
Lecture 10: Atiyah Duality
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Let X be a finite CW complex. We saw last time that the Spanier-Whitehead
dual of X is equivalent to Σ−(n−1)(Sn−X) where X → Sn is any non-surjective
embedding of X into a sphere, and such an embedding always exists.

Such an embedding gives an embedding of X in Rn by removing a point of
Sn. Adding this point to X, we have the formula

D(X+) ∼= Σ−(n−1)(Rn −X). (1)

We may also replace Rn by the homeomorphic open disk Dn.

Note that
(Rn −X)→ Rn → Σ(Rn −X)

is a cofiber sequence, because Rn is contractible. Thus we may rewrite (1) as
D(X+) ∼= Σ−n(Rn/(Rn − X)). For any neighborhood N of X in Rn, we thus
also have D(X+) ∼= Σ−nN/(N −X)

A sufficiently small neighborhood N deformation retracts back to X. Fur-
thermore, if X is a manifold, N can be chosen so as to identify with the disk
bundle D(NXRn) of the normal bundle NXRn → X with ∂N identified with
the sphere bundle S(NXRn). Such an N is a tubular neighborhood. We then
have N/(N − X) ∼= N/∂N ∼= D(NXRn)/S(NXRn) ∼= Th(NXRn). Combining
with the previous we obtain

D(X+) ∼= Σ−n Th(NXRn) (2)

Recall that if we add a trivial bundle R → X to a vector bundle V → X,
the resulting thom space Th(V ⊕ R) ∼= Σ Th(V ). This leads to the definition
Th(V 	Rn) ∼= Σn Th(V ) for n positive or negative. Note that the Whitney sum
of the tangent bundle and the normal bundle of X → Rn is the trivial bundle
of rank n, i.e. NXRn ⊕ TX

∼= Rn. Rearranging terms, we have:

Theorem 1.1. If X is a compact manifold without boundary, D(X+) ∼= Th(−TX).
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This implies Poincaré duality [H, Theorem 3.30], but to see this, we need
to take as given the Thom isomorphism theorem, which says that if V →
X is an orientable vector bundle of rank n, then there is a natural isomor-

phism H̃
∗+n

(Th(V ),Z) ∼= H∗(X,Z). One way to think about this is that
orientable is a condition which says that V behaves like a trivial bundle af-
ter taking cohomology, so H̃

∗
(Th(V ),Z) ∼= H̃

∗
(Th(Rn),Z). Since Th(Rn) ∼=

Sn ∧ (X+), we have H̃
∗
(Th(V ),Z) ∼= H̃

∗
(ΣnX+,Z) ∼= H∗−n(X,Z). Further-

more, for any abelian group A, there is a notion of A-orientable, and a natural

isomorphism H̃
∗+n

(Th(V ), A) ∼= H∗(X,A) when V is A-oriented. Furthermore,
for E a spectrum, there is a notion of E-orientable, and a natural isomorphism
E∗+n Th(V ) ∼= E∗(X+) when V is E-oriented. We’ll discuss this later.

Corollary 1.2. (Poincaré duality) Suppose that X is a compact n-manifold
without boundary and E is a spectrum such that the tangent space TX of X is
E-orientable. Then

E∗(X+) ∼= En−∗(X+).

In particular, if X is orientable, then H∗(X,Z) ∼= Hn−∗(X,Z).

Proof. Since D(X+) ∼= Th(−TX), we have that [D(X+), E]∗ ∼= [Th(−TX), E]∗.
The right hand side is E−∗Th(−TX). By the Thom isomorphism theorem,

E−∗Th(−TX) ∼= E−∗− rank(−TX)(X+) ∼= En−∗X+.

The left hand side is [D(X+), E]∗ ∼= [S0, (X+) ∧ E]∗ ∼= E∗(X+).

Via the formula Th(Rn) ∼= Sn ∧ X+, X+ can be interpreted as the Thom
space of the trivial 0-dimensional bundle. We can generalize Theorem 1.1 with
a formula, due to Atiyah [At], for the dual of any Thom space over X. For a
compact n-manifold with boundary, view the tangent bundle as a rank n vector
bundle together with a distinguished sub-bundle of rank n− 1 when restricted
to the boundary.

