
Math 260: Python programming in math

Fall 2020

Loose ends, more on objects

1 / 15

Sub-classes

An object is expressed as a sub-type of another with a sub-class.

• A sub-class inherits the properties from the larger class.

- called the ‘super-class’ or ‘base class’

• Represents ‘is-a’ relationships (cat is an animal, special matrices...)

class Pet:
def __init__(self, name, noise):

self.name = name
self.noise = noise

def annoy(self):
print(self.noise*100)

c = Cat("mittens")
d = Dog("rover")
c.annoy() #defined!
c.fetch() #not defined for cats!

class Cat(Pet):
def __init__(self, name, age):

super().__init__(name, "meow")
self.lives = 9

def knock_over(obj):
obj.destroy()

class Dog(Pet):
def __init__(self, name, age):

super().__init__(name, "woof")

def fetch(obj):
return obj

• super() refers to the base class

• In init, we (usually) call the constructor of this class first.

• Then, initialize anything specific to the sub-class.

2 / 15

Inheritance rules

Certain rules govern how objects inherit. AA key property is Overloading:

• Python first searches in the class, then in the base class of it, and so on

• If a sub-class has no init defined, it inherits the base class constructor

class Fish(Pet):
#...inherits the Pet constructor...
def swim():

return
f = Fish("Nemo",1,"bloop")

• Two sub-classes can overload the same base function with unique defs!

class Cat(Pet):
def __init__(self, name, age):

super().__init__(name, age,"meow")
def annoy(self):

print("Meow Meow Meow!")
swat_owner()

class Dog(Pet):
def __init__(self, name, age):

super().__init__(name, age,"woof")
def annoy(self):

print("Woof Woof!")
bark()

• animal.annoy() will call Cat.annoy for a cat and Dog.annoy for a dog.

3 / 15

Polymorphism

class Cat(Pet):
def __init__(self, name, age):

super().__init__(name, age,"meow")
def annoy(self):

print("Meow Meow Meow!")
swat_owner()

print(f”Time taken: elapsed:.1e”)

class Dog(Pet):
def __init__(self, name, age):

super().__init__(name, age,"woof")
def annoy(self):

print("Woof Woof!")
bark()

• animal.annoy() will call Cat.annoy for a cat and Dog.annoy for a dog.

• This property is called polymorphism: the ability of an object to be one of
several types.

• This way of representing is-a relationships is an example of object oriented
programming (OOP)

You’ve seen polymorphism in action before!

• For loops require ‘iterable’ objects. Each type defines what that means.

• Errors inherit from the base exception class Exception. You can create
your own by sub-classing it!

Key point: This sort of OOP is only worth doing if the structure is truly
important! (your functions must care about the relationships)

4 / 15

Modularity

Another useful principle is modularity.

• The idea is to separate the program into modular parts that operate more
or less independently

• Each part does not care about the internal workings of the other

• Example: your Matrix class has an internal representation of its data,
methods for adding etc.

• Example: solve(A,b) from HW 3 hides the LU factorization steps

• Algorithms are ‘black boxes’ that take inputs in and magically produce
output

5 / 15

Modularity

Why write modular code?

• Code can be fit into / combined easily with other algorithms

• Parts can be independently tested

Why not?

• The modular property can be harder to maintain than a less modular code

• Code that tries to be too general can become a mess (if dependencies
make the code better, don’t try to modularize!)

• You can require the user/programmer to know what they are doing (and
deal with any requirements for the functions)

6 / 15

Miscellaneous python

7 / 15

Iterators: map

Earlier we saw that zip creates an iterator of sets of lists:

for k, v in zip(keys, vals):
print(k,v)

• (iterators have a starting point and a defined ‘next item’)

• An iterator allows python to avoid creating memory

• (in the same way that range iterates over integers)

The map function applies a function to a set of lists or other iterables:

def combine(x,y):
return 2*x + y

m = map(combine, [1,2,3,4], [5,6,7,8])
a = list(m) #list version: [7,10,13,16]
for v in m:

print(v)

• Returns a ‘map’ object that is iterable (not a list!)

• Unlike a list comprehension, does not actually build the list

8 / 15

Iterators: generators

This, however, is not really the python way.

