
Lecture 13: Atiyah-Hirzebruch Spectral Sequence
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Theorem 1.1. Let A be a spectrum and let X be a finite-dimensional CW-
complex. There exist spectral sequences

E2
p,q = Hp(X;πqA)⇒ Ap+qX dn : Enp,q → Enp−n,q+(n−1)

Ep,q2 = Hp(X;π−qA)⇒ Ap+qX dn : Enp,q → Enp+n,q−(n−1).

Here we use the notation that for a spectrum A and a CW-complex X,
A∗X = π∗(Σ

∞(X+) ∧ A). When X is pointed, we have Ã∗X = π∗(Σ
∞X ∧ A),

and if we replace the H’s above with H̃’s, we also get an Atiyah-Hirzebruch
spectral sequence for the reduced generalized (co)homology of X.

Adam’s says this theorem is probably due to Whitehead. See [A, p. 215].
With more work, one can make an Atiyah-Hirzebruch spectral sequence for X a
spectrum which is bounded below in the sense that πqX = 0 for all q sufficiently
small.

Proof. We construct the first spectral sequence and leave the second as an ex-
ercise.

Let
∅ = X(−1) ⊂ X(0) ⊂ X(1) ⊂ . . . ⊂⊂ X(d) = X

denote the skeletal filtration of X.

The long exact sequences

. . .→ Ap+qX
(p−1) i∗→ Ap+qX

(p) j→ Ap+q(X
(p)/X(p−1))

k→ Ap+q−1X
(p−1) → . . .

can be assembled into the exact couple

⊕p,qAp,qX(p) i∗ // ⊕p,qAp,qX(p)

juu
⊕p,qAp+q(X(p)/X(p−1))

k

ii
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We therefore have a spectral sequence. Let’s work out the bidegree of the
differential dn on the nth page. As in last lecture, “dn = ji−(n−1)k.” Set
E1
p,q = Ap+q(X

(p)/X(p−1)). Then i−(n−1) moves back n−1 in the p coordinate,
and k moves back another 1 in the p coordinate. Thus

dn : subquotient of Ap+q(X
(p)/X(p−1))→ subquotient of Ap+q−1(X(p−n)/X(p−n−1)).

Thus dn : Enp,q → Enp−n,q+n−1, as claimed.

We now identify E2
p,q with Hp(X;πqA). We have

E1
p,q
∼= Ap+q(X

(p)/X(p−1)) ∼= Ap+q ∨Cp Sp ∼= ⊕CpπqA,

where Cp denotes the set of p-cells of X. This is the group of p-cellular chains
with coefficients in πqA, so it remains to identify d1 : ⊕CpπqA → ⊕Cp−1

πqA
with the cellular boundary map.

Choose a p-cell α and a (p− 1)-cell β. We need to see that the composite

πqA ∼= πp+q(A ∧ Sp)
α∗→ πp+q ∨Cp (A ∧ Sp) d1→ ⊕Cp−1

πqA
pβ→ πqA

is multiplication by the degree of Sp−1
α→ X(p−1) → X(p−1)/X(p−2) ∼= ∨Cp−1S

p−1 pβ→
S(p−1). Unwrapping definitions, we have that d1 is the composite of

πp+qA ∧ (X(p)/X(p−1))→ πp+qA ∧X(p−1) → πp+qA ∧X(p−1)/X(p−2).

Thus the claim is that a degree n map Sp−1 → Sp−1 induces multiplication by
n on A∗. By homotopy invariance of the generalized homology theory A∗, we
may check this for the degree n map given by

Sp−1 → ∨ni=1S
p−1 ∨ id→ Sp−1,

where the first map is the pinch map. The claim then follows from the fact
that generalized homology theories turn wedge sums into direct sums, and the
identity induces an identity map. (This argument was already written out on
page 4 of Lecture 11.)

It remains to prove the convergence toAp+qX. Since E1
p,qX = Ap+q(X

(p), X(p−1)),
E1
p,q is only nonzero when 0 ≤ p ≤ dimX. Since Enp,q is a sub quotient of E1

p,q,
the same statement holds for Enp,q. Since dn decreases the p coordinate by n, for

n > d+ 1, we have that dn = 0. Thus for all n > d+ 1, we have Ed+1
p,q
∼= Enp,q.

So E∞p,q is well-defined; it is Ed+1
p,q .

Ap+qX is filtered by Fp = Image(Ap+qX
(p) → Ap+qX). We claim that

grAnX ∼= ⊕p+q=nE∞p,q. In fact, we claim that Fp/Fp−1 ∼= E∞p,n−p. On the Nth

page, any element e of EN+1
p,q must be the image of an element e ∈ E1

p,q
∼=
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Ap+q(X
(p), X(p−1)) and in the kernel of “dN = ji−Nk.” This means that the

boundary ∂e must be 0 in Ap+q−1(X(p−1), X(p−N−1)). This implies that e deter-
mines an element of Ap+q(X

(p), X(p−N−1)). Furthermore, e is only determined
modulo the images of the the di for i < N . By the same reasoning, the images
of these di are boundaries from Ap+q+1(X(p+i), X(p)). Thus

EN+1
p,q

∼=
Image(Ap+q(X

(p), X(p−N−1))→ Ap+q(X
(p), X(p−1))

Image(Ap+q+1(X(p+N), X(p))→ Ap+q(X(p), X(p−1)))

Taking N sufficiently large we have

EN+1
p,q

∼=
Image(Ap+q(X

(p))→ Ap+q(X
(p), X(p−1)))

Image(Ap+q+1(X,X(p))→ Ap+q(X(p), X(p−1)))

By arguments with the LES of a triple, we get

EN+1
p,q

∼=
Image(Ap+q(X

(p))→ Ap+q(X
(p), X(p−1)))

Ker(Ap+q(X(p), X(p−1))→ Ap+q(X,X(p−1)))

∼=
Image(Ap+q(X

(p))→ Ap+q(X
(p), X(p−1)))

Ker(Ap+q(X(p), X(p−1))→ Ap+q(X,X(p−1)))

∼=
Fp

Fp−1

Exercise 1.2. a) The last isomorphism takes a little diagram chasing. See if
you can complete those steps.

b)More ambitious exercise: give the proof of the other spectral sequence in
the theorem.

We’re going to talk about topological complex K-theory next. For now,
let’s assume we know that there is a spectrum K whose even indexed spaces
are Z×BU and whose odd indexed spaces are U . Furthermore π∗K = Z if ∗ is
even and π∗K = 0 if ∗ is odd.

Example 1.3. Apply the Atiyah-Hirzebruch spectral sequence to X = CPn and
A = K. The E2 page E2

p,q = Hp(CPn, π−qK) is a checkerboard pattern in the
right half plane with Z’s on the squares with both coordinates even and such
that 0 ≤ p ≤ 2n. Since the differentials always change the parity of one of the
coordinates, ALL the differentials are automatically 0. We conclude

K∗CPn =

{
⊕ni=0Z if ∗ even

0 otherwise .
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Exercise 1.4. Compute K̃∗(RP2n) as an additive group.

References

[A] J.F. Adams, Stable Homotopy and Generalized Homology Chicago
Lectures in Mathematics, The University of Chicago Press, 1974.

4


