Math 353 Lecture Notes
Laplace Transform: Fundamentals

Fall 2020

Topics covered

e Introduction to the Laplace transform
e Theory and definitions

o Domain and range of £
o Inverse transform
o Fundamental properties
— linearity
— transform of derivatives

e Use in practice

o Standard transforms
o A few transform rules

o Using L to solve constant-coefficient, linear IVPs

o Some basic examples

1 The idea

We turn our attention now to transform methods, which will provide not just a tool for
obtaining solutions, but a framework for understanding the structure of linear ODEs.

The idea is to define a transform operator £ on functions,

L : origin space — transformed space

such that the ODE in the transformed space is much easier to solve. We will consider an

integral transform, which takes the form

i) = /D K (s,6)f(t) dt



where D is some domain (usually (—oo,00) or (0,00)) and K(s,t) is a function called the
kernel of the transform. One of the two most important integral transforms' is the Laplace
transform £, which is defined according to the formula

CIf(t)] = F(s) = / T et e, 1)

0

i.e. L takes a function f(t) as an input and outputs the function F'(s) as defined above.

L
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They key properties of the Laplace transform (which we’ll look at in detail) are:
e [ is a linear operator

e L turns differentiation in ¢ into multiplication by s (almost):
L[] = sLIf]1 = f(0).

e L ! exists and both £ and £7! can be computed in practice
Because of these properties, given an ODE
Yt an 1y 4 ary + agy = f(8)
we can:
1) Use the transform to convert this into an algebraic equation for Y = Lly].
2) solve for Y in the s-space
3) Apply £7! to return to the t-space and get y(t)

Typically, the equations in (2) are much easier to work with than the ODE. The s-space will
tell us information about the solution that would be difficult to obtain directly.

Lthe other is the Fourier transform; we’ll see a version of it later.



motivating example For example, let’s solve
0=y -y

Let Y'(s) = L[y(t)] be the Laplace transform of the solution. Applying £ to the equation,
we obtain the transformed equation

L[0] = L[y = L[y] = sY —y(0) = Y.

Since L]0] = 0, we get
0=(s = 1Y —y(0),

which is trivial to solve! The transformed solution to the ODE is then

Y(s) = sy(——O)l

Here is the point at which we have to do actual work - the price of transforming the ODE
is that we have to undo the transformation to get the desired solution, y(¢). In this case,
it is easy to show that L[ef] = 1/(s — 1), from which we can conclude that

2 The laplace transform

Now we go through the basic theory. The treatment here is not be completely rigorous; some
technical details are omitted in favor of getting to the key points.

Definition: The Laplace transform F'(s) of a function f(¢) is

CIf(t)] = F(s) = / T eti(n) e, 2)

defined for all s such that the integral converges.

2.1 Domain/range of the Laplace transform

We want to find a set of functions for which (2) is defined for large enough s. For (2) to be
defined, we need that:

e f is integrable and defined for [0, co)

e f grows more slowly than the e™* term



Hereafter, we shall assume that f is defined on the domain [0, c0) unless otherwise noted.

Definitions: A function f(t) is piecewise continuous if it is continuous except for an
isolated set of jump discontinuities.?

A function f(t) is of exponential type if there are constants a and k such that
[f(t)] < Ke™. (3)

Note: Technically, this need only hold as ¢ — oo, but the distinction is not important here.
These two properties are enough to guarantee £ is defined:

Theorem: If f is piecewise continuous and of exponential type as in (3) then
L[f(t)] = F(s) is defined for all s > a.

Informally: If f grows slower than e** then F(s) is defined, so if f grows slower than e for
some a then F'(s) is defined for all s > a.

Proof. (Sketch.) We need to show that [ e~ f(t) dt is finite when s > a. Use the bound

on f to estimate
- —st OO —(s—a)t K
e T f(t)dt| < Ke dt =
0 0

Ss—a

which is finite so long as s > a. It follows (omitting technical details) that the integral exists
and is finite, so L is defined for s > a. n

Note on the theorem and proof: The condition (3) can be replaced with the weaker
condition that |f(t)] < Ke™ for t > M for some M (that is, f is eventually bounded by
an exponential). It does not matter what f does in a finite interval, which allows the
assumptions to be relaxed a bit.

For the proof, there is a problem since fooo e ' f(t)dt is not known to exist in the

first place. To be correct, we must use a comparison test for integrals: If there is an ‘upper
bound’ function A(t) such that

l9(t)] < h(#) and / T h(t)dt < 0o

then [° g(t)dt exists (and is finite).



3 Fundamental properties

The most basic property is also the most essential, so it gets a box:

Linearity: The Laplace transform L is a linear operator.

Proof: Suppose fi, fo are functions for which £ is defined and ¢;, ¢, € R. Then
Lleifi + cafo] = / e~ (cLfi(t) + cafo(t)) dt
0

=C /OO €7Stf1 (t) dt + Co /oo eistfg(t) dt
0 0
= 1 L[f1] + L[ f2]-

Note that if £[fi] and L[f>] are defined for s > a then the same is true of the linear
combination ¢y fi + co fo.

