
Math 353 Lecture Notes
Steady states and Laplace’s equation

J. Wong (Fall 2020)

Topics covered

• Steady states

◦ Inhomogeneous BCs (time-independent)

◦ Reducing to homogeneous case with a ‘steady state’

• Laplace’s equation

◦ Definition; connection to heat equation

◦ Solution in a rectangle/square

◦ Use of the right basis function (sinh, translation)

◦ Eigenfunction vs. coefficient direction

◦ Superposition tricks

1 Steady states

The following both (a) a way to describe the limit as t → ∞ for the heat equation and (b)
a way to convert inhomogeneous problems into (easier) homogeneous ones.

Consider the IBVP

ut = uxx + h(x), x ∈ [0, `], t > 0

u(0, t) = A, u(`, t) = B, t > 0

u(x, 0) = f(x)

(1.1)

which describes heat flow with a time independent source h(x) and temperature fixed at
both ends at different values A and B. Over time, the heat will diffuse and approach a
‘steady state’ (equilibrium):

u(x) = lim
t→∞

u(x, t).
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The key point is that the steady state is a solution to the PDE + BCs that does
not depend on time. Taking t→∞, in the PDE, the ut term vanishes, leaving

0 = uxx + h(x), x ∈ [0, `]

u(0) = A, u(`) = B

This is an ODE for u(x) that can be easily solved before dealing with the PDE, which
suggests that it is a good way to handle the inhomogeneous terms.

Solution procedure: To start, look for a time-independent solution w(x) (not yet
known to be the steady state) to the PDE + BCs:

0 = wxx + h(x), x ∈ [0, `]

w(0) = A, w(`) = B
(1.2)

Solve this ODE boundary value problem to get w(x) and then examine the difference

v(x, t) = u(x, t)− w(x).

The function v, by superposition, solves the homogeneous IBVP

vt = vxx, x ∈ [0, `], t > 0

v(0, t) = 0, v(`, t) = 0, t > 0

v(x, 0) = f(x)− u(x)

(1.3)

To see this, take the difference of each equation (PDE, BCs and IC) for u and u:{
ut = uxx + h(x)

0 = uxx + h(x)
=⇒ vt = vxx,{

u(0, t) = A

u(1) = A
=⇒ v(0, t) = 0

with the same for the BC at x = ` and the initial conditions. Now (1.3) is the ‘easy case’
(homogeneous PDE and BCs). The solution to the original IBVP (1.1) is then

u(x, t) = w(x) + v(x, t).

Analysis (steady state): Now suppose we wish to show that w(x) is the steady state for
the problem. We observed that, by taking t→∞ in the IBVP,

if a steady state u = lim
t→∞

exists, it must be w(x).

To verify that u is the computed function w(x), it suffices to show that

lim
t→∞

v(x, t) = 0.

Since v will have the form
∑

n cn(t)φn(x), the limit can be shown by verifying that cn(t)→ 0
for all n, which often means showing that

λn > 0 for all n.

Note that the steady state can be computed without solving the full problem.
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Procedure (steady state): To solve problems for u with inhomogeneous terms that are
time-independent,

• Find a time-independent solution w to the PDE + BCs

• Write the problem for the difference v = u− u

• Solve this (homogeneous) problem

If a steady state exists, it must be u (as solved above). To show that it is the limit, show
that v(x, t)→ 0 as t→∞ (e.g. show λn > 0 for all n).

Even if u is not the limit, the procedure works, but then u has less significance.

1.1 Standard example

A steady state is used to solve the inhomogeneous problem

ut = uxx − 6x, x ∈ (0, 1), t > 0

u(0, t) = 0, u(1, t) = 3, t > 0

u(x, 0) = f(x).

We show that u converges to the steady state as t→∞. This is done in two parts:

Part 1: Find a time independent solution: Look for a time-independent solution

u(x, t) = w(x).

Plug into the PDE and BCs (ignore the initial condition) to get

wxx = 6x, w(0) = 0, w(1) = 3.

Integrate the ODE and apply the BCs to get

w(x) = x3 + ax+ b =⇒ w(x) = x3 + 2x. (1.4)

Part 2: Solve for the difference; verify the steady state: Now let

v(x, t) = u(x, t)− u(x).

By the superposition argument, v satisfies the homogeneous IBVP

vt = vxx, x ∈ (0, 1), t > 0

v(0, t) = 0, v(1, t) = 0, t > 0

v(x, 0) = f(x)− u(x)
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This homogeneous problem (Dirichlet BCs) was solved before; the result is

v(x, t) =
∞∑
n=1

bne
−λnt sinλnx, (1.5)

λn = n2π2, bn = 2

∫ 1

0

v(x, 0) sinnπx dx = 2

∫ 1

0

(f(x)− u(x)) sinπx dx.

