Math 353 Lecture Notes
More topics on PDEs
Self-adjoint operators and projection

J. Wong (Fall 2020)

1 Preliminaries: self-adjoint operators

In studying the heat equation, we encountered the operator

d2
L=——
dzx?
along with boundary conditions like
$(0) = (1) =0

in calculating the eigenfunctions. Without delving too much into the theory (Sturm-
Liouville theory), it is useful to identify the property that allows the eigenfunction method
to work.

For convenience, let us consider the operator

2

A
dx?’

for L? functions defined on [a, ] (1.1)

and the Dirichlet boundary conditions
6(a) = 6(b) = 0. (1.2)
When solving eigenvalue problems, etc. with these boundary conditions, we look in the space
S = {v € L*[a,b] such that v(a) = v(b) = 0}
i.e. functions that satisfy the boundary conditions. Recall also that the inner product

(v,w) = /abv(:v)w(a:) dx

is well defined for such functions (this is the L? part).



Now, a calculation. Let u(z) and v(z) be any functions in S. Then
b
(Lu,v) = / —u"(x)v(z) dx

b b
+ | WV dx
a a
b b
— / wv” dx
a a

b

= —uv

= (wv' — u'v)

+ (u, Lv)

a

= (w' — u'v)

This is Green’s formula for the operator L.

But u and v both satisfy the boundary conditions (1.2). The ‘boundary terms’ from
integration by parts vanish, leaving

(Lu,v) = (u, Lv) for all u, v satisfying the BCs. (1.3)
This important property deserves a box:

Self-adjointness: Given an operator L and some boundary conditions, we say that L with
those BCs is self-adjoinht if

(Lu,v) = (u, Lv) for all u,v that satisfy the BCs.

This property involves three parts: an interval [a,b], an operator L, and boundary
conditions.
Note that for L = —d?/dx? in particular we also have Green’s formula

b

(Lu,v) = (wv' — u'v)| + (u, Lv) (1.4)

a

which holds for any L? functions v and wv.

The nice properties of eigenfunctions/values turns out to be guaranteed so long as the
operator L is self-adjoint (plus a few technical conditions) - this is the basis of Sturm-
Liouville theory.

The theory allows one to extend the eigenfunction method to more operators, in partic-
ular those of the form

Lu = —(p(z)uy). + q(z)u, p(z) > 0 in [a, b].



1.1 Examples (self-adjoint operators):

Example 1 (not self-adjoint: Consider

in [a, b] with any boundary conditions. Then

b

a

b b
(Lu,v) = / woder =uv| — / wv' dz = (bdry terms) + (u, —v')

There is no hope of L being self-adjoint since clearly

(u, Lvy = {(u,v') # (u, —0").

Integration by parts once gives a minus sign that makes the property fail.
Compare to Lo = ¢”, where IBP twice has the minus signs cancel (and it is self-adjoint with
the right BCs): (u”,v) = (bdry terms) + (u,v").

Example 2 (not self-adjoint): We check self-adjointness for the boundary value problem

zy" = Ay, y(0)=0, y(1)=0
Let L[y] = xy”. Then

1 1 ) 1
/ Luvdx = / zu'"vdr = zu'v] — / o' (zv) de.
0 0 0 0

The boundary term vanishes; integrating by parts again we get

1

/01 LiuJvdr = —u(xv)'| + /01 u(zv) dr = —u(1)v(1) + /01 w(zv)” da.

0

The operator is not self-adjoint (there is a boundary term left, and the integral fol u(zv)” dx
is not fol uL[v] dz, so it fails on two counts).



2 Inhomogeneous boundary conditions
First consider an IBVP with homogeneous BCs:

u = —Lu+ h(x,t), xze€l0,n], t>0

uw(0,t) =0, wu(mt)=0, t>0 (2.1)
u(z,0) = f(x)
with Lu = —u,,, which has eigenfunctions ¢,, = sinnx and )\, = n? for n > 1.