The other key property is that it acts in a nice way on derivatives:

Theorem: Suppose [ is of exponential type (i.e. (3) holds) and f’ is piecewise continuous.
Then L[f'(t)] exists on the same domain as L[f] and

LIf'(6)] = sLIf(£)] = £(0). (4)

Conceptually, it is essential to understand to that the above means
derivatives in the original space <= multiplication in the transformed space

up to the extra terms. The proof is straightforward and worth knowing. For simplicity,
assume that f is continuous. Let a be the constant in (3); that is,

[f(B)] < Ke.

To get the formula, integrate by parts (carefully):

b

| e = fim e - 10) - fim [ (-se ) p(0)
0 —00

b—oo J
b
=—f(0)+slim [ e ' f(t)dt
b—oo J
= —f(0) + sLIf(1)]-
The first limit is zero by the bound on f since

le™stf(t)| < Ke 9 - 0 as t — oco.
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For the second limit, we can take b — oo since we have already established the improper
integral converges in the proof that L[f] exists.

This result can be iterated to find the Laplace transform of higher order derivatives. For
example,

= s(sLLf(t)] = £(0)) — f'(0)
= s"L[f(t)] = sf(0) — f'(0)

and so on. Thus an n-th derivative in the original space correspond to multiplications by s™
in the transformed space (up to some polynomial in s). To be precise, we have:

LIf"(1)] = sLIf ()] = £/(0))
(

Theorem (Laplace transform of derivatives): If ™ is piecewise continuous and f and
all its derivatives up to n — 1 are of exponential type then

LI O] = s"LI O] = 5" £(0) = " 2f/(0) = -+ = sf7D(0) — F7V(0).  (5)

As before, if the transforms of f, f/,---, f™ 1) are defined for s > a then the transform
of f™ is also defined for s > a.

3.1 Inversion

The Laplace transform has an inverse; for any reasonable nice function F'(s) there is a unique
f such that L[f] = F.

Inverse of the Laplace transform: If F'(s) is defined for s > a then there is a unique
function f(t) such that

In this case we write

Unfortunately, the details (and definition of £~ in general) require some complex analysis
and are beyond the scope of this course. The inverse is notoriously difficult to work with in
general. In practice, one typically computes £7[F(s)] by recognizing F(s) as comprised of
known transforms. In the next section, we derive some 'standard’ transforms; these functions
(along with some other known results) will be the things whose inverses are known.



4 Inverses and transforms

In this section we compute some common transforms and show strategies for computing
the inverse transform of a function F'(s). This discussion will involve deriving some new
properties of £ and will make use of a few results from calculus.

4.1 Easy cases (with a bit of algebra)

Constant function: For the constant function f(t) =1,

o 1
L[1] = / e "t dt = ~, defined for s > 0.
0 s

Exponential:
1

)
S—a

S > a.

E[eat] _ / e—(s—a)t dt =
0

Sine/cosine: The formula above applies for complex exponentials. In particular,

s—(a+bi) (s—a)?+b

In particular, because L is linear we can take real and imaginary parts to get

sS—a

E[eat sin bt] = m .

———— Lle™cosht] =
(s —a)®+b? | ]
Polynomial: Let n > 1 be an integer. Then, using integration by parts, we can find the
transform of ¢" in terms of the transform for "~!. The result (left as an exercise) is that

n!
Sn+1 :

L[t =

Non-integer case: The transform for t» when p is a real number is not as nice. Define

[(p) = / e 'l dt, p>0
0

(the ‘Gamma function’). Note that I'(n) = (n — 1)! if n is an integer. If p > —1 then

I'(p+1)
SP+1

L[] =



5 Transform rules/equivalences

Not every F(s) is going to be immediately recognizable as a standard transform. Often, we
need to break it into manageable parts. If you see something like
s +3
(s —1)2(2s — 2)2

you should think: how can this be turned into a sum of easy-to-invert functions? There are
a number of rules to break expressions down.

Many of the rules are really correspondence between operations in the original space and
the transform space (like differentiation in ¢ being multiplication by s). They can be used
to compute £ or £7!, but are also useful for analysis.

The list will grow considerably as the discussion progresses!

Linearity: The inverse transform £7! is linear. Thus sums can be inverted term by term
and constant factors can be moved in/out of the transform.

L7 eF(s)] = cL7[F(s)],

LTUR(s) + -+ Fals)] = L7 F(s)] + - + L7 Fa(s)]-

Derivatives in s: A dual property to the rule for f/(¢). A derivative in the transformed
space corresponds to multiplication by (—t) in the original space:

(—t)"f(t) = F"(s)

For example,

Llte] = _% (sil) - (5—11)2'

This could also be used in reverse to find £L71[1/(s — 1)?].