The solution to the IBVP is then u(x, t) = w(x) + v(x, t).

Part 2b (analysis): Since all the eigenvalues are positive, it follows from (1.5) that

v(x, t) =
∑

(exp. decaying terms) =⇒ lim
t→∞

v(x, t) = 0

so we can conclude that u(x) is really the steady state:

lim
t→∞

u(x, t) = w(x) + lim
t→∞

v(x, t) = w(x).

Remark (minimal version): Suppose we only wanted to know the steady state and verify
that it is th elimit. Then it suffices to solve for w(x) and show the eigenvalues are positive:

w(x) = x3 + 2x, λn = n2π2, n ≥ 1 =⇒ λn > 0

The rest of the solution (coefficients bn etc.) are not needed.

1.2 When does the method fail?

This trick works when there is a steady state but only when the source term and boundary
conditions do not depend on time. For instance,

ut = tuxx + sinx

cannot be solved using this method. Assuming ut = 0 is not enough since we also need to
take t→∞ and we cannot find a u = w(x) that solves

tw′′(x) + sin x = 0.

The eigenfunction method must be used to find the steady state directly. Similarly, if

u(0, t) = sin t

then the problem for w(x) would have w(0) = sin t - not possible for a function of x.
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1.3 Example (Non-uniqueness)

It is not always true that the first step is enough to find u(x). Consider the following problem
with Neumann BCs:

ut = uxx + x− 1, x ∈ (0, 2), t > 0

ux(0, t) = 0, ux(2, t) = 0, t > 0

u(x, 0) = f(x).

Solving for a time-independent solution w(x) (not yet known to be the steady state), we find

wxx = x− 1, w′(0) = 0, w′(2) = 0.

ODE =⇒ w = (x− 1)3/6 + ax+ b

BCs =⇒ w = (x− 1)3/6− 1

2
x+ b.

Both BCs require only a = 1/2; the value of b appears arbitrary. The ‘limit of the PDE’
procedure gives a set of possible equilibria w(x), one for each b ∈ R. The steady state u(x)
is one of these equilibria - but the value of b is influenced by the initial condition.

Complete solution (the hard way): To find it directly, set

v = u− w

and solve the homogeneous problem for v to get (as before)

v(x, t) =
∞∑
n=0

ane
−λnt cos

nπx

2
, λn = (nπ/2)2, n ≥ 0.

The eigenvalues are non-negative, so the limit as t → ∞ (there is a steady state), but the
n = 0 term of v survives the limit (λ0 = 0). Using the solution to compute u(x),

u(x) = lim
t→∞

u(x, t)

= w(x) +
1

2

∫ 2

0

f(x) dx− 1

2

∫ 2

0

w(x) dx

=

(
w(x)− 1

2

∫ 2

0

w(x) dx

)
+

1

2

∫ 2

0

f(x) dx.

Plugging in w(x), the unknown b cancels out, giving the (unique) steady state

u(x) =
1

6
(x− 1)3 − 1

2
(x− 1) +

1

2

∫ 2

0

f(x) dx.
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2 Laplace’s equation

In two dimensions the heat equation1 is

ut = α(uxx + uyy) = α∆u

where ∆u = uxx + uyy is the Laplacian of u (the operator ∆ is the ’Laplacian’). If the
solution reaches an equilibrium, the resulting steady state will satisfy

uxx + uyy = 0. (2.1)

This equation is Laplace’s equation in two dimensions, one of the essential equations in
applied mathematics (and the most important for time-independent problems). Note that
in general, the Laplacian for a function u(x1, · · · , xn) in Rn → R is defined to be the sum of
the second partial derivatives:

∆u =
n∑
j=1

∂2u

∂x2j
.

Laplace’s equation is then compactly written as

∆u = 0.

The inhomogeneous case, i.e.
∆u = f

the equation is called Poisson’s equation. Note that the steady states of the previous
section in 1d, e.g.

ut = uxx
t→∞−−−→ 0 = uxx

lead to Laplace’s equation in 1d (we did not name it as such since it is just an ODE in x;
things are more interesting in 2d!).

Innumerable physical systems are described by Laplace’s equation or Poisson’s equation,
beyond steady states for the heat equation: inviscid fluid flow (e.g. flow past an airfoil),
stress in a solid, electric fields, wavefunctions (time independence) in quantum mechanics,
and more.

The two differences with the wave equation

utt = c2uxx

are:

• We specify boundary conditions in both directions, not initial conditions in t.

