Lecture 21: Generalizing degree
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Recall that the degree of map S™ — S™ is the d € Z such that H*(S",Z) —
H*(S™,7Z) is multiplication by d. Given a map f :Y — X and a spectrum F,
consider the induced map

E*(f): E*(X) = E*(Y).
We get natural maps generalizing the degree
7 F (Y, X) — Hom(E*(X), E*(Z'Y)).
For example, when Y is the sphere, this is
1 X — Hom(E*X, E x S").
This map is usually not an isomorphism.
Suppose that f : Y — X is in the kernel. Form the mapping cone of f, so

we have a cofiber sequence Y — X — C(f). There is an associated long exact
sequence in cohomology

n—1
_>(f)

oo i T ety pror) 5 Brx P Brx) L

Since E* f = 0, this long exact sequence splits up into short exact sequences
0—E"'Y - E"C(f) = E"X =0,
i.e., extensions, and they are classified by a group Extl(E”X, En-lY).
So, given a map f, if it is degree 0, we could still hope to detect it as a
non-zero element of Extl(E”X, E"~1Y) classifying extensions.

Example 1.1. Recall that K°(S?*") = 7 with Adams operations Y acting by
multiplication by k™ (Lemma 1.1 Lecture 17) and K°(S*~1) = 0. Given a map
f:8%m=1 5 82" the induced map on K-theory is 0. We have an extension

0— K°S$?™ - K°C(f) - K°S%" — 0.



As an extension of abelian groups this must be
0—>Z—>72Z®Z—7Z—0,

which is the 0-extension, but we also have Adams operations. To see that this
gives an interesting invariant, let a be the generator of K°S*™ and let b be some
element of KOC(f) mapping to a generator of K°S?™. Then 1*b must map to
k™ times the image of b. Thus ¥*b = k™b + ca, where ¢ € Z. This c gives
information about f.

For example, let k = 2, and let m = 2n, so f is a map f : S4"~1 — §2n
and C(f) is the union of a 4n cell and S*™. Then b*> = H(f)a for some H(f)
in Z, called the Hopf invariant. Since ¥?b = b> mod 2, we have that ¢ mod 2
is a mod-2 K-theoretic Hopf invariant.

‘We should be more precise about forming a group classifying extensions with
the appropriate amount of structure. Supposing we have done this, it could still
be the case that our map f had 0 degree, and determined 0 in Ext'. We then
would wish to construct an element of Ext? that detected f and so on.

Our next goal is the Adams spectral sequence, and it is a tool for studying
the homotopy of X, or F(Y, X), using homology. For E = HZ/p, this gives a
spectral sequence

Ey" = Ext} (H (X; Z/p), H'(S4 Z/p)) = mi—s X © Ly,
dy, : B3t — Estrttr—l

under certain assumptions on X.

Notice the A on the right hand side. A is called the Steenrod algebra and it
arises as follows. Let E = HZ/p. Let f: X — Y be a map, and consider the
associated map E*(f) : E*(Y) — E*(X) as before. Recall that E*(f) is defined
by associating to a map ¢ : ¥~*Y — F in the stable homotopy category, the
element E*(f)o of E*(X) determined by co X 7*f: 37*X - X7*Y — E.

Given any map ¢ : E — X"F, ¢ induces a map E*(X) — E*™"(X) given
by associating to o : ¥7*X — FE the (—n)th suspension of the composite
Y *X 5% FE — Y"E. In other words, we have a map E*E x E*X — E*X .
This map is bilinear, yielding

E'EQ E*X — E*X.

Let A = E*E. A is a ring, and we have just seen that £*X is a module over A.

Since E*(f) is “pre-composition with f” and ¢ is “post-composition with
¢”, it follows that E*(f) commutes with the action of E*E, i.e. E*(f) is a



morphism of modules. We therefore have
mF(Y,X) = Homg (E*(X), E*(X'Y)),

where the right hand side denotes homomorphisms of A-modules. The groups
Ext® then classify extensions of A-modules.

Warning: when working with generalized cohomology theories F, it turns out
to be important to work with homology rather than cohomology. This involves
trading modules for comodules, and E*FE for E,FE.



