
Math 353 Lecture Notes
Second Order Linear ODEs: inhomogeneous problems

Fall 2020

Topics covered

• Second order, linear ODEs: inhomogeneous problems

◦ Homogeneous plus particular solutions

◦ Undetermined coefficients (for LCC ODEs)

◦ Variation of parameters

• A few more notes:

◦ Example: resonance (forced oscillations)

◦ Reduction of order

1 inhomogeneous linear ODEs

Consider the general linear second order ODE

y′′ + p(t)y′ + q(t)y = f(t) (I)

letting L be defined in the usual way.

Suppose we have a particular solution yp to (I). Then

L[y − yp] = Ly − Lyp = 0

so y − yp is a solution to the homogeneous problem. Thus, to solve the inhomogeneous
problem, it suffices to:

• find one solution yp (by some means)

• Solve the homogeneous problem to get yh = · · · (general solution

• Combine to get y = yh + yp

Thus, we only need to develop a way to find a particular solution.
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1.1 undetermined coefficients

The first approach is valid only for LCC equations

y′′ + by′ + cy = f(t).

The operator Ly = y′′ + by′ + cy sends functions to functions:

v → Lv

and the solution y is the function such that L sends it to f .

To solve for y, we can try to go ‘in reverse’ as follows:

• Plug some typical functions into L to see the pattern of v → Lv’s

• Look for known Lv’s in f

• ‘Invert’ using the known pattern (from Lv back to v) to get y

From inspsection calculation, some common patterns are as follows. Here Pk and Qk denote
polynomials of degree at most k, e.g. P2 denotes c2t

2 + c1t+ c0.

exponentials: L[eλt] = p(λ)eλt

sines/cosines: L[a sin t+ b cos t] = c sin t+ d cos t

polynomials: L[Pk(t)] = Qk(t)

These can be combined; more generally, we have

L[Pk · eλt] = Qk · eλt

and most generally,
(poly. of deg. k) · (sines and cosines) · eλt

is sent by L to an expression of the same form.

Shortcut: It follows from the above rule that if the expression (??) shows up on the right
hand side, you construct a guess by replacing sin/cos with a linear combination of sin and
cos and any polynomial with an arbitrary one of the same degree (e.g. t → (at + b) and
cos t→ u cos t+ v sin t).

Often, such a guess is overkill, but it does provide enough generality to ensure you
have a solution of the right form.

Here’s a straightforward example. Consider

y′′ + y′ + y = sin 2t.
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Guess y = a sin 2t+ b cos 2t and plug in:

(−4a− 2b+ a) sin 2t+ (−4b+ 2a+ b) cos 2t = sin 2t

so −3a− 2b = and −3b+ 2a = 0 which gives b = −2/13 and a = −3/13. Thus

yp = − 3

13
sin 2t− 2

13
cos 2t

is a particular solution.

Another example: Suppose we want to solve

y′′ + y′ + y = t2e3t + e2t sin t.

By linearity (superposition), we can find particular solutions for each term separately.

Following the rules, we need to guess

yp1 = (at2 + bt+ c)e3t, yp2 = e2t(p sin t+ q cos t)

You can then plug both into the ODE and solve for coefficients to get

yp1 =

(
1

13
t2 − 14

169
t+

72

2197

)
e3t, yp2 = e2t

(
6

61
sin t− 5

61
cos t

)
Note the calculations are rather tedious, so for most problems, a computer algebra package
is best (I used Wolfram Alpha here). However, sometimes there is some nice symmetry or
other insight that helps one to solve without plugging into a computer.

1.2 Undetermined coefficients: important exception

However, there is one crucial exception (this is really the important part of the discussion -
the rest is just computation).

Suppose the right hand side is a solution to the homogeneous problem, such as

y′′ − 9y = 5e3t.

The rule would say to guess Ce3t, but L applied to this just gives zero!

Thus, it cannot give a non-zero right hand side.