Note that since u and ¢, satisfy the homogeenous BCs, the self-adjoint property says

(Lu, ¢n) = (u, Lpn)
We’ll use this to solve the problem. The solution has the form

= c x c = {1, On) = 1 u
u(w,t) = ; n(t)fn (), n(t) {6y D) kn< s On)

for the usual inner product and k, = {(¢,, ¢,,) and

h(z,t) = ha(t)n ().

n>1

To find (u, ¢, ), we must use the PDE. Take the projection

<'7 (bn)
(Bn, Pn)

C—

of the PDE to get
1 1 1
— - (I il
k,n <ut7 ¢n> k’n < u? ¢TL> + kn <h(x7 t)’ ¢TL>

Q@:—é@w%ﬂwdﬂ

since the t-derivative can be swapped with the series sum for u. Now observe that both u
and ¢,, satisfy the homogeneous BCs for L, which is self-adjoint, so

(Lu, ¢n) = (u, Loy) = A, o) = Nknca(t).

It follows that
a (t) = —=Anen(t) + ha(t)

which is what you would get using the ‘plug in the series” method.

Similarly, we can project the ICs (this is the same as in previous examples) to get

<f7 ¢TL>
(On; fn)

4

cn(0) =




2.1 inhomogeneous BCs

The value of the projection method is that it works when u does not have homogeneous
BCs. Let’s return to the example above, but now suppose

u=—Lu+h(z,t), xze€l0,n], t>0
u(0,t) =e ", u(mt)=0, t>0 (2.2)
u(z,0) = f(z)

As we will see, the correct eigenvalue problem uses the homogeneous BCs (they have to
be homogeneous to get eigenfunctions!). The eigenfunctions/values to use are thus the same:

¢n =sinnz, N\, =n? n>1.

Now let u be the solution to the full inhomogeneous problem. The key point is that since
u does not have homogeneous BCs,

(Lu, ¢p,) = (bdry terms) + (u, Lo,,).

The ¢'s are still a basis for functions on [0, 7] (regardless of the BCs), so
u(z,t) =y cn(t)dn(z)

Now project the PDE onto ¢,, i.e. take

<'7 ¢n>

(Dn, On)
with k, = (¢n, dn) to get

%Wz—%@w%HWAU

Now write out the boundary values for u and ¢,, carefully:
6n(0) = ¢ (m) =0, u(0,t) = e, u(m,t) = 0.
By Green’s formula, the self-adjoint property almost holds, but there is a boundary term:
(L) = = [ tectnda
0
= (u = won)) + [ ol

= (0, )¢ (0) + (u, Lo,,)
=ne "+ kyAnca(t)




since ¢! = ncosnz. Thus

Q@:£%%+M%@+mﬁ)

This is an ODE we can solve - the extra term accounts for the inhomogeneous BC. The
fact that the ¢’s are an orthogonal basis means all steps here are justified, so u(z,t) with
the coefficients we solve for is really the solution.

Why these ¢’s? Note that the projection could be done with any eigenfunction basis to
get the projected PDE. For instance, take the example above with no source,

Up = Upp, w(0,t) =e"", wu(mt)=0

but try to use ¢, = cosnx instead and

u(z,t) = Z a,(t) cos nz.

We still have that L, = )\nén (and in fact the X’s are the same. This gives

(1) = = (Lu, 6u)

n

(Lu, ¢n) = (usdp — uqﬁ;) + (u, Lon)

0
(L, $n) = tuadn| — €', (0) + knAnan(t).

leading to the nasty equation

a, (t) = —Apan(t) + (—=1)"ug(m, t) — uz (0, t)

But this is both wrong (the e™* vanishes) and not useful: the u, terms are unknown since
U, 18 not given at the boundaries (wrong BCs). We must have ¢,, vanish at the boundaries
to cancel out this term - exactly the homogeneous BCs for the problem.



2.2 Example 1
We solve the IBVP

Up = Ugy, ¢ € (0,7), t >0
uz(0) = A, uy(m) =0 (2.3)
u(z,0) =Th

which describes heat in a metal rod insulated at one end and with a constant output flux A
at the other (assuming A > 0). The operator is Lu = —u,, and the eigenvalue problem is

—¢" = )\QSJ ¢/(O) - Qb/('ﬂ') =0 = ¢TL = cosnzw, /\n = n27 n = 07 1727 e
You could try to look for a steady state first:
0=w"(x), w(0)=A, w(r)=0

so w(z) = ax +b. But the BCs then require both a« = A and a = 0. The failure makes some
sense here, because the rod is insulated except that heat is rmoved, so it should just keep
draining and not reach an equilibrium.