• We’d like to use a list comprehension! But this is wasteful...

def f(x):
return 2*x

creates a new list
for val in [f(x) for x in range(10)]

print (val)

def f(x):
return 2*x

does not create a list
for x in range(10):

val = f(x)
print(val)

• Instead, python offers generator expressions, which are iterable objects that
describe applying a function to a set of things:

def f(x):
return 2*x

for val in (f(x) for x in range(10)):
print(val)

• Syntax difference: () instead of []

• Python uses lazy evaluation: the effective ‘list’ of values is not created;
instead, elements are computed as needed.

9 / 15

Packaging your code: wrappers

Solution: Use a wrapper function...

def internal_sort(j, k, arr, work):
#... some mergesort like function ...
[arr is sorted at the end]

def sort(arr, overwrite=True):
` """ Documentation goes here """

if not overwrite:
sorted = make_a_copy_of(arr)

else:
sorted = arr

work = new_array(len(arr))
internal_sort(0, len(arr)-1, sorted, work)
return sorted

#... some application...
a =-sort(mydata, overwrite=False)

• A wrapper ‘wraps’ around your actual function, hiding what’s inside

• It separates the usage of the algorithm from its implementation

• Changes to internal sort (e.g. order of its inputs) can be made
without the ‘application’ code changing!

10 / 15

Style: tuples vs. multiple arguments

Suppose you have a function that takes a pair of data:

def integ1(f, ival): # call: integ(f, [0, 1])
OR...
def integ2(f, a, b): # call: integ(f, 0, 1)

• You have to choose the ‘shape’ and type of inputs

• Python has a trick for ‘distributing’ tuples in arguments:

ival = (0, 1)
integ1(f, ival) # works
integ2(f, ival[0], ival[1]) # inelegant
integ2(f, *ival) # equivalent to above

• The star prefix says: ‘put the elements of the tuple into the arguments’.

• You can use this to clean up code when you need both forms of input

• Example: multiple returns are always a tuple...

def get_ival(x):
return x, 2*x

integ2(f, *get_ival(3))

11 / 15

Decorators

Suppose you want to write some timing code for a function:

from time import perf_counter

start = perf_counter()
myfunc()
elapsed = perf_counter - start
print("Time taken: {elapsed:.1e}")

The ‘shell’ has to be written out each time. You could do this:

def timer(func):
start = perf_counter()
myfunc()
elapsed = perf_counter() - start
print(f"Time taken: {elapsed:.1e}")

timer(myfunc)

But (more generally)¡ we often want to ‘add a property’ to a function/class.

• myfunc has a ‘timing’ functionality added to it

• The timer function wraps the function, sort-of...

12 / 15

Decorators

Let’s write a function that sticks a new property onto a function:

def timerify(func):
def func_with_timer(*args, **kwargs):

start = perf_counter()
output = func(*args, **kwargs)
elapsed = perf_counter() - start
print(f"Time: {elapsed:.1e}")
return output

return func_with_timer

Usage:

def myfunc(x):
return 2*x

myfunc_timed = timerify(myfunc) # **build the new function

y = myfunc_timed(2) # now also prints elapsed time

This new function, called a decorator, adds timing code
and returns a new ‘decorated’ function.

13 / 15

Decorators

def myfunc(x):
return 2*x

myfunc_timed = timerify(myfunc) # **build the new function

y = myfunc_timed(2) # now also prints elapsed time

The syntax here is clumsy. Python has better syntax to simplify:

@timerify
def myfunc(x):

return x

• The @ says ‘apply the decorator to this function’.

• Shorthand for the (**) line above

• Sophisticated decorators can be written (with some effort) to do more...

• See functools package for many examples

Key point:

Decorators are used to add properties by ‘decorating’ other functions/classes.
Decorators (the @ code) can be written for useful actions like timing,
bounds/type checking, deducing functions from others (like < from ≥)...

14 / 15

Decorators (a glimpse at more)

• Decorators often need to know about their input function/class

• Python gives you ways for functions/classes to know its attributes, e.g.:

func.__name__ # (name of a function)
obj.__dict__ # (instance variables in class / values)

Suppose we want our timer to also print the function name...

def timing(func):

@functools.wraps(func)
def func_with_timer(*args, **kwargs):

start = perf_counter()
output = func(*args, **kwargs)
elapsed = perf_counter() - start
print("{}, time: {:1e}".format(func.__name__, elapsed))
return output

return func_with_timer

The ‘wraps’ decorator forces the decorated function to keep its original name
(func. name), rather than the wrapped name (func with timer).

15 / 15

