
Math 260: Python programming in math

A quick tour of numpy basics:
arrays, plotting

1 / 7



Numpy: arrays and more

Numpy offers several fundamental structures for math...

• array: a list-like object.

Unlike a list, it has a fixed size and must hold a numeric type (float etc.)

Can be any number of dimensions!

• matrix: like a 2d array, but with more structure specific to matrices

import numpy as np
x = np.array([1.0, 2.0, 3.0])
y = np.zeros((3,4)) # 3x4 array of zeros
z = np.linspace(0, 1, 110) #[0, 0.01, 0.02, ..., 0.99, 1]
y.shape # (3,4)

Arrays:

• Many ways to initialize (from a list, an array of zeros...)

• Useful: linspace (equally spaced points in an interval)

• x.shape: tuple of dimensions

• Important: In 2d, indexing uses tuples:

a = np.array([[1, 2], [3, 4]])
print(a[1, 1]) # 4 (NOT a[1][1])

2 / 7



vectorization

Numpy offers ‘vectorized’ functionality for most operations

• For arithmetic: done with overloaded +,−, ∗, /

x = np.array([1, 2, 3])
y = np.array([4, 3, 0])
z = x * y # z is now [4, 6, 0]

x = [1, 2, 3]
y = [4, 3, 0]
z = [x[k] * y[k] for k in range(3)]

• Vectorized: apply ‘to each element of’ an array (element-wise)

Such functions construct a new result array and return it

• ‘typical’ math expressions (mostly) work, e.g. z + 3*x + 4*y

• Also works with max, sin, cos etc:

x = np.linspace(0, 1, 100)
y = np.sin(x) # y[i] is sin(x[i])
maxval = np.max(y)

• Caution: A*x is not matrix multiplication!

Use np.dot(a,x) or a.dot(x) instead (* is elementwise).

3 / 7



slicing in numpy

Slicing in numpy is different than for python lists. It is defined to work better
with arrays/matrices of numbers.

• Slice notation in 1d is the same...

x = np.array([1, 4, 9, 16, 25])
y = x[1:3]
print(y) # prints [4, 9]

• The usual ‘blank’ notation applies (e.g. a[1:] for 1 to end).

• However, numpy slices act as references to the data (not copies!)

• slices are ‘windows’ into the data that see a subset

x = np.array([1, 4, 9, 16, 25])
y = x[1:3]
y[1] = 77
# now x is [1, 77, 9, 16, 25]

x = [1, 4, 9, 16, 25]
y = x[1:3]
y[1] = 77
# now x is [1, 4, 9, 16, 25]

4 / 7



slicing in numpy

• slices work in 2d (unlike python lists):

a = [[1,2,3], [4,5,6], [7,8,9]]
sub = a[0:2,0:2] # sub sees [[1,2],[4,5]]

• You can set subsets of an array with slices (just as with lists):

a = [[1,2,3], [4,5,6], [7,8,9]]
b = [[10,0],[0,10]]
a[1:3,1:3] = b
# now a is [[1 2,3], [4,10,0], [7,0,10]]
b[1] = 77 # a unchanged (a and b are not linked!)

a[2,:] # row 2 of a
a[:,2] # col 2 of a

• This sets the specified elements to the values given on the RHS (so values
are copied from the RHS to the LHS data).

5 / 7



Plotting

Plotting can be done through nmatplotlib.pyplot.

• Syntax closely mimics Matlab

• You can give data as numpy arrays or lists (mostly)

import numpy as np
import numpy.matplotlib as plt
x = np.linspace(0, 2, 1000)
y = x**3 - x # vectorized!
plt.figure() # define new figure window
plt.plot(x, y)
plt.show()

• show() tells python to render the plot (so you can see it)

• Figures can be given ids (figure(1), etc.) to make more than one

• plots ‘hold’ by default: new plot commands add to the existing plot

...
plt.plot(x, y)
y2 = np.sin(x)
plt.plot(x, y2)

6 / 7



Plotting: decorations and saving

• Axis labels, titles...

plt.xlabel('x')
plt.ylabel('y')
plt.title('text above the plot')

• You can also add legends [see documentation for pyplot]

• Line styles (dashed etc.) and colors:

plt.plot(x, y, '-k', x, y2, '--r') # black, solid and red, dashed
plt.plot(x, y, '.b', markersize=40) # blue, dots only, size 40

Saving plots:

• Set figure output size (in inches)

use plt.figure(..., figsize=(m,n)) for m × n inches

• Save (as .pdf, .eps or .png) using

plt.savefig(filename)
# ..or to remove white border...
plt.savefig(filename, bbox_inches='tight')

7 / 7


