
Math 353 Lecture Notes
Introduction and some first order ODEs

J. Wong (Fall 2020)

Topics covered

• Introduction

• Linearity: linear operators and ODEs

• Solution techniques for some classes of first-order ODEs:

Separable

Linear (by integrating factor)

• Ways that a solution can fail to exist; finding the interval of existence

1 Classification of DEs

1.1 Definitions

A differential equation is an equation that describes a function in terms of its derivatives.
Such equations are ubiquitous in the sciences, where physical systems depend on the rates of
changes of quantities (acceleration, radioactive decay, wave oscillations, population growth
rate...).

An ordinary differential equation (ODE) relates a function y(t) of one variable to its
derivatives. In its most general form, this is

F (t, y, y′, y′′ · · · , y(n)) = 0.

The highest derivative, n, is the order of the ODE. We will look only at equations that
specify this highest derivative in terms of the others:

y(n) = F (t, y, y′, · · · , y(n−1)). (1)

This is an equation relating functions. Without derivatives, e.g.

y(t) = t+ y(t)2,

the equation can be reduced to a set of scalar equations - for each t solve for y(t). We
cannot do this for an ODE (1) because of the derivatives - the value of y(t) is not enough
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to know y′(t). This coupling makes ODEs challenging to solve (and also gives them with a
rich mathematical structure).

A partial differential equation (PDE) is an equation for a function of more than one
variable involving its partial derivatives. A few examples:

∂2u

∂t2
= c2

∂2u

∂x2
for u(x, t) (Wave equation)

∂2φ

∂x2
+
∂2φ

∂y2
= 0 for φ(x, y). (Laplace’s equation)

The coupling between derivatives in several directions makes PDEs even more challenging
to solve than ODEs. We will build up theory for ODEs first, and study PDEs later.

1.2 Linear ODEs

It is difficult to gain much insight into the general ODE (1). Perhaps the most important
subclass of ODEs are linear ODEs, which have a very specific structure that can be exploited
to solve and understand their properties.

1.2.1 Vector spaces

Before defining a linear ODE, we review the notion of a vector space. A vector space is a
set of elements (‘vectors’) V together with scalars (which we will assume to be in R) such
that vectors can be added or multiplied by scalars and

V is closed under linear combinations.

That is, if ci ∈ R are scalars and vi ∈ V (for i = 1, · · · , k) then

k∑
i=1

civi ∈ V.

A basis for a vector space is a set B ⊂ V such that

any v ∈ V is a unique linear combination of elements in B.

That is, each v has a unique representation as a linear combination of basis elements.
When the vector space is Rn, its structure is familiar (from linear algebra). However, we

are concerned here with vector spaces of functions. Note that if f1 and f2 are functions from
a domain D to R and c1, c2 are scalars then

c1f1 + c2f2

is also a function (with the same domain). Thus functions are also ‘vectors’. Throughout
the course, we will try to extend concepts from linear algebra (e.g. bases) to vector spaces
of functions.

To properly define a linear ODE, we need the concept of a differential operator.
This is a special type of function that takes in a function as an input, and then outputs
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another function that depends on the input and its derivatives. For now, we will leave the
domain/range of L vague (we’ll introduce the rigorous notion of function spaces later).

The simplest differential operator is

L[y] =
dy

dx

(where y(x) is the input function), which is just the derivative operator. Note that since
L[y] is a function this means that

L[y] is the function defined by L[y](x) = y′(x).

An operator is linear if

L[c1y1 + c2y2] = c1L[y1] + c2L[y2] (2)

for all scalars c1, c2 and functions y1, y2 in the domain of L. The analogous notion for Rn is
a matrix A, which is a linear operator that takes a vector x and maps it to Ax.

Some example operators:

L[y] = yy′ (nonlinear)

L[y] = t2y + sin ty′′′ (linear)

L[y] = y′ + 1 (nonlinear).

Note that the operator
L[y] = f(x)y(k)

is linear (to show: verify (2) directly). We can also take sums of these terms, but not any
more without losing linearity. The most general linear differential operator of order n is

L[y] = f0(x)y + f1(x)y′ + · · ·+ fn(x)y(n).