Theorem 1.3. (Atiyah duality) If X is a compact manifold with boundary ∂X
then

D(X/∂X) ∼= Th(−TX).

If X is a compact manifold without boundary and V is a smooth vector bundle,
then

D(ThV ) ∼= Th(−TX − V ).

Proof. Embed X into the Euclidean n-disk Dn, so that ∂X is embedded into
∂Dn = Sn−1. Assume these embeddings are cellular and that X is transverse to
Sn−1. Choose a tubular neighborhood N of X such that N ∩Sn−1 is a tubular
neighborhood of ∂X.
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X/∂X is homotopy equivalent to Y = X ∪ C∂X ⊂ Dn ∪ CSn−1 ∼= Sn,
where as before C denotes the (unreduced) cone. Applying Alexander duality
to Y ⊂ Sn, we have

D(X/∂X) ∼= Σ−(n−1)(Sn − Y ).

Note that N = N ∪ C(N ∩ Sn−1) is a neighborhood of Y , which deformation
retracts onto Y . Thus Sn − Y ∼= (Sn − N). Since the cone point is not in
(Sn −N), we have that (Sn −N) ∼= Dn −N .

Thus

D(X/∂X) ∼= Σ−(n−1)(Sn − Y )

∼= Σ−nΣ(Sn − Y )

∼= Σ−nΣ(Sn −N)

∼= Σ−nΣ(Dn −N)

∼= Σ−n Th(NXDn)
∼= Th(−TX)

The second assertion follows from the first. Let D(V ) and S(V ) denote the
disk and sphere bundles of V respectively. Then D(V ) is a compact manifold
with boundary S(V ), so DTh(V ) ∼= Th(−TD(V )). The kernel of TV → TX is the
fiber-wise tangent bundle, which is V . Let v : D(V )→ X denote the restriction
of V → X to D(V ). Then there is a short exact sequence v∗V → TD(V ) → v∗TX .
It turns out that up to homotopy the Thom space of a vector bundle only
depends on the bundle’s class in K-theory. Thus Th(−TD(V )) ∼= Th(−v∗(V ⊕
TX)). Since v is a homotopy equivalence, Th(−v∗(V ⊕ TX)) ∼= Th(−(V ⊕ TX)),
as claimed.

Example 1.4. Truncated projective space Recall that X = RPn = Sn/(v ∼
−v) and that the tautological line bundle L → RPn is the vector bundle whose
fiber over v ∈ Sn is ` = Rv.

Put the standard inner product on Rn+1, and let `⊥ donate the n-dimensional
subspace of Rn+1 of those vectors perpendicular to `. Then T[v]RPn ∼= Hom(`, `⊥).

Since `⊕ `⊥ ∼= Rn+1, we have

0→ R = Hom(`, `)→ Hom(`,Rn)→ Hom(`, `⊥)→ 0.

This globalizes to an exact sequence

0→ R→ (L∗)n+1 → TRPn → 0

of vector bundles on RPn.
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It turns out that up to homotopy the Thom space of V only depends on the
class of V in K-theory. Then it follows that

DRPn ∼= Th(−TRPn) ∼= Th(R− (L∗)n+1).

We can identify Th(L∗)k with a truncated projective space for any k as
follows. Any linear function from ` ∈ Rn+1 to Rk determines a graph in Rk ×
Rn+1, which in turn determines an element of (Rk×Rn+1−{0})/R∗ ∼= RPn+k.
The only elements of RPn + k not equal to such a graph, are lines in Rk. Thus
we have a vector bundle

V = RPn+k − RPk−1 → RPn

whose fiber over ` ∈ RPn is Hom(`,Rk). Thus V = (L∗)k.

Th((L∗)k) is the one point compactification of (L∗)k because X is compact.
Thus

Th((L∗)k) ∼= RPn+k/RPk−1.

There is notation for RPn+k/RPk−1. Define RPn+k
k = RPn+k/RPk−1.

In total, we obtain
D(RPn

+) ∼= ΣRP−1−(n+1).
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