• There is an opposite sign; we have uxx = −uyy rather than utt = c2uxx.

The first point changes the way the problem is solved slightly; the second point changes the
answer. Note that there is also no coefficient, but this is not really important (we can just
as easily solve uxx + k2uyy = 0).

1The derivation follows the same argument made in one dimension, but using the divergence theorem
instead of the fundamental theorem of calculus.
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2.1 Solution in a rectangle

We can solve Laplace’s equation in a bounded domain by the same techniques used for the
heat and wave equation.

Consider the following boundary value problem in a square of side length 1:

0 = uxx + uyy, x ∈ (0, 1), y ∈ (0, 1)

u(x, 0) = 0, u(x, 1) = 0, x ∈ (0, 1)

u(0, y) = 0, u(1, y) = f(y), y ∈ (0, 1).

The boundary conditions are all homogeneous (shown in blue above) except on the right
edge (y = 0)). Motivated by this, we will try to get eigenfunctions φ(y), since the eigenvalue
problem requires us to impose homogeneous boundary conditions.

Look for a separated solution
u = g(x)φ(y).

Substitute into the PDE to get

0 = g′′(x)φ(y) + g(x)h′′(y)

and then separate:

−h
′′(y)

φ(y)
=
g′′(x)

g(x)
= λ.

This leads to the pair of ODEs

φ′′(y) + λφ(y) = 0, g′′(x) = λg(x).

Applying the boundary conditions on the sides x = 0 and x = 1, we get the BVP

φ′′(y) + λφ(y) = 0, φ(0) = φ(1) = 0.

We know the solutions to the above; they are

φn(y) = sinnπy, λn = n2π2, n ≥ 1.
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Now we solve for g for each λn. Note that there is only one boundary condition (at x = 1);
we leave the f(x) condition for later (it will require using the full series). We solve

g′′ − n2π2g = 0, g(0) = 0

to get
gn(x) = an sinhnπx.

The solution
un = gn(x)φn(y)

satisfies the PDE and all the boundary conditions except u(x, 0) = f(x). To satisfy this, we
need to write u as a sum all of the separated solutions gnφn:

u(x, y) =
∞∑
n=1

an sinhnπx sinnπy.

Now apply u(1, y) = f(y) (the boundary condition at x = 1) to get

f(x) =
∞∑
n=1

an sinhnπ sinnπy.

Note that the functions φn = sinπy are orthogonal in L2[0, 1] (we have shown this several
times at this point!). As always, take inner products of both sides with hm = sinmπy to get
the coefficients:

〈f, hm〉 = (am sinhmπ) 〈hm, hm〉

so

an =
1

sinhnπ

〈f, φn〉
〈φn, φn〉

, n ≥ 1.
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2.2 Rectangle, with more boundary conditions

Let’s return to the rectangle example and consider how to solve the problem when there
are inhomogeneous boundary conditions applied at all the sides for Laplace’s equation in a
rectangle of width A and height B:

0 = uxx + uyy, x ∈ (0, a), y ∈ (0, b)

u(x, 0) = f1(x), u(x, 1) = f2(x), x ∈ (0, A)

u(0, y) = g1(y), u(1, y) = g2(y), y ∈ (0, B).

(2.2)

Both pairs of opposite sides (in blue and red above) could have non-homogeneous BCs. Our
method only works if one of those pairs is homogeneous.

To solve (2.2), we use superposition and break the problem up into parts. Each part
will take care of one (or two) of the boundaries and leave all the others zero. When added
together, the sum of the parts will satisfy all the boundary conditions.

We find v, w solving

0 = vxx + vyy, x ∈ (0, A), y ∈ (0, B)

v(x, 0) = 0, v(x,B) = 0, x ∈ (0, A)

v(0, y) = g1(y), v(A, y) = g2(y), y ∈ (0, B).

(2.3)

0 = wxx + wyy, x ∈ (0, A), y ∈ (0, B)

w(x, 0) = f1(x), w(x,B) = f2(x), x ∈ (0, A)

w(0, y) = 0, w(A, y) = 0, y ∈ (0, B).

(2.4)

The sum u = v + w is then the solution to (2.2). The solutions u along with v, w for a
specific choice of initial condition are shown in Figure 1.

Solving for v: To solve (3.1), look for a separated solution v = h(x)φ(y). This leads
to the boundary value problem

φ′′ + λφ = 0, φ(0) = φ(b) = 0.

