
Lecture 21: Generalizing degree
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Recall that the degree of map Sn → Sn is the d ∈ Z such that H∗(Sn,Z)→
H∗(Sn,Z) is multiplication by d. Given a map f : Y → X and a spectrum E,
consider the induced map

E∗(f) : E∗(X)→ E∗(Y ).

We get natural maps generalizing the degree

πtF (Y,X)→ Hom(E∗(X), E∗(ΣtY )).

For example, when Y is the sphere, this is

πtX → Hom(E∗X,E ∗ St).

This map is usually not an isomorphism.

Suppose that f : Y → X is in the kernel. Form the mapping cone of f , so
we have a cofiber sequence Y → X → C(f). There is an associated long exact
sequence in cohomology

. . .→ En−1X
En−1(f)→ En−1Y → EnC(f)→ EnX

En(f)→ En(X)→ . . . .

Since E∗f = 0, this long exact sequence splits up into short exact sequences

0→ En−1Y → EnC(f)→ EnX → 0,

i.e., extensions, and they are classified by a group Ext1(EnX,En−1Y ).

So, given a map f , if it is degree 0, we could still hope to detect it as a
non-zero element of Ext1(EnX,En−1Y ) classifying extensions.

Example 1.1. Recall that K̃0(S2n) ∼= Z with Adams operations ψk acting by
multiplication by kn (Lemma 1.1 Lecture 17) and K̃0(S2n−1) = 0. Given a map
f : S2m−1 → S2n, the induced map on K-theory is 0. We have an extension

0→ K̃0S2m → K̃0C(f)→ K̃0S2n → 0.
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As an extension of abelian groups this must be

0→ Z→ Z⊕ Z→ Z→ 0,

which is the 0-extension, but we also have Adams operations. To see that this
gives an interesting invariant, let a be the generator of K̃0S2m and let b be some
element of K̃0C(f) mapping to a generator of K̃0S2n. Then ψkb must map to
kn times the image of b. Thus ψkb = knb + ca, where c ∈ Z. This c gives
information about f .

For example, let k = 2, and let m = 2n, so f is a map f : S4n−1 → S2n,
and C(f) is the union of a 4n cell and S2n. Then b2 = H(f)a for some H(f)
in Z, called the Hopf invariant. Since ψ2b ∼= b2 mod 2, we have that c mod 2
is a mod-2 K-theoretic Hopf invariant.

We should be more precise about forming a group classifying extensions with
the appropriate amount of structure. Supposing we have done this, it could still
be the case that our map f had 0 degree, and determined 0 in Ext1. We then
would wish to construct an element of Ext2 that detected f and so on.

Our next goal is the Adams spectral sequence, and it is a tool for studying
the homotopy of X, or F (Y,X), using homology. For E = HZ/p, this gives a
spectral sequence

Es,t2 = ExtsA(H∗(X;Z/p),H∗(St;Z/p))⇒ πt−sX ⊗ Zp,

dr : Es,tr → Es+r,t+r−1

under certain assumptions on X.

Notice the A on the right hand side. A is called the Steenrod algebra and it
arises as follows. Let E = HZ/p. Let f : X → Y be a map, and consider the
associated map E∗(f) : E∗(Y )→ E∗(X) as before. Recall that E∗(f) is defined
by associating to a map σ : Σ−∗Y → E in the stable homotopy category, the
element E∗(f)σ of E∗(X) determined by σ ◦ Σ−∗f : Σ−∗X → Σ−∗Y → E.

Given any map ζ : E → ΣnE, ζ induces a map E∗(X) → E∗+n(X) given
by associating to σ : Σ−∗X → E the (−n)th suspension of the composite

Σ−∗X
σ→ E → ΣnE. In other words, we have a map E∗E × E∗X → E∗X .

This map is bilinear, yielding

E∗E ⊗ E∗X → E∗X.

Let A = E∗E. A is a ring, and we have just seen that E∗X is a module over A.

Since E∗(f) is “pre-composition with f” and ζ is “post-composition with
ζ”, it follows that E∗(f) commutes with the action of E∗E, i.e. E∗(f) is a

2



morphism of modules. We therefore have

πtF (Y,X)→ HomA(E∗(X), E∗(ΣtY )),

where the right hand side denotes homomorphisms of A-modules. The groups
Exts then classify extensions of A-modules.

Warning: when working with generalized cohomology theories E, it turns out
to be important to work with homology rather than cohomology. This involves
trading modules for comodules, and E∗E for E∗E.
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