The fix is to multiply by t until it is not a homogeneous solution. That is, we
keep multiplying the ‘base’ guess from the procedure by t until it stops vanishing.

Why does this work? Essentially, one has to show that if eλt is a solution and λ is a
repeated root then

L[Pke
λt] = Qk−1e

λt

3



i.e. the degree of the polynomial gets reduced by one. if instead λ is a root that appears s
times then the degree is reduced by s instead.

It follows that the modified rule should be:

• Construct the base guess according to the previous rules

• Multiply it by ts where s is the multiplicity of λ (the number of times it appears)

Example 1: Suppose
y′′ − y = et.

Since λ = 1 is a root of the char. polynomial (et is a homogeneous solution) we must
choose

yp = atet

i.e. multiply the usual guess aet by t.

Example 2: For the equation

y′′ − 2y′ + y = t2et

the usual guess would be
(at2 + bt+ c)et.

However, λ = 1 is a double root, so we must multiply by t2:

yp = t2(at2 + bt+ c)et.

Note that this ensures that no term of yp vanishes when L is applied - a tet or et would
do nothing, so it makes sense the lowest-degree term is t2et.
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1.3 Variation of parameters

A method for obtaining a particular solution that works for any second order, linear ODE

y′′ + p(t)y′ + q(t)y = f(t).

It requires knowing a solution basis {y1, y2} for the homogeneous problem, which mays not
be available for every ODE. It does, however, show that the particular part is easy to find
once the homogeneous part is solved.

1.4 Starting point: for first order ODEs

To ge the idea, let’s go back to the first order linear problem

y′ + p(t)y = f(t).

This was solved explicitly with an integrating factor.

There is another (equivalent) way. Suppose we have a homogeneous solution yh(t). The
idea of variation of parameters is to look for a solution

yp(t) = v(t)yh(t)

i.e. a ‘multiple’ of the homogeneous solution, but with varying coefficients.

Plugging this into the ODE, we get

v′yh + vy′h + pvyh = f

but the last two terms vanish since y′h + pyh = 0 so this simplifies greatly:

v′yh = f =⇒ v =

∫
1

yh
f dt

It follows that a particular solution is

v = yh

∫
1

yh
f dt

which matches the solution we got with integrating factors (check this!).
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1.5 Second order ODEs: derivation (optional)

The same trick works for second order ODEs as well. Consider

y′′ + p(t)y′ + q(t)y = f(t).

Suppose we have linearly independent solutions y1 and y2 to the homogeneous problem.

The result is best derived by using system notation - so that the first order system is solved
similar to the example of the previous section for first order ODEs. Let

Φ(t) =

[
y1(t) y2(t)
y′2(t) y′2(t)

]
which is called the fundamental matrix (which we encountered earlier!). Further, let

x(t) =

[
y
y′

]
, f(t) =

[
f(t)

0

]
, A(t) =

[
0 1
−q(t) −p(t)

]
so that the ODE reads

x′(t) = A(t)x + f

It follows that (looking at each column separately)

Φ′(t) = A(t)Φ(t).

Now we look for a solution
xp = Φ(t)v(t)

and plug in to find that

Φ′(t)v(t) + Φ(t)v′(t) = A(t)Φ(t)v(t) + bff.

Two of the terms cancel after plugging in Φ′ = A(t)Φ(t) (here we are using the fact that Φ
is a solution to the homogeneous system), leaving

Φ(t)v′(t) = f =⇒ v =

∫ t

Φ−1(s)f(s) ds

where the lower integration limit can be anything.

