
Lecture 18: Smash product

3/23/15

Recall that given two topological spaces X and Y with base points, we have
the smash product X ∧Y = X×Y/(X ∨Y ) and a space of functions preserving
base points F (X,Y ) such that F (X,F (Y,Z)) ∼= F (X ∧ Y, Z). We wish to have
a smash product and an internal function object for spectra. With the category
of spectra as defined in Lecture 2, it is not possible to have an associative and
commutative smash product. So we expand our notion of what a spectrum is.
The notions of spectra here will all give rise to the stable homotopy category
of Lecture 3, and we will address this point in Lecture 19. Here we introduce
categories of spectra with smash product and internal function objects.

1 Categories of D-spaces

We follow [MMSS]. Topological categories are categories where the morphisms
between objects form a topological space and composition is continuous. A
functor X : D → C between topological categories is continuous if for any
objects d, e in D the induced map D(d, e) → C(X(d), X(e)) is continuous. Let
T be the topological category of compactly generated topological spaces (X
is compactly generated means that a subspace is open if and only if its inverse
image under any continuous functions from a compact Hausdorff spaces is open)
equipped with a base point.

Definition 1.1. Let DT denote the category of continuous functors D→ T and
natural transformations. Objects of this category are called D-spaces.

A monoidal category is a category D with an operation � : D×D→ D and
a unit object u such that � is associative with unit u up to natural isomor-
phism, which is required to be coherent in the sense that reasonable diagrams
constructed with the natural isomorphisms also commute. See the references in
[MMSS, §20 p. 58]. If � is commutative up to coherent natural isomorphism,
D is a symmetric monoidal category.

1



Example 1.2. Let N be the category whose objects are non-negative integers,
and with only identity morphisms. The symmetric monoidal structure is addi-
tion, and 0 is the unit.

Example 1.3. Let Σ be the category whose objects are finite sets {1, 2, . . . , n}
such that n ≥ 0, with morphisms given by bijections.The symmetric monoidal
structure is

{1, 2, . . . , n}�{1, 2, . . . ,m} = {1, 2, . . . , n+m}

with block sum of permutations. n = 0 is the unit.

Example 1.4. Let I be the category of finite dimensional real inner product
spaces and linear isometries. There are no maps V →W unless V and W have
the same dimension n, and in this case, the space of morphisms is homeomorphic
to O(n). The symmetric monoidal structure is orthogonal direct sum and the 0
dimensional vector space is the unit.

For a symmetric monoidal topological category D, we can equip DT with a
commutative, associative smash product with unit and an internal Hom functor
F such that

F (X,F (Y, Z)) ∼= F (X ∧ Y,Z) (1)

for all X,Y, Z in DT. To do this, we first define the external smash product
which takes two D-spaces X,Y : D→ T and forms

X∧Y = ∧ ◦ (X × Y ) : D×D→ T.

We then define the smash product (or internal smash product) by

(X ∧ Y )(d) = colim
e�f→d

X(e) ∧ Y (f).

Here, the colimit is taken over the category whose objects are pairs (e, f) ∈ D2

and maps α : e�f → d, and a morphism from {(e, f), α} to {(e′, f ′), α′} is a
pair of maps φ : e→ e′ and ϕ : f → f ′ such that α′ ◦ (φ⊕ ϕ) = α. (We should
really restrict to circumstances where this category can be assumed to be small.
Also note that X ∧ Y is a D-space by functoriality of colimits.) For a concrete
description of X ∧ Y (d), recall that the coequalizer of a diagram A

→→ B where
the two morphisms are called p1 and p2 is C = B/(p1(a) ∼ p2(a)), and we write

A
→→ B → C

as a coequalizer sequence. Then

∨(e′,f ′)→(e,f)D(e�f, d)∧(X(e′)∧Y (f ′))
→→ ∨(e,f)D(e�f, d)∧(X(e)∧Y (f))→ (X∧Y )(d)

is a coequalizer sequence. This is an example of a left Kan extension.
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Exercise 1.5. Show that (X ∧ Y )(n) = ∨np=0(Σn)+ ∧Σp×Σn−p X(p) ∧ Y (n− p)
for X and Y two Σ-spaces.

