Lecture 10: Atiyah Duality
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Let X be a finite CW complex. We saw last time that the Spanier-Whitehead
dual of X is equivalent to ="~ (8" — X) where X — S is any non-surjective
embedding of X into a sphere, and such an embedding always exists.

Such an embedding gives an embedding of X in R™ by removing a point of
S™. Adding this point to X, we have the formula

D(X,) 2o DR - X). (1)

We may also replace R™ by the homeomorphic open disk D™.

Note that
(R" - X) - R" - L(R" — X)

is a cofiber sequence, because R"™ is contractible. Thus we may rewrite (1) as
D(X;) =2 ¥~ (R"/(R™ — X)). For any neighborhood N of X in R™, we thus
also have D(X;) 2 X "N/(N — X)

A sufficiently small neighborhood N deformation retracts back to X. Fur-
thermore, if X is a manifold, N can be chosen so as to identify with the disk
bundle D(NxR™) of the normal bundle NxR™ — X with ON identified with
the sphere bundle S(NxR™). Such an N is a tubular neighborhood. We then
have N/(N — X) = N/ON = D(NxR")/S(NxR"™) = Th(NxR"™). Combining
with the previous we obtain

D(X,) 2 " Th(NxR") (2)

Recall that if we add a trivial bundle R — X to a vector bundle V — X,
the resulting thom space Th(V @ R) & X Th(V). This leads to the definition
Th(VeR") = X" Th(V) for n positive or negative. Note that the Whitney sum
of the tangent bundle and the normal bundle of X — R" is the trivial bundle
of rank n, i.e. NyR"™ @ Ty = R". Rearranging terms, we have:

Theorem 1.1. If X is a compact manifold without boundary, D(X ;) =2 Th(—Tx).



This implies Poincaré duality [H, Theorem 3.30], but to see this, we need
to take as given the Thom isomorphism theorem, which says that if V' —
X is an orientable vector bundle of rank n, then there is a natural isomor-
phism " "(Th(V),Z) = H*(X,Z). One way to think about this is that
orientable is a condition which says that V' behaves like a trivial bundle af-
ter taking cohomology, so H (Th(V),Z) = H (Th(R™),Z). Since Th(R") =
S™ A (X4), we have H (Th(V),Z) = H ("X, ,Z) = H* "(X,Z). Further-
more, for any abelian group A, there is a notion of A-orientable, and a natural
isomorphism ot (Th(V),A) 2 H"(X, A) when V is A-oriented. Furthermore,
for E a spectrum, there is a notion of E-orientable, and a natural isomorphism
E**"Th(V) = E*(X,) when V is E-oriented. We'll discuss this later.

Corollary 1.2. (Poincaré duality) Suppose that X is a compact n-manifold
without boundary and E is a spectrum such that the tangent space Tx of X is
E-orientable. Then

E(X1) = E"(X5).

In particular, if X is orientable, then H,(X,Z) 2 H" " (X, Z).

Proof. Since D(X ) = Th(—Tx), we have that [D(X,), E]. = [Th(-Tx), El..
The right hand side is E~* Th(—T%). By the Thom isomorphism theorem,

Ef* Th(—TX) o~ E**frank(fo)(XJr) o~ Enf*XJr

The left hand side is [D(X4), E]. = [S°, (X1) A E]s =2 E.(X4). O

Via the formula Th(R") = S™ A X, X, can be interpreted as the Thom
space of the trivial 0-dimensional bundle. We can generalize Theorem 1.1 with
a formula, due to Atiyah [At], for the dual of any Thom space over X. For a
compact n-manifold with boundary, view the tangent bundle as a rank n vector
bundle together with a distinguished sub-bundle of rank n — 1 when restricted
to the boundary.

Theorem 1.3. (Atiyah duality) If X is a compact manifold with boundary 0X
then
D(X/0X) = Th(-Tx).

If X is a compact manifold without boundary and V is a smooth vector bundle,
then
D(ThV) 2 Th(-Tx — V).

Proof. Embed X into the Euclidean n-disk D", so that X is embedded into
OD™ = S™~1. Assume these embeddings are cellular and that X is transverse to
S"~1. Choose a tubular neighborhood N of X such that N N .S"~! is a tubular
neighborhood of 9.X.



X/0X is homotopy equivalent to ¥ = X UCIX C D" U @RS 1 = gn
where as before C denotes the (unreduced) cone. Applying Alexander duality
to Y C S™, we have

D(X/0X) =~ (=Y (gn _y),

Note that N = N U €(N N S™1) is a neighborhood of Y, which deformation
retracts onto Y. Thus S™ —Y = (S™ — N). Since the cone point is not in
(8™ —N), we have that (S™ —N) = D™ — N.

Thus

D(X/0X) =~ (=D(s" _y)
=2 NT"Y(ST -Y)
=2 ¥R7"H(S" = N)
~ ¥ "%(D" — N)
~ %" Th(NxD")
&~ Th(-Tx)

The second assertion follows from the first. Let D(V) and S(V) denote the
disk and sphere bundles of V respectively. Then D(V) is a compact manifold
with boundary S(V'), so D Th(V') =2 Th(—Tp(v)). The kernel of Ty, — T’x is the
fiber-wise tangent bundle, which is V. Let v : D(V) = X denote the restriction
of V.— X to D(V). Then there is a short exact sequence v*V' — Ty — v*Tx.
It turns out that up to homotopy the Thom space of a vector bundle only
depends on the bundle’s class in K-theory. Thus Th(—Tpvy) = Th(—v*(V &
Tx)). Since v is a homotopy equivalence, Th(—v*(V & Tx)) = Th(—(V & Tx)),
as claimed. O

Example 1.4. Truncated projective space Recall that X = RP™ = S™/(v ~
—v) and that the tautological line bundle . — RP™ is the vector bundle whose
fiber over v € S™ is £ = Ro.

Put the standard inner product on R™t1, and let £+ donate the n-dimensional
subspace of R™1 of those vectors perpendicular to £. Then T,/ RP™ = Hom(¥, ).
Since £ @ 0+ = R*1 we have

0 — R = Hom(¢, ¢) — Hom(¢,R"™) — Hom(¢, (1) — 0.
This globalizes to an exact sequence
0— R — (L") = Tgpn — 0

of vector bundles on RP™.



It turns out that up to homotopy the Thom space of V' only depends on the
class of V in K-theory. Then it follows that

DRP™ = Th(—Tgen) = Th(R — (L*)"1).

We can identify Th(L*)¥ with a truncated projective space for any k as
follows. Any linear function from £ € R**1 to R* determines a graph in R* x
R™*1 which in turn determines an element of (RF x R"1 —{0})/R* = RP" + k.
The only elements of RP™ + k not equal to such a graph, are lines in R¥. Thus
we have a vector bundle

V = RP"tF — RPF1 — RP™

whose fiber over ¢ € RP™ is Hom (¢, R¥). Thus V = (L*)*.

Th((IL*)*) is the one point compactification of (L*)¥ because X is compact.
Thus
Th((L*)*) = RP"+* /RP*1,

There is notation for RP"*/RPF—1. Define RPyTF = RP*H+ /RPF-1.

In total, we obtain
D(RP") = SRP_;

(n+1)°
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