

Lecture 21: Generalizing degree

4/8/15

Recall that the *degree* of map $S^n \rightarrow S^n$ is the $d \in \mathbb{Z}$ such that $H^*(S^n, \mathbb{Z}) \rightarrow H^*(S^n, \mathbb{Z})$ is multiplication by d . Given a map $f : Y \rightarrow X$ and a spectrum E , consider the induced map

$$E^*(f) : E^*(X) \rightarrow E^*(Y).$$

We get natural maps generalizing the degree

$$\pi_t F(Y, X) \rightarrow \text{Hom}(E^*(X), E^*(\Sigma^t Y)).$$

For example, when Y is the sphere, this is

$$\pi_t X \rightarrow \text{Hom}(E^* X, E * S^t).$$

This map is usually not an isomorphism.

Suppose that $f : Y \rightarrow X$ is in the kernel. Form the mapping cone of f , so we have a cofiber sequence $Y \rightarrow X \rightarrow C(f)$. There is an associated long exact sequence in cohomology

$$\dots \rightarrow E^{n-1} X \xrightarrow{E^{n-1}(f)} E^{n-1} Y \rightarrow E^n C(f) \rightarrow E^n X \xrightarrow{E^n(f)} E^n(X) \rightarrow \dots$$

Since $E^* f = 0$, this long exact sequence splits up into short exact sequences

$$0 \rightarrow E^{n-1} Y \rightarrow E^n C(f) \rightarrow E^n X \rightarrow 0,$$

i.e., *extensions*, and they are classified by a group $\text{Ext}^1(E^n X, E^{n-1} Y)$.

So, given a map f , if it is degree 0, we could still hope to detect it as a non-zero element of $\text{Ext}^1(E^n X, E^{n-1} Y)$ classifying extensions.

Example 1.1. Recall that $\tilde{K}^0(S^{2n}) \cong \mathbb{Z}$ with Adams operations ψ^k acting by multiplication by k^n (Lemma 1.1 Lecture 17) and $\tilde{K}^0(S^{2n-1}) = 0$. Given a map $f : S^{2m-1} \rightarrow S^{2n}$, the induced map on K -theory is 0. We have an extension

$$0 \rightarrow \tilde{K}^0 S^{2m} \rightarrow \tilde{K}^0 C(f) \rightarrow \tilde{K}^0 S^{2n} \rightarrow 0.$$

As an extension of abelian groups this must be

$$0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0,$$

which is the 0-extension, but we also have Adams operations. To see that this gives an interesting invariant, let a be the generator of $\tilde{K}^0 S^{2m}$ and let b be some element of $\tilde{K}^0 C(f)$ mapping to a generator of $\tilde{K}^0 S^{2n}$. Then $\psi^k b$ must map to k^n times the image of b . Thus $\psi^k b = k^n b + ca$, where $c \in \mathbb{Z}$. This c gives information about f .

For example, let $k = 2$, and let $m = 2n$, so f is a map $f : S^{4n-1} \rightarrow S^{2n}$, and $C(f)$ is the union of a $4n$ cell and S^{2n} . Then $b^2 = H(f)a$ for some $H(f)$ in \mathbb{Z} , called the Hopf invariant. Since $\psi^2 b \cong b^2 \pmod{2}$, we have that $c \pmod{2}$ is a mod-2 K -theoretic Hopf invariant.

We should be more precise about forming a group classifying extensions with the appropriate amount of structure. Supposing we have done this, it could still be the case that our map f had 0 degree, and determined 0 in Ext^1 . We then would wish to construct an element of Ext^2 that detected f and so on.

Our next goal is the *Adams spectral sequence*, and it is a tool for studying the homotopy of X , or $F(Y, X)$, using homology. For $E = H\mathbb{Z}/p$, this gives a spectral sequence

$$E_2^{s,t} = \text{Ext}_{\mathcal{A}}^s(H^*(X; \mathbb{Z}/p), H^*(S^t; \mathbb{Z}/p)) \Rightarrow \pi_{t-s} X \otimes \mathbb{Z}_p,$$

$$d_r : E_r^{s,t} \rightarrow E^{s+r, t+r-1}$$

under certain assumptions on X .

Notice the \mathcal{A} on the right hand side. \mathcal{A} is called the *Steenrod algebra* and it arises as follows. Let $E = H\mathbb{Z}/p$. Let $f : X \rightarrow Y$ be a map, and consider the associated map $E^*(f) : E^*(Y) \rightarrow E^*(X)$ as before. Recall that $E^*(f)$ is defined by associating to a map $\sigma : \Sigma^{-*} Y \rightarrow E$ in the stable homotopy category, the element $E^*(f)\sigma$ of $E^*(X)$ determined by $\sigma \circ \Sigma^{-*} f : \Sigma^{-*} X \rightarrow \Sigma^{-*} Y \rightarrow E$.

Given any map $\zeta : E \rightarrow \Sigma^n E$, ζ induces a map $E^*(X) \rightarrow E^{*+n}(X)$ given by associating to $\sigma : \Sigma^{-*} X \rightarrow E$ the $(-n)$ th suspension of the composite $\Sigma^{-*} X \xrightarrow{\sigma} E \rightarrow \Sigma^n E$. In other words, we have a map $E^* E \times E^* X \rightarrow E^* X$. This map is bilinear, yielding

$$E^* E \otimes E^* X \rightarrow E^* X.$$

Let $\mathcal{A} = E^* E$. \mathcal{A} is a ring, and we have just seen that $E^* X$ is a module over \mathcal{A} .

Since $E^*(f)$ is “pre-composition with f ” and ζ is “post-composition with ζ ”, it follows that $E^*(f)$ commutes with the action of $E^* E$, i.e. $E^*(f)$ is a

morphism of modules. We therefore have

$$\pi_t F(Y, X) \rightarrow \text{Hom}_{\mathcal{A}}(E^*(X), E^*(\Sigma^t Y)),$$

where the right hand side denotes homomorphisms of \mathcal{A} -modules. The groups Ext^s then classify extensions of \mathcal{A} -modules.

Warning: when working with generalized cohomology theories E , it turns out to be important to work with homology rather than cohomology. This involves trading modules for comodules, and E^*E for E_*E .