PDE solution: Let u be the solution to the IBVP. Then
u(@,t) = ca(t)pu(z).
n=0

Now take the inner product of the DE with ¢,, to get (with k, = (¢n, ¢n))

1) = )

7r
0

= o (B — ) || = -0, L)

By the boundary conditions,

¢, (0) = ¢, () =0,
uz(0) = A, ug(m) =0

Plugging this into the boundary terms, we get

a(t) = _Agz;:((]) — AnCn-

Now from the IC,

B et ey 80
fla)= ; w(0)0n(@) = en(0) = 0
But f = Ty¢g so it follows that
c0(0) =Ty, ¢,(0) =0 for n > 0. (2.4)



This gives the IVP for the ¢,’s:

4 Ao = —A/{Dn, Dn), ¢, (0) given by (2.4).
Solve the coeff. ODEs: There are two cases. When A, # 0,

2A _
calt) = == (1= )

noting that (¢,, ¢,) = 7/2 for n > 1.

But for A\ = 0, we have ¢,(0) = Ty and (note that (¢g, o) = 7)

co = —A/ (b0, po) = colt) =Tp — ét.

Summarize: Thus, the solution is

with A, = n? and ¢,, = cosnz and (¢, ¢,) = foﬂ cos® nz dz (you could simplify more). Note
that (¢o, ¢o) = m and (¢, ¢n) = 7/2; the integrals are different for n = 0 and n # 0.



2.3 Example 2 (lengthy)

A fully worked example similar to the one in Section 2.1. We solve the heat equation in [0, 7]
with a time-dependent boundary condition:

Up = Uy, € (0,m), ¢>0,
u(0,t) =0, wu(mt)=At, t>0, (2.5)
u(z,0) = f().

The eigenfunctions/values are
: 2
¢, =sinnzx, A\, =n”, n > 1.

Write the solution w in terms of the eigenfunctions:

u(a,t) = ca(t)fn(x).

Now we project the PDE

u; = —Lu
onto the eigenfunction ¢,, using
(Dns Pn)

with k, = (¢n, dn) to get

&(0) = - (Lu,60)

Integrating by parts and/or using Green’s formula,
/ 1 / i
en(t) = =~ ((udy, = uan)| = (u, Len))
and noting that only one of the boundary terms (at x = 7) remains, we get

(8) = = -ulm, )6, () ~ Auea (1)

n

Ant

n

cos N — Ay (t)
For brevity (note that k, = 7/2), set

2An cos(nm)

Vo= (2.6)

The ODE for ¢, is then
A () + Ancn(t) = Yt



As before, write the initial condition in terms of the eigenfunction basis:

= io:&nqbn(l')a an = z /7r f(ZL') sinnx dx. (27)
n=1 0

s
Then u(x,0) = f(x) gives the initial condition for ¢,:

cn(0) = ay,.
At this point, we are "done” in the sense that the solution is

=3 cult)gu(2)

n=1

where the ¢,,’s are the solutions to the IVPs
() + Men(t) = t,  ¢,(0) = ay,
with

T

2An COS N
Tn = — / f ¢n

and )\, = n? and ¢, = sinnz. This completely defines the solution.

However, to be complete, we solve the ODEs. Use an integrating factor:
(e)mtcn)/ — ’)/ne)‘"tt

to obtain .
Cp = ape Mt + %6_)‘"t/ M5 ds.
0

Evaluating the integral we get

cn(t) = ane ™t + )\2 2 (At =1+ e ).

We can plug in A2 and 7, from (2.6) we get

_ 2A cos(nm) 2
_ n2t 2 nt
cn(t) = ane ™" — — 5 <n t—1+e ) . (2.8)
The solution is then given by
u(w, ) = cn(t)dn(x)
n=1

with ¢,(t) given by (2.8) and the a,’s by (2.7). Note that the first term in the expression
(2.8) for ¢,(t) gives the solution if the boundary conditions were homogeneous; the second
term is the response to the inhomogeneous boundary conditions.
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