A linear ODE for y(t) is an ODE that can be written as

L[y] = g

for some function f(t) and linear differential operator L.

A linear ODE is called homogeneous if it has the form

L[y] = 0

and non-homogenous if
L[y] = f

with f a non-zero function. Compare this to the corresponding notion in Rn: the equations
Ax = 0 and Ax = b. Just as you studied the null space of A (solutions to Ax = 0) and
solutions to Ax = b in linear algebra, we will study the null space

{y : L[y] = 0}
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and solutions to L[y] = f.
Another version: Here’s a slight variation on the above. Consider an operator

L[y] = f(y, y′, · · · , y(n))
= (some function of y and derivs. up to order n.

You can think of L as being a function of the variables

y, y′, · · · , y(n).

To be linear, L has to be a linear function of these variables. This means only multiplying
by scalars (y → ay) and addition (ay + by′) are allowed, and so

L linaer ⇐⇒ L[y] = f0(x)y + f1(x)y′ + · · ·+ fn(x)y(n)

i.e. it must be a sum of functions of x times derivatives of y.

For instance,
xy + x2y′ = x3

is linear (coefficients x and x2 for y and y′), while

xy + y2y′ = x2

is not (since y2y′ is non-linear in y).

One last check for homogeneous ODEs: Notice that for an ODE

L[y] = f,

y = 0 is a solution if and only if f = 0.

Thus, a linear ODE is homogeneous if and only if y = 0 is a solution.
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2 First order ODEs

To start building up the theory, we focus on the first order ODE

y′ = f(t, y) (3)

and the initial value problem (IVP)

y′ = f(t, y), y(t0) = y0. (4)

To start, we should clearly state what it means to be a solution:

What is a solution? A solution to the IVP (4) is a function y(t) such that

i) y(t) is defined in some interval (a, b) containing t0 and y(t0) = y0

iii) y(t) satisfies the ODE (3) in (a, b)

The ’solution’ to the IVP comes with a domain where it is defined. The largest interval
(a, b) where y(t) is defined is called the interval of existence.

The general solution to the ODE (or ‘solution’ for short) is the most general ex-
pression for y(t) that satisfies the ODE, including arbitrary constants.

Calculus analogy: The simplest first order IVP is one where the RHS depends on just t:

y′ = f(t), y(t0) = y0.

The general solution to the ODE can be written as

y(t) = C +

∫ t

t0

f(s) ds.

for any t0. An initial condition y(t0) = y0 would determine the constant of integration. The
solution to the initial value problem is

y(t) = y0 +

∫ t

t0

f(s) ds.

When the right hand side depends on y, we cannot simply integrate.

You can think of the solution to an initial value problem as defined ‘up to’ b and ‘down
to’ a, starting at t0.

We define the interval of existence for a solution y(t) to an IVP (4) to be the largest
t-interval (a, b) containing the initial point t0 such that y(t) is defined. For example,

y′ = y2, y(0) = 1

5



has a solution

y(t) =
1

1− t
whose interval of existence is (−∞, 1). On the other hand, the solution to

y′ = y, y(0) = 1

y = et, is defined for all t ∈ R. This is not obvious from just looking at the ODE! We needed
to solve the equations to discover that y grows so fast in one case that it ‘blows up’ as t→ 1.
In the next section, equipped with a way to solve ODEs exactly, we will see some examples
of solutions failing to exist.

Another example: For an example where it fails to exist on both sides, consider

y′ = 2ty2, y(0) = a

which has solutions of the form

y(t) =
1

C − t2
.

Plugging in y(0) = a we get C = 1/a so

y(t) =
1

1/a− t2
.

If a < 0 then y(t) exists for all t.

However, if a > 0 then there are asymptotes at ±
√
a, so the interval of existence

is (−
√
a,
√
a) - whprich can be arbitrarily small!
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3 Separable equations

If the first order ODE is simple enough, we can solve it exactly. One technique is called
separating variables. Let’s start with an example. Suppose we want to solve, for y(x),

y′ = y cosx. (5)

Written out carefully, the ODE reads

dy

dx
= y(x) cosx.