Partial fractions: See separate notes for a review. We break up rational expressions
into recognizable parts that can be inverted directly, e.g.

1 a b c

G127 s—1 s—2 (=27

F(s) =

The first three are the most commonly used (and mandatory for most problems). There are
a few others to be derived later.



6 Solving ODEs with the Laplace transform

We are now ready to use the Laplace transform to solve linear, constant coefficient initial
value problems, that is equations of the form

any™ +anay" "V 4t ay +agy = f
where the q;’s are constants.

Remark: Example 2 (below) shows that the transform has no problem with inhomoge-
neous term, so long as we can transform /inverse transform them. Any order is also fine (see
Example 3), but it makes the calculations much more involved.

The procedure is as follows:

1) Apply L to the ODE to obtain an equation for Y'(s) = L[y(¢)]. Use the initial conditions
to evaluate the y(0),y'(0) etc. terms in (5). (easy; always the same process)

2) Solve the equation for Y (s) (easy)

3) Decompose Y (s) into a sum of functions that are easy to invert. (can be tricky depend-
ing on the form of Y (s); it can be a mess).

4) Calculate each term of L7'[Y'(s)] (mostly straightforward if Step 3 was done well)

t-space r S-Space
y™m = ft) —> 'Y (s) 4 -+ = F(s)
solve for Y l
Y(S) — e e
decompose l
)=+ «— Y =YitYat

£—1

It is worth noting, and we will see later, that the end goal is not always to get a formula
for y(t). If we are interested in understanding the behavior of solutions, the transform space
can be the right place to do analysis.



Example 1 (homogeneous): A simple initial value problem.

y' =2y +y=0, y(0)=1, ¢'(0)=0.

Let Y(s) = L[y(t)]. Take the transform of the ODE, then apply the initial conditions:

0 =5*Y — sy(0) —4/(0) — 2(sY —y(0)) +Y
=5 —5—25Y +2+Y
=(s* =25+ 1)Y —s+2
=(s—1)%Y —s+2.

The solution in the transformed space is therefore

s—2

Y(s) = Go1r

Now we write (this is an example of partial fractions)

s —2 1 1
Y(S):(s—l)zzs—l_(s—1)2'

The first term is L[e!]; for the second, see below. Inverting, we get

1
s—1
= + (—t)e
= (1 —1t)e".

LY () = £ )+ £

1
Go1p

For the second term: Use the derivative-in-s rule, observing that

_(3—11)2:%<si1>'

We know that d/ds corresponds to multiplication by —t, i.e.

LI(=t)"f()] = F"(s)

so we can use this to take the inverse transform of (6) to get

L71/(s = 1)°] = (=t)e".
Alternate method: Use the translation in s rule,
Lle“f(t)] =F(s—¢)

and the fact that L[t] = 1/s* to get




Example 2 (inhomogeneous): An initial value problem with a forcing term.
y'+y=sinwt, y(0)=0,y(0) =1, w # +1.

Take the transform (using the standard result for sine ):

2 ! W
Y —sy(0) —y(0)+Y = ——.
SY = syl(0) =y (0) +Y = 2
Apply the initial condition and obtain
2
D)WY=14———.
(s“+1) + 3 T
so we get
1 w

+ .
241 (s24+1)(s2+w?)
Now use partial fractions:

1 A B

(24 1)(s2 +w?)  s2+1 +52+w2

which gives
1=As*+ Aw*+ B>+ B

so A+ B=0and Aw? + B =1, solved by A =1/(w? — 1) and B = —1/(w® —1). Thus Y,
after using partial fractions, is

o 1w 1 1
T2+ 1 (W1 \ 8241 s24w?)

Now we recognize that

1 w

ﬁ[smt] = m, E[sinwt] = m,

and use the known transforms to invert each term of Y:

wWw+w—1 . .
= —&int—
w?—1 w? —

Y

sin wt.
1

11



Example 3 (higher order ODE): A fourth order IVP. The method works for any
linear constant-coefficient ODE (of any order). We solve

yW =5y +4y =0, y(0)=1,4(0) =0, y"(0) = 3, y""(0) = 0.
Take the Laplace transform and use the initial conditions:
(s'Y — 5% — 35) = 5(s?Y — 5) +4Y = 0.

Solve for Y to obtain

§°—2s 53— 2s
st =552+ 1  (s—1)(s+1)(s—2)(s+2)

Y(s) =

Notice that the denominator just the characteristic polynomial of the ODE (which will be
true in general). We can invert Y (s) by using partial fractions to write it in the form

/6, 1/6 13 1/3

Y(s) = .
(8> s—1+s+1 s—2 s+2

(The calculation here is tedious but straightforward). Each term can be inverted using
L[e™] = 1/(s — a) to obtain the solution

1 1
y(t) = 5l +e7) +5( + ).

12
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