Let X and Y be D-spaces. Define the function D-space F (X,Y ) by

F (X,Y )(d) = DT(X,Y (d�−)).

We can now prove (1): Note the canonical projections DT(X,F (Y, Z)) →
T(X(d),DT(Y, Z(d�−))), which determine DT(X,F (Y, Z)) by the exact se-
quence

DT(X,F (Y, Z))→
∏
d

T(X(d),DT(Y,Z(d�−)))→
∏
d→d′

T(X(d),DT(Y,Z(d′�−))).

We furthermore have projections DT(Y,Z(d�−)))→ T(Y (e), Z(d�e)) with an
analogous exact sequence determining DT(Y,Z(d�−))). Combining with the
natural homeomorphisms T(X(d),T(Y (e), Z(d�e))) ∼= T(X(d)∧Y (e), Z(d�e)),
we have

DT(X,F (Y,Z)) ∼= (D×D)T(X∧Y, Z ◦�). (2)

We now claim that

(D×D)T(X∧Y,Z ◦�) ∼= DT(X ∧ Y,Z). (3)

To see this, we first expand the colimit X ∧ Y as a coequalizer

∨(e′,f ′)→(e,f)D(e�f, d)∧(X(e′)∧Y (f ′))
→→ ∨(e,f)D(e�f, d)∧(X(e)∧Y (f))→ (X∧Y )(d).

Given a map X∧Y → Z◦�, we obtain a map ∨(e,f)D(e�f, d)∧(X(e)∧Y (f))→
∨(e,f)D(e�f, d)∧(Z(e�f))→ Z(d). This map determines a map X∧Y → Z, by
the coequalizer sequence. Conversely, given a map X∧Y → Z, we obtain a map
X∧Y → Z◦� by letting the map X(e)∧Y (f)→ Z(e�f) come from the identity
point of ∨(e,f)D(e�f, e�f)X(e) ∧ Y (f). These are inverse homeomorphisms,
showing (3). Combining (2) and (3) shows (1).

Exercise 1.6. Define u∗ to be the D-space e 7→ D(u, e). Show that u∗ is a unit
for the operation ∧ on D-spaces.

It follows that DT is a symmetric monoidal topological category, with oper-
ation ∧ and unit u∗, together with an internal function object F satisfying (1).
Such a category is called a closed symmetric monoidal topological category.

2 Categories of D-spectra

In any symmetric monoidal category, a monoid is an object R together with
an associative product φ : R�R → R and a unit λ : u → R. A monoid is
commutative if φ is commutative up to coherent natural isomorphism.
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Definition 2.1. A D-spectrum over R is a D-space X : D → T together with
natural continuous maps

σ : X(d) ∧R(e)→ X(d�e)

such that the composite

X(d) ∼= X(d) ∧ S0 1∧λ→ X(d) ∧R(u)
σ→ X(d�u) ∼= X(d)

is the identity and the diagram

X(d) ∧R(e) ∧R(f)
σ∧1 //

1∧φ
��

X(d�e) ∧R(f)

�
��

X(d) ∧R(e�f)
σ // X(d�e�f)

commutes. Let DSR denote the category of D-spectra over R.

Remark 2.2. Note that σ is the data of a map X∧R→ X ◦� of D×D-spaces.
In any symmetric monoidal category, a (right) R-module is than an object M
together with M�′R → R which is associative and unital. Here �′ denotes the
operation. By (3), σ gives a map X ∧ R → X. Unwinding definitions, we see
that a D-spectrum over R is the same as an R-module. See Proposition 1.10 of
[MMSS].

Example 2.3. Consider the N-spaces of Example 1.2. Define S : N → T by
S(n) = Sn. Then S is a monoid. To see this, note that for X,Y in NT, the
smash product X ∧ Y is given by

(X ∧ Y )(n) = ∨np=0Xp ∧ Yn−p.

We have S ∧ S → S given by the standard maps Sp ∧ Sn−p → Sn.

NSS is the category of spectra constructed in Lecture 2. On the other hand, S
is NOT a commutative monoid, because the map Sd∧Se → Se∧Sd flipping the
factors is not the identity on Sn. This is the source of the difficulty in defining
the smash product of spectra.