The idea is to move all the ‘y’s to one side, and the ‘x’s to the other. Informally,

1

y
dy = cosx dx∫

1

y
dy =

∫
cosx dx =⇒ ln |y| = sinx+ C.

The solution then satisfies
|y| = Cesinx.

Since C is arbitrary, the absolute value isn’t needed here (|y| is ±y, but C can also be ±),
the general solution to (5) is

y = Cesinx.

The steps here are not rigorous as written since we can’t multiply by dx, but this is easy
to fix with some calculus (see below). We should check our answer by ‘plugging in’:

dy

dx
= y(x) cosx

LHS = C
d

dx
(esinx), RHS = Cesinx cosx

and by the chain rule, the LHS is Cesinx d
dx

(sinx) = Cesinx cosx.

Theory: In general, a separable equation is an ODE that can be written as

f(y)
dy

dx
= −g(x) (6)

for functions f, g (the minus sign is just for later convenience). We can be rigorous about
the solution by first letting F,G be anti-derivatives of f and g, i.e.

F ′(x) = f(x), G′(x) = g(x).

Observe that taking the derivative of F (y(x) plus chain rule gives the LHS:

d

dx
(F (y(x))) = F ′(y)

dy

dx
= f(y)

dy

dx
.

Let F,G be anti-derivatives of f, g (i.e. F ′ = f and G′ = g). Then (6) is

(F (y))′ = −G′(x).

Now integrate, to find that solutions y(x) satisfy

F (y) +G(x) = C.

7



Geometric interpretation: Solutions to

F ′(y)
dy

dx
= −G′(x)

lie on level sets (contours) of
φ(x, y) = F (y) +G(x).

Thus, plotting the contours
φ(x, y) = C

will show sets of solutions to the ODE. This perspective may help to show where solutions
may stop being defined. An example...

Example 1: Consider the IVP

y′ = −x
y
, y(0) = a

for a constant R. This is separable:

yy′ = −x

which we can integrate to obtain the implicit general solution

1

2
x2 +

1

2
y2 = C.

Solutions therefore follow arcs of circles (level sets of x2 + y2). Applying the initial
condition, the explicit solution is

y =

{ √
a2 − x2 if a > 0

−
√
a2 − x2 if a < 0

.

The interval of existence for y(x) is (−|a|, |a|) (note that we do not include x = ±R
because the ODE itself is not well-defined there, even if y(x) is).

We can read from the ODE that solutions may fail to exist, since |y′| → ∞ as
y → 0 (assuming x 6= 0). The ODE determines a barrier solutions may not cross, and
indeed this is clear from a contour plot of x2 + y2 (draw it!) - if solutions were to
continue along the circle, then y(x) would cease to be a function.

The x-interval on which y(x) is defined depends on the initial condition; to find
it, we set y = 0 in the solution. This gives x = ±|a|, as expected.
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Example 2: Consider the pair of IVPs

y′ = −(1− 2x)y , y(0) = −1/2 (A)

y′ = (1− 2x)y2, y(0) = −1/2 (B).

On what interval are these solutions defined? Unlike Example 1, the ODE function that
gives y′ is well-defined eveywhere, so there is no problematic value of y. We need to
solve the equations to determine where solutions might fail to exist.

For (A):
y′

y
= −(1− 2x)

which integrates to
log |y| = −x+ x2 + C.

Applying the initial condition and solving for y, we get

y = −1

2
ex

2−x.

(Note that the absolute value was dropped; this is because y(0) = −1/2. The solution
for |y| suggests that y cannot change sign, so it is safe to have |y| = −y everywhere).

Even though |y| grows very fast, this is defined for all x ∈ R.

For (B):
y′

y2
= 1− 2x =⇒ −1

y
= x− x2 + C.

This gives the solution

y(x) =
1

(x+ 1)(x− 2)
.

