [3,4] (a new copy)
b[0] = 7
oops = glue(a) # does NOT do the same as b
print(oops) # oops = [7,4,3,4]

• mutable defaults are set once and then stick around

• For all subsequent calls, the existing data is used

1) The first call is glue(a,[]); then base = [3,4] and b = base

2) The second glue(a) uses the base from (1)

Solution: use an immutable type (e.g. a tuple) or restructure...

4 / 9

Aside: default arguments

Aside: you can use this to ‘save’ info between function calls:

def func(a, record=[])
result = a
#... do work ...
record.append(a)
return result, record

a = func(1)[0]
b = func(2)[0]
c, record = func(3)
record is [1,2,3]

Each time func is called, the return (a) is added to record

5 / 9

Error handling

When python encounters errors (also called ‘exceptions’), the program stops.

• But often, error are not ‘fatal’ to the program - we want it to notice the
error, and then recover and keep going.

• An if will not do - we need a special environment (try)

1) The program ‘tries’ to execute what is in the try block

2) if an error occurs, it skips directly to the except block

- If the error type matches an except, it catches the error, executes that
clause, then the program continues.

- If there is no match, the error just occurs for real.

while not done:
try:

x = input('enter an int: ')
y = int(x)
done = true

except ValueError:
print('Wrong! Try again.')

except KeyboardInterrupt:
print('UNACCEPTABLE.')

Without try, the command
int(’a’) just gives an error:

6 / 9

Error handling

You can cause an error to occur using raise:

• This ‘raises’ an error of that type as if it had occurred for real

• raise(str) defines the associated error message str

• You can define your own Exception types (classes) - more on this soon

def bisection(f, a, b):
if sign(f(a))*sign(f(b)) > 0:

raise(ValueError('Endpoints must bracket a root.'))
#...

Clean-up: after an error occurs, you may want to have some ‘clean-up’ code:

• The finally clause always executes if an error occurred in the try block

try:
f = open('myfile.txt','r')

except SomeFileError:
....

except (OtherErrors, MoreErrors):
....

finally:
print('Unable to open file!')
return

#... continue the function....

7 / 9

What happens when an error occurs?

• Reminder: when a function is called, it is ‘put on the stack’. When a line
of code is executed, it lives on top of a stack of calling functions.

def inner(a, k);
y = a[k] #**
return y

def outer(a, k):
return inner(a)

def test():
a = [1,2,3]
outer(a, 15)

The stack at line (**):

• y = a[k]

• ...called by inner(a,k)

• ...called by outer(a,k)

• ...called by test()

• Errors propagate ‘up the stack’. An error can be caught by any of the
functions. The program fails if nothing catches the error.

def outer(a, k):
try:

y = inner(a)
except IndexError:

#...
def inner(a, k);

return a[k]

Using outer([1,2,3],15]) ...

• a[k] raises IndexError

• inner fails with an error and
leaves the stack

• Now the error propagates to the
try block in outer (caught!)

8 / 9

A brief style note

Style: do not overuse try/except blocks:

• If you can handle the logic without an error, do so

• Common places to use it: where functions raise exceptions the user might
want to catch (e.g. File I/O)

• Use sensible error names (if you have a unique error, name your own)

Not a good approach:

a = [1,2,3]
k=input('index? ')
try:

v = a[k]
except IndexError:

print('try again!')
#... etc...

More clear:

a = [1,2,3]
k=input('index? ')
if k < 0 or k >= len(a):

print('try again!')
#... etc...

9 / 9

