
Math 260, Fall 2020
Last updated: 10/9/20

HOMEWORK 7

DUE FRI. OCT. 16

Important: You are required to have your code in a github repository. I suggest
maintaining it there as well (as opposed to just copy-pasting your submission into it at the
end) as you edit and revise.

To submit via Gradescope, you first need to authorize Gradescope to access your GitHub
(this should only be necessary once); then you can submit from your repository.

Note that (I think) you can have just one repository for this course (like my course github),
so you don’t need to have one for each homework.

Exercises (not submitted). Suggested for practice/context; not required.

E1 (an important note). Let P be a transition matrix in a ‘closed’ Markov chain (so the
probabilities in each row sum to 1). Show that λ = 1 is always an eigenvalue of P and find
an eigenvector. Hint: what vector v makes Pv involve the sum of the elements in each row?.

Remark: The eigenvector for λ = 1 of P is not the one we want for the stationary
distribution! You run into this in practice if you forget to transpose P in calculation.

E2 (sparse matrices). Create an n× n sparse matrix with zeros everywhere except 1’s
on the main diagonal and the ’backwards’ diagonal from the upper right to lower left (i.e.
an X shape). Check that it is correct by printing the matrix (converted to an array).

1

2 DUE FRI. OCT. 16

Computational problems. Note: make use of the example code in power.py (power
method) and stationary dist.py (Markov chains). In some cases they only need to be
modified slightly. It will hopefully save time.

Q1 (power method, convergence?). Here is a test matrix and its eigenvalue/vectors:

A =

0 1 0
0 0 1
6 −11 6

λ1 = 3, v1 =

1
3
9

 , λ2 = 2, v2 =

1
2
4

 , λ3 = 1, v3 =

1
1
1

 ,
(note: recall that the eigenvectors can be scaled by a constant).

a) Modify the power method code so that it calculates the error in the eigenvector at each
step (given the solution eigenvector as an input - you don’t have to worry about efficiency).

b) Now make a convergence plot of the error vs. step of the appropriate type, and figure
out how the error behaves. How does it relate to the eigenvalues?

Q2 (PageRank, small example). Consider the following network of sites and links:

a) Modify the stationary distribution code (stationary in the example code) to use the
size of xk+1 − xk as a stopping condition (less than some tolerance), plus a maximum
number of steps. Use it in (b), and pick reasonable tolerances, max number of steps etc.
(so you don’t have to input the number of steps manually).

b) Calculate the ranking of theses sites via PageRank and α = 0.95. (Note: you certainly
don’t have to use the method given in the example to build the matrix M !!). How many
iterations are required to get a reasonable solution?

c) Now try decreasing α to see how the rank changes. How small must α be to change the
highest ranked page (if such a value exists)? (Put in a comment)

Note: the larger, sparse version of this will be on the next homework.

HOMEWORK 7 3

Q3 (File I/O, to be used next week). You may want to review the File I/O lecture
and example from much earlier in the course.

Suppose you have a text file defining graphs in the following way:

• An edge from i to node j is listed as:

e i j

• A vertex indexed i with a certain name is listed as:

n i name

Write a function read graph data(fname) that takes in the name of a text file and returns
the adjacency list for this graph and a list of the names for each vertex.

You can use a python list or a dictionary for the adjacency list and names (which is easier
depends on exactly how you write the code).

For instance, given the file graph.txt with text

n 0 A

n 1 B

n 2 C

n 3 D

e 0 1

e 0 3

e 1 2

e 2 1

e 2 0

the function read graph return the following:

dictionary version

adj = {{0: [1, 3]}, {1: [2]}, {2: [0, 1]}, {3: []}}

names = {{0: 'A'},{1: 'B'},{2: 'C'},{3: 'D'}}

list version

adj = {[1, 3], [2], [0, 1], []}

names = {'A', 'B', 'C', 'D'}

Note: You may assume that the data file is formatted correctly, i.e. that whoever made
the file was responsible and followed the formatting requirements.

	Exercises (not submitted)
	Computational problems