The interval of existence is thus (−1, 2). In (A), y′ scales with y, which yields something
like exponential growth. In (B), y′ scales with y2, causing it to grow much faster - so
fast that it ‘blows up’ in a finite interval. We’ll see how this can be detected from the
ODE when we consider the existence/uniqueness theorem.

Note that the bounds of the interval depend on both t0 and y(t0). If instead we
required y(3) = −1/2, the interval of existence is not (2,∞). Instead, we have to solve
the IVP again:

−1

y
= x− x2 + 8.

Since x2 − x+ 8 > 0 (no real roots), the solution is defined everywhere!
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4 First order linear ODEs (Integrating factors)

A first order linear ODE, has the form

y′ + p(t)y = g(t).

This ODE can always be solved exactly by using an integrating factor. First, let’s consider
an example to see how this works:

y′ + 2y = e−t (7)

The trick is to observe that an expression like this can be found by trying a product rule

((function of t) · y)′ = thing · y′ + other thing · y.

However, there’s a ‘missing’ factor on the y′. In this case, we have

(e2ty)′ = e2ty′ + 2e2ty = e2t(y′ + 2y).

Thus we should multiply both sides of (7) by e2t

e2ty′ + 2e2ty = et

=⇒ (e2ty)′ = et.

Now we have an equation that can be integrated directly:∫
(e2ty)′ dt =

∫
et dt

=⇒ e2ty = et + C

=⇒ y = e−t + Ce−2t.

Theory: Now for the general case

y′ + p(t)y = g(t). (8)

Observe that we cannot just integrate (8) because of the py term.
But the LHS looks a bit like the result of a product rule:

(φy)′ = φy′ + φ′y.

Motivated by this, multiply by a function φ(t) to be chosen later:

φy′ + pφy = φg. (9)

We seek a function φ such that can be ‘factored’ into the form

(φy)′ = φg (10)
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Expanding this out, we get
φy′ + φ′y = φg

so (4) and (10) are the same if
φ′ = pφ.

This is separable, so φ can be computed:

φ = e
∫
p(t) dt. (11)

The function (11) is called the integrating factor. Now that we have derived the right
integrating factor, we have a process for solving a first-order linear ODE. First, calculate φ
according to (11). Then:

y′ + py = g (original ODE)

φy′ + φpy = φg (multiply by φ)

(φy)′ = φg (factor via product rule)

and then integrate to obtain

y =
1

φ

∫
φ(t)g(t) dt.

Note that the product rule step works because we chose the integrating factor to be (11).

For an initial value problem with
y(t0) = a

it is usually best to integrate from t0 to t:

y(t) =
1

φ(t)

(
φ(t0)y(t0) +

∫ t

t0

φ(s)g(s) ds

)
.

You could, of course, solve the general ODE and then find the constant C.

Example 1: Consider the ODE

ty′ + 2y = 1/t.

Divide by t to find that the integrating factor is

φ = e
∫
2/t dt = e2 log t = t2.

Multiply the original ODE by t to obtain

t2y′ + 2ty = 1.

This factors (as it should, by our choice of φ) to

(t2y)′ = 1.

Integrating yields the general solution y = t+C
t2
.
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Example 2 : Consider the IVP

y′ + 2ty = 1, y(0) = y0.

The integrating factor is φ = e
∫
2t dt = et

2
. The ODE then factors into

(et
2

y)′ = et
2

,

which we integrate from 0 to t to obtain the solution

y(t) = e−t
2

y0 + e−t
2

∫ t

0

es
2

ds.

Often, the solution contains some nasty integral we can’t evaluate explicitly; in that
case it is fine to leave it as an integral expression.

Now suppose we are interested the long-term behavior (as t → ∞) of solutions.
Observe that y′ < 0 when y > 1/2t and y′ > 0 when y < 1/2t, suggesting that solu-
tions are pushed towards y = 1/2t as t→∞. A direction field confirms this (see Figure).

We can conjecture that y = 1
2t

+ (smaller terms) as t → ∞ (informally, we write
this as y ∼ 1/2t). To check this we can estimate the exact solution in the limit t → ∞
(not trivial for the integral expression).

0 1 2 3 4
0

1
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