Theorem 2.4. Let R be a commutative monoid in DT. Then the category
DSR has a smash product ∧R and an internal Hom FR making DSR a closed
symmetric monoidal topological category.

Proof. By Remark 2.2, we need to make the category of (right) R-modules into
a closed symmetric monoidal category. The definitions can be borrowed from
algebra. Given a right R-module X, and a left R-module Y , define X ∧R Y to
be the coequalizer in D-spaces

X ∧R ∧ Y →→ X ∧ Y → X ∧R Y.
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Since R is commutative, we can identify right and left modules. Furthermore,
X ∧R Y inherits the structure of an R-module. R is the unit for ∧R.

Define FR(X,Y ) to be the equalizer in D-spaces

FR(X,Y )→ F (X,Y )
→→ F (X ∧R, Y ).

Here, the two maps F (X,Y ) → F (X ∧ R, Y ) are as follows. One of them is
pull-back by the map X ∧ R → R coming from the R-module structure on X.
The other is adjoint to the composite

F (X,Y ) ∧X ∧R→ Y ∧R→ Y,

where the first map comes from the evaluation F (X,Y )∧X → Y ad the second
map comes from the module structure on Y .

Example 2.5. (Symmetric spectra) Let Σ be as in Example 1.3. Let S be the
Σ-space defined S(n) = Sn. S is a commutative monoid. To see this, note that
for X,Y Σ-spaces, we have that (X ∧ Y )(n) = ∨np=0(Σn)+ ∧Σp×Σn−p

X(p) ∧
Y (n− p). This can also be written (X ∧ Y )(n) = ∨[p]⊂[n]X(p)∧ Y (n− p) where
the wedge sum ranges over all subsets of [n] = {0, 1, . . . , n}. This gives a twist
isomorphism X∧Y → Y ∧X obtained by mapping the summand corresponding to
[p] to the summand corresponding to [n]− [p] by the twist isomorphism X(p) ∧
Y (n − p) → Y (n − p) ∧ X(p) in spaces. (Note that this also allows us to
see that the smash product on ΣT is commutative.) Given such a subset, the
associated map Sp ∧ Sn−p → Sn is the corresponding permutation. This makes
S commutative. This idea is due to Jeff Smith.

ΣSS is the category of symmetric spectra. Note the functor ι : N → Σ
which sends n to n. This gives as un underlying spectrum in the sense of lec-
ture 2 associated to any symmetric spectrum. The functor U : ΣSS → NSS
sending a symmetric spectrum to its underlying spectrum admits a left adjoint
prolongation functor P : NSS → ΣSS. For a based CW-complex A, we have
(P(Σ∞A))(n) = A ∧ Sn. Since P preserves colimits, this determines P.

Once we have a way to discuss the homotopy theory of NSS and ΣSS, we
will want to see that the associated homotopy categories are the same. This is
shown in [MMSS, Corollary 10.5]. We then have the desired smash product and
function object on the stable homotopy category of Lecture 3.

Exercise 2.6. For Y and X in based CW-complexes, show that P(Σ∞X) ∧S
P(Σ∞Y ) ∼= P(Σ∞(X ∧Y )). (Hint: define a reasonable X ∧S (i.e. do the smash
for each n), show this is P(Σ∞X), and then use the fact that S ∧S S ∼= S.)

Example 2.7. (Orthogonal spectra) Let I be as in Example 1.4. The smash
product on I-spaces is given by

(X ∧ Y )(V ) = ∨W⊂VX(W ) ∧ Y (V −W ),
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where V −W denotes the orthogonal complement of W in V . If you choose a
particular p dimensional subspace Vp of V for every p, this can also be written

(X ∧ Y )(V ) = ∨pO(n)+ ∧O(p)×O(n−p) X(Vp) ∧ Y (V − Vp),

where n is the dimension of p. Let S be the I space which takes an inner product
space V to SV , where SV denotes the one-point compactification of V . Then S
is a commutative monoid in IT. ISS is the category of orthogonal spectra. Note
the functor Σ → I which takes n to Rn with the standard inner product allows
us to associate an underlying symmetric spectrum to any orthogonal spectrum.
There is an associated prolongation functor as well. The underlying spectrum
functor and the prolongation functor again produce an equivalence of homotopy
categories [MMSS, Corollary 10.5].
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