
Lecture 14: K-theory, KO-theory, and James

periodicity

2/20/15

1 Complex (topological) K-theory

Let X be a CW-complex, and suppose X is finite. Let Vect(X) denote the set of
isomorphism classes of complex vector bundles on X. The Whitney sum gives
an operation ⊕ on Vect(X).

Definition 1.1. K0(X) is the initial group receiving a map from Vect(X) which
sends ⊕ to the group operation on K0(X).

More explicitly, K0(X) consists of pairs (V,W ) ∈ Vect(X)2, subject to the

equivalence (V,W )(̃V ′,W ′) iff V ⊕W ′⊕U ∼= V ′⊕W ⊕U for some U ∈ Vect(X).
The operation ⊕ extends to a group operation (V,W )⊕(V ′,W ′) = (V ⊕V ′,W⊕
W ′). We think of (V,W ) as “V 	W .”

Proposition 1.2. 1. For V,W ∈ Vect(X), we have V = W in K0(X) if
and only if there exists n such that V ⊕ Cn ∼= W ⊕ Cn, where C denotes
the trivial bundle on X.

2. Every element of K0(X) can be represented as (V,Cn).

Proof. If V = W in K0(X), then there exists U ∈ Vect(X) such that V ⊕ U ∼=
W ⊕U . It follows from compactness of X, that we may choose a finite cover so
that over each open of the cover U is trivialized. A partition of unity argument
then gives us an injection U → CN for some large N . Choosing an inner product
on CN , we see that this injection is split. (In fact any injection of topological
vector bundles is split). The kernel of this splitting is a vector bundle U ′ such
that U⊕U ′ ∼= CN . By taking the Whitney sum of both sides of V ⊕U ∼= W ⊕U
with U ′, we see 1.
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Now take (V,W ) in K0(X). By the same reasoning, we may choose W ′ such
that W ⊕W ′ ∼= CN . Then (V,W ) ∼= (V ⊕W ′,CN ), showing the second claim.

Corollary 1.3. If V ,W in Vect(X) determine the same class in K0(X), then
Th(V ) ∼= Th(W ) in the stable homotopy category.

In the previous corollary, Th(V ) denotes Σ∞ Th(V ).

Proof. Use 1 and the fact that Th(V ⊕ Cn) ∼= Σ2n Th(V ).

We may furthermore define the Thom spectrum Th(V,W ) for any (V,W ) ∈
K0(X) by choosing (V ′,Cn) such that (V,W ) = (V ′,Cn), and setting Th(V,W ) =
Σ−2n Th(V ′). This is well-defined because if (V1,Cn1) = (V2,Cn2) in K0(X),
we have V1 ⊕ Cn2 ∼= V2 ⊕ Cn1 , whence Σ2n2 Th(V1) ∼= Σ2n1 Th(V2).

This proves some facts we were assuming before.

Given a map of spaces X → Y , the pull-back of vector bundles gives a
group homomorphism K0(Y ) → K0(X). In fact K0 extends to a generalized
cohomology theory, represented by a spectrum K. You could start defining this
generalized cohomology theory. For example,

K−n(X) = K̃0(Sn ∧ (X+))

for all positive n. Perhaps it’s better to write K̃−nX = K̃0(Sn ∧ X). Here,
K̃0(X) is the reduced K0, given either as the subgroup of K0(X) consisting of
(V,W ) where V and W have the same rank, or as Vect / ∼ where V ∼ W iff
there are n and m such that V ⊕ Cn = W ⊕ Cm

For negative n, you could then use Bott periodicity:

Theorem 1.4. (Bott periodicity) Kn(X) ∼= Kn+2(X).

2 KO-theory

In the above definition, replace complex vector bundles with real vector bundles
in the definition Vect(X), so Vect(X) is the set of isomorphism classes of real
vector bundles on X, equipped with the operation ⊕.
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Definition 2.1. KO0(X) is the initial group receiving a map from Vect(X)
which sends ⊕ to the group operation on KO0(X).

The analogues of Proposition 1.2 and Corollary 1.3 hold as well. For (V,W ) ∈
KO0(X), we can find (V ′,Rn) such that (V,W ) = (V ′,Rn). Define

Th(V,W ) = Σ−n Th(V ′)

to be the object of the stable homotopy category, where Th(V ′) denotes the
suspension spectrum of the Thom space of V ′.

KO0 also extends to a generalized cohomology theory. The real version of
Bott periodicity is

Theorem 2.2. (Bott periodicity) K̃O
n
(X) ∼= K̃O

n+8
(X).

The periodicity isomorphism is induced by a product with a class in K̃O
0
(S8) ∼=

K̃O
−8

(S0) constructed from Clifford algebras. The homotopy groups of KO are
given K̃O(Sn) ∼= KOn is

Z,Z/2,Z/2, 0,Z, 0, 0, 0,Z

for
n = 0, 1, 2, 3, 4, 5, 6, 7, 8

respectively.

3 James Periodicity

By combining the Atiyah-Hirzebruch spectral sequence and K or KO-theory,
we get a proof of a property of projective spaces called James periodicity. Let
L denote the tautological bundle on real projective space. Recall the notation
that

RPm+n
n = Th(RPm, nL).

We have seen that for n (and m) positive, we have RPm+n
n = RPm+n/RPn−1.

From the above, we know that in the stable homotopy category, Th(RPm, nL)
only depends on nL in KO(RPm). We could equally well say that Σ−n Th(RPm, nL)
only depends on n(L−1) in K̃O(RPm). Looking at the Atiyah-Hirzebruch spec-

tral sequence, we have H̃
p
(RPm, K̃O−q)⇒ K̃O

p+q
(RPm). Along the p + q = 0

diagonal, we get Z/2’s whenever there is a Z or a Z/2 in K̃O−q. For example,

when m = 8, we have four Z/2’s. This implies that K̃O
0
(RPm) has at most
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order 16. In particular, 16(L − 1) = 0, so we conlcude that Σ−n Th(RP8, nL)
only depends on n modulo 16. In other words

Σ−nRP8+n
n

only depends on n modulo 16.

Exercise 3.1. Do this for complex projective space, and other values of m.
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