Now we just have to unpack this and convert back. With v = (v1, v2), we have

xp = Φ(t)v(t) =⇒

{
yp(t) = v1(t)y1(t) + v2(t)y2(t)

y′(t) = v1(t)y
′
1(t) + v2(t)y

′
2(t)

and the formula then reads [
yp(t)
y′p(t)

]
= Φ(t)

∫ t

Φ−1(s)

[
f(s)

0

]
ds.
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1.6 The result

Finally, if you want a formula for y(t) only, take the first row. Note that

Φ−1 =
1

W (t)

[
y′2 −y2
−y′1 y1

]
where W (t) = det(Φ) is the Wronskian. Then

yp =

(
−
∫ t

t0

y2(s)g(s)

W (s)
ds

)
︸ ︷︷ ︸

v1

y1 +

(∫ t

t0

y1(s)g(s)

W (s)
ds

)
︸ ︷︷ ︸

v2

y2 (V)

The value of t0 a free choice.

The point (how to use VoP): Given the homogeneous solutions to the second-order
linear ODE Ly = 0, one can solve the inhomogeneous problem Ly = f for any right hand side.

In this sense, all the interesting structure is in the homogeneous part, and the inho-
mogeneous part we get for free.

The computation can be done just by ‘plugging in’ to the VoP formula. However,
it can be messy (the integrals are not nice), so an inspired guess with undetermined
coefficients can be faster.

Example 1: Suppose we seek a solution to

t2y′′ − 2y = 3t2 − 1, t > 0,

given linearly independent solutions y1 = t2 and y2 = 1/t (from earlier). First, compute

W (y1, y2) = −3.

Note that because L in the formula is assumed to be y′′+ · · · we need to divide the equation
by t2:

y′′ − 2y = 3− 1/t2.

Substituting everything into the formula, we get

yp =
t2

3

∫ t 1

s
(3− 1

s2
) ds− 1

3t

∫ t

s2(3− 1

s2
) ds.

This evaluates to

yp = t2 ln t+
1

6
− t2

3
+

1

3
.

Note that the t2 term can be dropped from yp. The general solution is then

y = c1t
2 +

c2
t

+ t2 ln t+
1

2
.
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Example 2: Consider
y′′ + y = g(t)

for an arbitrary g(t). Choose y1 = cos t and y2 = sin t so that W (y1, y2) = 1. We get

yp = − cos t

∫ t

0

sin(s)g(s) ds+ sin t

∫ t

0

cos(s)g(s) ds.

Putting this into one integral and using a trig. identity:

yp =

∫ t

0

sin(t− s)g(s) ds.

We’ll revisit this later in studying the Laplace transform.

2 Application: oscillators and resonance

Consider a mass on a spring with displacement x(t) (unstretched position: x = 0) and veloc-
ity v(t) = dx/dt. The spring has a restoring force −kx and there is resistance proportional
to velocity (e.g. friction). There is an external force F (t). Forces are shown in in blue below.

Newton’s third law says that

m
d2x

dt2
= −kx− cdx

dt
+ F (t).

There are too many parameters here to consider. We can easily simplify by scaling. Define
a scaled time s = t/T , where T is a constant (in units of time) and write ′ = d/ds to get

x′′ +
Tc

m
x′ +

kT 2

m
x =

T 2

m
F (t)

since
dx

dt
=

1

T

dx

ds

Choose the timescale T =
√
m/k and set β = Tc/m. Then

x′′ + βx′ + x = f(s)
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where f(s) is the scaled forcing as a function of τ (what, exactly, is f in terms of F?).

Thus, to understand the dynamics, it is enough to study the equation

x′′ + βx′ + x = f(s). (1)

That is, the qualitative behavior really depends only on the parameter β = c/
√
mk.

2.1 Application: resonance

Now suppose there is no damping β = 0. (Note that t is used here in place of τ in (1) for
convenience). If there is also no external force (f = 0) then

y = c1 cos t+ c2 sin t.

The spring oscillates with a period of 2π (its ‘natural’ period) in non-dimensional time.1

Now suppose that there is some additional forcing:

x′′ + x = A sinωt.

First case: If ω 6= 1, we can solve this using undetermined coefficients by guessing

xp = a sinωt+ b cosωt.