The solutions are
φn(y) = sin

nπy

B
, λn = n2π2/B2.
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There are no boundary conditions we can apply for h (both boundaries have inhomogeneous
terms), which satisfies

h′′n − λnhn = 0,

However, we can use suerposition again, splitting

v = v1 + v2

where the two pieces have boundary conditions

v1(0, y) = g1(y), v1(A, y) = 0

and
v2(0, y) = 0, v2(A, y) = g2(y)

then adding the two solutions together.

For the first one, we get to apply g(A) = 0, which yields

hn = an sinh(µn(A− x)), µn = nπ/A

and the solution

v1 =
∞∑
n=1

an sinh(µn(A− x))φn(y).

We can apply the other boundary condition now:

v1(0, y) = g1(y)

=⇒
∞∑
n=1

an sinh(µnA)φn(y) = g1(y)

=⇒ an sinh(µnA) =
2

B

∫ B

0

g1(y)φn(y) dy. (2.5)

For the second boundary conditions, we apply g(0) = 0, which yields

hn = bn sinh(µnx), µn = nπ/A

and then

v2 =
∞∑
n=1

bn sinh(µnx))φn(y).

Now we apply the boundary condition at the other side:

v2(A, y) = g2(y) =⇒
∞∑
n=1

bn sinh(µnA)φn(y) = g2(y)

=⇒ bn sinh(µnA) =
2

B

∫ B

0

g2(y)φn(y) dy. (2.6)
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The solution for v is then

v(x, y) =
∞∑
n=1

[
an sinh(µn(A− x)) + bn sinh(µnx)

]
φn(y)

with the an’s and bn’s given by (2.5) and (2.6).

Finding w that solves (2.4) is the same process, and one gets a similar expression (left
as an exercise). Finally, the solution to the original problem (2.2) is

u = v + w

which will have the form

u =
∞∑
n=1

hn(x)φn(y) +
∞∑
n=1]

qn(y)ψn(x)

for eigenfunctions φn(y) = sin(nπy/B) and ψn(x) = sinnπx/A, each used to solve the ‘half’
problems for v and w separately.

Figure 1: Solution u to (2.2) and v and w to (3.1) and (2.4) for f1 = f2 = x(1 − x) and
g1 = g2 = y(1− y).
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3 More examples

3.1 A more explicit example

Some solution details, shared by previous details, are omitted - you may fill out the details
as you read through. The main point here is to (a) use superposition to make the BCs easier
to deal with and (b) use the ‘small number of eigenmodes’ observation to simplify.

0 = uxx + uyy, x ∈ (0, π), y ∈ (0, π)

u(x, 0) = 1 + cos 2x, u(x, π) = 0, x ∈ (0, π)

ux(0, y) = 0, ux(π, y) = 3 sin y y ∈ (0, π).

(3.1)

We use superposition. Let

v = solution with only the x = 0 BC non-zeroo

w = solution with only the y = π BC non-zeroo

The first half: For v, the BCs in the second line are homogeneous.
We get the eigenvalue problem

φ′(0) = φ′(π) = 0, −φ′′(x) = λφ(x)

for x ∈ [0, π]. The eigenfunctions are

φn(x) = cosnx, λn = n2, n ≥ 0.

The solution is then

v =
∞∑
n=0

cn(y)φn(x)

and we can either use SoV or plug in the series to get

c′′n(y)− n2cn(y) = 0.

Then, we have one homogeneous BC to apply:

v(x, π) = 0 =⇒ cn(π) = 0

which yields the solution

cn(y) = an sinh(n(π − y)) for n ≥ 1

c0(y) = an(π − y)

Now note that the other BC is

v(x, 0) = 1 + cos 2x = φ0 + φ2

so
c0(0) = 1, quadc2(0) = 1, cn(0) = 0 otherwise .
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The solution then only has two terms:

v(x, y) =
π − y
π

+
sinh(2(π − y))

sinh 2π
cos 2x

The other half: Now for w, we have

−ψ′′ = λψ, ψ(0) = ψ(π) = 0

h′′ − λh = 0

for the eigenvalue problem and coefficient ODE. Thus, the eigenfunctions are

ψn(y) = sinny, λn = n2, n ≥ 0.

The solution is

w =
∞∑
n=1

hn(x)ψn(y)

and we get to apply the remaining homogeneous BC:

wx(0, y) = 0 =⇒ h′n(0) = 0

so we can solve the ODE (mostly):

hn(x) = bn coshnx.

Now apply the last BC, but notice that

wx(π, y) = 3 sin y = 3ψ1

so h1(0) = 3 and all others are zero; thus

w(x, y) = 3 coshnx sin y

The solution: Putting the two pieces together, the solution to the original problem is

u = v + w

which, written out, is

u =
π − y
π

+
sinh(2(π − y))

sinh 2π
cos 2x+ 3 coshnx sin y
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