
Last updated: 9/1/20

Math 260: some course guidelines
Fall 2020

1 Collaboration

It is essential to understand what it means for code to be ’your own’ work, so that you can
freely collaborate with others on homework without fear of crossing the line into plaigarism.

I want to emphasize that that collaboration is valuable for coding assignments, and
can often give you far more insight and productivity than working alone. For this reason, I
hope that fear of ‘accidentally’ copying too much does not deter you from sharing work.

Always strive to write code that can be read by someone else (not just yourself). Having
an actual person read your code introduces pressure for you to write better, which improves
your coding habits (moreover, in the way you need for group programming in the real world).

It does, however, take a bit of work - you’ll need to have a good way to share and dis-
cuss code (e.g. github, slack, etc.). This is worth the investment.

2 Attribution

It’s useful to see how code is written from other sources. Material on scientific computing is
plentiful, if a bit scattered, online. You are certainly welcome to make such comparisons, but
be careful that what you find doesn’t ‘solve the problem’ entirely - once you see a solution,
it can be hard (and less productive) to write your own version. I recommend avoiding such
code until after your work is done.

Looking up general concepts is fine (e.g. syntax for a while loop), or supporting calcu-
lations within an algorithm that aren’t ‘the point’ of the assignment, but you are certainly
not allowed to copy large blocks of code from other sources. If a nifty trick is borrowed from
a source, attribute it in a comment. Code that is attributed is always safe, and if it is not a
main part of the assignment, will not lead to any loss of points.

A warning: Code found online may be of dubious quality - be careful when using mis-
cellaneous sources (e.g. stackexchange, random lecture notes). The material is typically still
useful, but be wary (think before you use code).

1



3 General expectations for good code

This is the list of guidelines to follow that you are responsible for. As the course progresses,
the guidelines will be expanded (we learn a new aspect of python, then after some practice
good implementation is expected). As learning good coding practices is a primary goal, you
should pay close attention to these guidelines.

Here are features of good code that should be implemented in your work:

1) The code works: The code runs as requested in the assignment. This has two
components: (i) when run, the program produce the desired output and (ii) your
routines process inputs in the expected way. (Check: if a random (valid) input were
sent to your functions, would they behave as expected?)

• If your submitted code does not work, or has a bug that was not fixed in time, indicate
this in a comment inline (and perhaps a brief note at the start of the file).1

2) Labels are correct: Your name and the date of submission appears in a comment
on the first line of each submitted file. Files have names that are clear but not too
verbose, typically one word like fibonacci.py).

3) Reasonable comments: Each major function has a comment with a brief description
(about one line). Short functions typically do not need this. We’ll discuss how to
comment code, and after this is introduced (doc-strings) there will be further guidelines.

Use comments on lines when you need to clarify a step, but only as needede. Python
code should mostly speak for itself (readable without comments).

4) Good style: Code should be clear and readable; we will discuss details for each aspect
of the language, among other general style points. That is, you should incorporate the
principles introduced in lecture into your code.

1Note that the best remedy here, when encountering a bug, is to discuss it with someone and try to fix
it - a reason to start work on code early. Of course, sometimes time is limited, so submitting buggy code is
understandable!

2



4 Guidelines on communication

I hope that the virtual space of the online class can mimic, as much as possible the community
that develops in the actual classroom. There are two components to this:

4.1 Zoom

The zoom class is intended to be a classroom-like experience for a lecture. This takes a little
bit of extra effort on your part to overcome the technological issues...

• If you have a camera, I encourage you to leave it on during class if able. You are not
required to do so, however, if there is any reason it cannot be on.

• You can speak up in class at any time, but to do so you should first ‘raise your hand’
[in Zoom] and I will call on you. (Normally, I would be fine with a direct interruption,
but in the virtual class, this step helps maintain the flow of class).

• Other Zoom tech: You will likely need to share your screen at some point. This can
be done in Zoom either by sharing your entire desktop or one program. Note that if
you are sharing code that outputs to a different program (e.g. code that makes a plot
rendered in gnuplot), sharing your entire desktop may be the better option.

• I will be available via Zoom during the specified office hours, but I will also be, effec-
tively, ”in my office” at other times. If you want to meet during weekdays, it can be
arranged by appointment; just send me an e-mail and I can set up the Zoom meeting.

4.2 Piazza

The Piazza site is the primary forum for out-of-class discussion.

• Ideally, some of the informal communication that typically occurs in person can be
replicated through Piazza - consider it an opportunity to build a sense of community
and collaboration in the course.

• Try to make an effort to start posting early to get in the habit. This may pay off later
- for instance, in troubleshooting more complicated code later in the course.

• Anything related to the course can be discussed - just be thoughtful and respectful
in posts. If you’d like a question answered, feel free to ask, no matter how small or
narrow it seems (in programming, it’s easy to get stuck on things that ”should” be
obvious).

• Piazza is a good place for posting programming questions - it’s likely that other students
may have had the same question and/or found an answer.

• Questions you have for me on the material should be posted to Piazza rather than by
email (so that you can properly format math/code). Individual concerns (e.g. absences
etc.) can be sent to me via email.

3


	Collaboration
	Attribution
	General expectations for good code
	Guidelines on communication
	Zoom
	Piazza