Plugging in, we get
a(1− ω2) sin t+ b(1− ω2) cos t = A sinωt

so b = 0 and a = A/(1− ω2). A particular solution is then

xp =
A

1− ω2
sinωt.

Thus, the forcing causes the spring to oscillate with the same frequency as the input. The
general solution is then

x(t) = c1 cos t+ c2 sin t+ xp(t).

The solution is a superposition of two oscillations: one at the natural frequency 1 and one
at the forcing frequency ω.

Second case: If ω = 1 then the forcing is a homogeneous solution. Thus, undetermined
coefficients says the particular solution has an extra factor of t:

xp(t) = t(a sin t+ b cos t).

Note that, after a calculation,

x′′p(t) = 2a cos t− at sin t− 2b sin t− bt cos t

= 2a cos t− 2b sin t− xp(t).

1In dimensional terms, 2πT = 2π
√
k/m and its reciprocal is the natural frequency ν = 1

2π

√
m/k.
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Plugging in xp into the ODE therefore has most terms cancel, yielding

x′′p(t) + xp(t) = A sin t

=⇒ 2a cos t− 2b sin t = A sin t

=⇒ a = 0 and b = −A/2.
It follows that a particular solution is

xp(t) = −A
2
t cos t.

Thus the displacement of the spring increases linearly in magnitude and oscillates.
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Interpretation: This phenomenon is called resonance: a system that normally has
bounded solutions can be forced at its natural frequency to cause the amplitude to grow
over time.

You know resonance from physics - for instance, pushing a swing at just the right times
to gain height, or exciting a vibrating system by driving it at a natural frequency.

Our analysis shows that the solution stays bounded (i.e. the amplitude has a maximum
value) unless the forcing matches the natural frequency.

Only if it matches that frequency will there be a growth in the amplitude.

We can think of the system as being ‘stable’ if all solutions stay bounded (so the oscillations
never get out of control). We see that without damping, the system is just barely stable
in the sense that a small forcing of the right frequency makes solutions unbounded, e.g.

y′′ + y = 0.0001 sin t

will still have solutions of growing amplitudes. On the other hand, such systems are rare in
physical reality, since there is usually some energy loss (damping, friction etc.), especially
when the motion becomes more dramatic!
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3 Stray notes: reduction of order

There is no general way to find the homogeneous solutions to a second order ODE

y′′ + p(t)y′ + q(t)y = 0.

However, if we know one solution y1, it is possible to get the other one.

The trick here is, essentially, variation of parameters. Guess

y2 = v(t)y1

where v(t) is like a time-varying coefficient. Plugging into the ODE yields a new equation
for v. After some simplification, we discover that the ODE for v is actually solvable exactly.

In detail, plug into the ODE:

(vy1)
′′ + p(vy1)

′ + qy = 0

=⇒ v′′y1 + 2v′y′1 + vy′′1 + pvy′1 + pv′y1 + qvy1.

Now group all the v′ and v terms together:

y1v
′′ + (2y′1 + py1) v

′ + v (y′′1 + py′1 + qy1) = 0.

But the last term on the right is zero since y1 is a solution! We are left with something like

v′′ + g(t)v′ = 0.

While technically a second order ODE for v, it’s a first order ODE for v′. Moreover, it is
one of the exactly-solvable types. Thus we can solve for v′, then integrate to get v.

Example: repeated roots case

The method applies nicely to the repeated roots case for LCC ODEs. Consider

y′′ − 2by′ + b2y = 0.

which has a solution y1(t) = ebt (but no other exponential solutions.

Reduction of order can be used here, guessing a solution of the form

y2 = v(t)ebt

Plugging in this guess for y2 into the ODE gives

(b2v + 2bv′ + v′′)ebt − 2b(bv + v′)ebt + b2vebt = 0.

You can check that almost all terms cancel here, leaving

v′′ = 0 =⇒ v(t) = c1t+ c2

so tebt is also a solution (yielding the desired basis {ebt, tebt}).
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