

## Lecture 20: Ring Spectra

4/6/15

### 1 Ring spectra

Let  $S$  denote the suspension spectrum of  $S^0$ .

**Definition 1.1.** A Ring spectrum is a spectrum  $R$  equipped with an associative multiplication map  $\mu : R \wedge R \rightarrow R$  with a unit  $u : S \rightarrow R$ . Explicitly,  $R$  is equipped with maps  $\mu$  and  $u$  such that the diagrams

$$\begin{array}{ccc} R \wedge R \wedge R & \xrightarrow{\mu \wedge 1} & R \wedge R \\ \downarrow 1 \wedge \mu & & \downarrow \mu \\ R \wedge R & \xrightarrow{\mu} & R \end{array}$$

and

$$\begin{array}{ccc} S \wedge R & \xrightarrow{u \wedge 1} & R \wedge R \\ \uparrow \cong & & \downarrow \mu \\ R & \xrightarrow{1} & R \\ \uparrow \cong & & \uparrow \mu \\ R \wedge S & \xrightarrow{1 \wedge \mu} & R \wedge R \end{array}$$

commute.

**Example 1.2.** Recall that the complex bordism spectrum  $MU$  can be defined to be the colimit  $MU = \varinjlim_n MU(n)$ , where  $MU(n)$  is the Thom spectrum  $\Sigma^{-2n} \text{Th}(BU(n), \zeta_n)$  of the tautological bundle over  $BU(n)$  desuspended  $2n$  times. The direct sum of vector bundles is classified by a map  $BU(n) \times BU(m) \rightarrow BU(n+m)$ , such that there is a pull-back square

$$\begin{array}{ccc} \zeta_n \oplus \zeta_m & \longrightarrow & \zeta_{n+m} \\ \downarrow & & \downarrow \\ BU(n) \times BU(m) & \longrightarrow & BU(n+m) \end{array}$$

Associated to this pull-back, we have a map  $\text{Th}(BU(n) \times BU(m), \zeta_n \oplus \zeta_m) \rightarrow \text{Th}(BU(n+m), \zeta_{n+m})$ . By Lecture 2 Exercise 1.6 (3) (and using that  $S(V \times W) = SV \hat{*} SW$  for vector bundles  $V$  and  $W$ ),  $\text{Th}(BU(n) \times BU(m), \zeta_n \oplus \zeta_m) \cong \text{Th}(BU(n), \zeta_n) \wedge \text{Th}(BU(m), \zeta_m)$ . Therefore, we have a map

$$\text{Th}(BU(n), \zeta_n) \wedge \text{Th}(BU(m), \zeta_m) \rightarrow \text{Th}(BU(n+m), \zeta_{n+m}),$$

whence a map

$$MU(n) \wedge MU(m) \rightarrow MU(n+m).$$

Taking colimits as  $n \rightarrow \infty$  and  $m \rightarrow \infty$ , we have a map  $\mu : MU \wedge MU$ .

Note that  $BU(1) = \mathbb{CP}^\infty = S^\infty/(S^1)$ . Thus the sphere bundle of  $\zeta_1$  is contractible. Thus  $\text{Th}(BU(1), \zeta_1) = D(\zeta_1) \cong BU(1) \cong \mathbb{CP}^\infty$ . The map  $S \rightarrow MU$  comes from the map  $S^0 \rightarrow MU(1) \cong \Sigma^{-2}\mathbb{CP}^\infty$  given as the desuspension of  $\mathbb{CP}^1 \rightarrow \mathbb{CP}^\infty$ . (It's also possible to identify “ $MU(0) = S$ .”)

**Example 1.3.** For any commutative ring  $A$ , the Eilenberg-MacLane spectrum  $HA$  is a ring spectrum. Here is an outline of an argument [Ma, Ch 6.1]. For a spectrum  $X$ , let  $|X|$  be the smallest  $r$  in  $\{r | \pi_r(X) \neq 0\}$  if such an  $r$  exists. In this case,  $X$  can be built as a colimit  $X = \varinjlim_{n=r \rightarrow \infty} X(n)$  where  $r = |X|$  and  $X^{(n)}$  is something like the  $n$ -skeleton. Rigorously,  $X^{(r)} = \vee S^r$  and there are cofiber sequences  $\vee S^n \rightarrow X^{(n)} \rightarrow X^{(n+1)}$  [Ma, Ch 3.2]. It can then be shown [Ma, Ch 3 Proposition 6] that if  $Y$  is a spectrum such that  $\pi_n Y = 0$  for  $n > r$ , then

$$\begin{aligned} [X, Y] &\rightarrow \text{Hom}(\pi_r(X), \pi_r(Y)) \\ f &\mapsto \pi_r(f) \end{aligned}$$

is an isomorphism. Note that  $HA$  therefore can be expressed as such a colimit of non-negative dimensional spheres. Since the smash product preserves colimits, the same is true of  $HA \wedge HA$ . Thus  $[HA \wedge HA, HA] \cong \text{Hom}(\pi_0(HA \wedge HA), \pi_0(HA))$ . We claim that  $\pi_0(HA \wedge HA) \cong A \otimes A$ . Assuming this, we then may identify  $\text{Hom}(\pi_0(HA \wedge HA), \pi_0(HA))$  with  $\text{Hom}(A \otimes A, A)$ . The multiplication on  $A$ , therefore gives a multiplication map  $\mu : HA \wedge HA \rightarrow HA$ . To see that  $\pi_0(HA \wedge HA) \cong A \otimes A$ , note the cofiber sequence  $HA^0 \rightarrow HA \rightarrow C$  where  $|C| = 1$ . It follows that  $|C \wedge HA| \geq 1$ . Thus we have an exact sequence  $\pi_0(\Sigma^{-1}C \wedge HA) \rightarrow \pi_0(HA^0 \wedge HA) \rightarrow \pi_0(HA \wedge HA) \rightarrow 0$ .  $HA^0$  is a wedge of 0-spheres, so  $\pi_0(HA^0 \wedge HA) = \bigoplus^N A$ , where  $N$  is the number of those 0 spheres. Repeat with  $C$ , and one has exact sequences  $\bigoplus^{N'} A \rightarrow \bigoplus^N A \rightarrow \pi_0(HA \wedge HA)$ , and  $\bigoplus^{N'} \mathbb{Z} \rightarrow \bigoplus^N \mathbb{Z} \rightarrow A \rightarrow 0$ .

**Definition 1.4.** Suppose  $R$  is a ring spectrum. A spectrum  $M$  is a module over  $R$  if there is a map  $\nu : R \wedge M \rightarrow M$  in the stable homotopy category such that

$$\begin{array}{ccc} R \wedge R \wedge M & \xrightarrow{\mu \wedge 1} & R \wedge M \\ \downarrow 1 \wedge \nu & & \downarrow \nu \\ R \wedge M & \xrightarrow{\nu} & M \end{array} \quad \text{and} \quad \begin{array}{ccc} S \wedge M & \xrightarrow{u \wedge 1} & R \wedge M \\ \uparrow \cong & & \downarrow \nu \\ M & \xrightarrow{1} & M \end{array}$$

commute.

Similarly to Example 1.3, it is true that if  $R$  is an (ordinary) ring and  $M$  is an (ordinary) module over  $R$ . Then  $HM$  is an  $HR$ -module spectrum.

## 2 Products

Cup products in singular cohomology generalize to products in generalized cohomology. Recall associated to a spectrum  $E$ , there is a generalized cohomology theory  $E^n$  for  $n \in \mathbb{Z}$ , where  $E^n$  takes a spectrum  $X$  to the abelian group  $\pi_{-n}F(X, E)$ .

Let  $E$  and  $F$  be spectra. The *external product in cohomology* is a map

$$E^p(X) \otimes F^q(Y) \rightarrow (E \wedge F)^{p+q}(X \wedge Y)$$

defined as follows. An element of  $\sigma \in E^p(X)$  is an element of  $[S^{-p}, F(X, E)] \cong [S^{-p} \wedge X, E]$ , so we have a morphism  $\sigma : S^{-p} \wedge X \rightarrow E$  in the stable homotopy category. Similarly, given  $\tau \in F^q(Y)$ , we have a morphism  $\tau : S^{-q} \wedge Y \rightarrow F$ . We form  $\sigma \wedge \tau : S^{-p} \wedge X \wedge S^{-q} \wedge Y \rightarrow E \wedge F$ . Permuting the factors gives a map

$$S^{-(p+q)} \wedge X \wedge Y \rightarrow E \wedge F,$$

and therefore an element of  $[S^{-(p+q)}, F(X \wedge Y, E \wedge F)] \cong (E \wedge F)^{p+q}(X \wedge Y)$ . Once we have an external product in cohomology, we obtain an external product for a based CW-complex, by taking the suspension spectrum. Similarly, we have an external product relative groups.

**Exercise 2.1.** Recall, that for an inclusion  $A \subset X$  of CW-complexes, the generalized relative cohomology is defined by  $E^n(X, A) = E^n(\Sigma^\infty(X/A))$ . If  $(X, A)$  and  $(Y, B)$  are CW-pairs, show that there is a product

$$E^p(X, A) \otimes F^q(Y, B) \rightarrow (E \wedge F)^{p+q}(X \times Y, A \times Y \cup X \times B).$$

Taking  $F = E$ , we have  $E^p(X) \otimes E^q(X) \rightarrow (E \wedge E)^{p+q}(X \wedge X)$ . If  $E$  is a ring spectrum, then we can compose with the map  $E \wedge E \rightarrow E$  to obtain a product  $E^p(X) \otimes E^q(X) \rightarrow E^{p+q}(X \wedge X)$ . If  $X$  is a CW-complex, then there is a diagonal map  $X \rightarrow X \times X$ . Adding a disjoint base-point, we have  $X_+ \rightarrow (X \times X)_+ \cong (X_+) \wedge (X_+)$ . This gives rise to a diagonal map  $\Sigma^\infty X_+ \rightarrow (\Sigma^\infty X_+) \wedge (\Sigma^\infty X_+)$ . For a CW-complex, use the abbreviation  $E^n(X) = E^n(\Sigma^\infty X_+)$ . (With a base point, we could also define  $\tilde{E}^n(X) = E^n(\Sigma^\infty X)$ , and this convention is consistent with the notion of reduced and unreduced cohomology.) In total, we get a product

$$E^p(X) \otimes E^q(X) \rightarrow E^{p+q}X.$$

**Example 2.2.** For  $H\mathbb{Z}$ , this is the usual cup product.

**Exercise 2.3.** Define the cap product similarly. (If you get stuck, see [A, III 9 slant product])

## References

- [A] J.F. Adams, *Stable Homotopy and Generalized Homology* Chicago Lectures in Mathematics, The University of Chicago Press, 1974.
- [Ma] H.R. Margolis *Spectra and the Steenrod Algebra*