
Lecture 23: The Hopf invariant one problem

4/20/15-4/27/15

We consider the example of the Adams spectral sequence for HF2 and the
stable homotopy groups of the sphere spectrum π∗(S)

E2
s,t = ExtsA(HF∗2S,HF∗2ΣtS)⇒ πt−sS

We will see that the potential elements of Hopf invariant one lie on s = 1, and
discuss the Hopf invariant one problem.

We need some information about A.

1 The Steenrod Algebra

Recall that A = HF∗2HF2 is the Steenrod algebra. It can be computed in terms
of generators and relations in the following manner. By Brown representability,
elements of A are natural transformations from ordinary cohomology with F2-
coefficients to itself that increase the grading by ∗. One can construct certain
elements Sqi of degree i for i ≥ 0 with Sq0 = 1 of A [MT, Ch 2,3] and show the
Adem relation

0 = R(a, b) = Sqa Sqb +Σc

(
b− c− 1

a− 2c

)
Sqa+b−c Sqc

for 0 < a < 2b. Using representability of cohomology, one can see that the Sqi

generate all of A and theR(a, b) are all the relations by computingHF∗2K(Z/2, n)
for all n. The answer is then (see [Ma, Ch 15] or [MT, Ch 2,3,6] or ...):

Theorem 1.1. There is an isomorphism

A ∼= T (Sqi : i ≥ 0)/〈1 + Sq0, R(a, b) : 0 < a < 2b〉,

where T (Sqi : i ≥ 0) denotes the tensor algebra over Z/2 with generators Sqi

with i ≥ 0, and where 〈1 + Sq0, R(a, b) : 0 < a < 2b〉 denotes the two sided ideal.
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We will also use the following facts about the Sqi, which can be found in
[MT, Ch 3] and [H, 4.L]:

1. Sq : H∗(X,F2) → H∗(X,F2) defined by Sq(x) = Σi Sqi x is a ring homo-
morphism for all CW -complexes X.

2. For x ∈ Hi(X,F2), we have Sqi x = x2 and Sqn x = 0 for all n > i.

2 Computing Adams spectral sequence ExtsA(HF∗2S,HF∗2ΣtS)⇒
πt−sS ⊗ Z2

We commute E2
s,t for s = 0, 1. Note that HF∗2S is F2 in dimension 0 and 0

otherwise. Similarly HF∗2ΣtS is F2 in dimension t and 0 otherwise. Let F2[t]
denote this module, i.e., F2[t] ∼= HF∗2ΣtS. Recall Ext0 is naturally isomorphic
to Hom.

Proposition 2.1. 1. HomA(F2,F2) ∼= F2, and HomA(F2,F2[t]) ∼= 0 for t 6=
0.

2. Ext1A(F2,F2[t]) ∼= 0 if t 6= 2j. For t = 2j, we have Ext1A(F2,F2[t]) ∼= F2.

Proof. Let A denote the elements of positive degree of A, so we have a short
exact sequence

0→ A→ A→ F2 → 0.

One of the properties of derived functors like Ext is that short exact sequences
induce long exact sequences. In this case, we obtain

0→ HomA(F2,F2[t])→ HomA(A,F2[t])→ HomA(A,F2[t])→
Ext1A(F2,F2[t])→ Ext1A(A,F2[t]) ∼= 0,

where Ext1A(A,F2[t]) ∼= 0 because A is a projective A module. For t 6= 0, we
have HomA(A,F2[t]) ∼= 0, giving an isomorphism

Ext1A(F2,F2[t]) ∼= HomA(A,F2[t]). (1)

Note we also have an isomorphism HomA(F2,F2[t]) ∼= 0 for t 6= 0. For t = 0,
note that

HomA(A,F2)→ HomA(A,F2)

is the map Z/2→ 0, so we have shown (1). We also have

0 ∼= HomA(A,F2)→ Ext1A(F2,F2)→ Ext1A(A,F2) ∼= 0
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giving that Ext0A(F2,F2) = 0 as claimed.

Returning to the isomorphism (1), note that

Ext1A(F2,F2[t]) ∼= HomA(A,F2[t])

∼= HomF2
(F2 ⊗A A,F2[t])

∼= HomF2
(A/A

2
,F2[t])

where the second isomorphism uses the change of rings A→ F2. We claim that

A/A
2

is 0 except in dimension 2i where it is generated by Sqi, showing the
proposition. To see this claim, suppose i is not a power of 2. Then i = a + 2k

with 0 < a < 2k. Let b = 2k. Then the Adem relations imply

Sqa Sqb =

(
b− 1

a

)
Sqa+b +Σc>0

(
b− c− 1

a− 2c

)
Sqa+b−c Sqc .

Since b is a power of 2, it follows that
(
b−1
a

)
is odd. Thus Sqi = Sqa+b is in A

2
.

Now suppose that i is a power of 2. We wish to show that Sqi is not in

A
2
. Choose an isomorphism H∗(RP∞,F2) ∼= F2[x]. It follows from (2) that

Sqx = x + x2. By (1), we have Sq(xi) = (x + x2)i. Since i is a power of 2,
we have the equality (x + x2)i = xi + x2i modulo 2. Thus Sqj(xi) = 0 for
0 < j < i, and Sqi(xi) is non-zero. It follows that Sqi can not be written as a
linear combination of Sqa Sqb terms unless {a, b} = {0, i}. This implies that Sqi

is not in A
2
.

Let hj denote the non-zero element of Ext1A(F2, HF∗2Σ2jS). Here is a picture
of the E2-page. Just like Hom has a non-commutative ring structure, so does
Ext and there are some products labeled in the figure below. On the 2-line
hihj = hjhi.

h20 0 h21 h2h0 0 0 h22 h3h0 h3h1

h0 = 2 h1 = η 0 h2 = ν 0 0 0 h3 = σ 0

1 0 0 0 0 0 0 0 0

Figure 1: The first three rows, nine columns of the E2-page of the Adams
spectral sequence. s is on the vertical axis, and t− s on the horizontal axis.
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It is a result originally due to Adams that the differential d2 has the following
behavior on the line s = 2.

Theorem 2.2. For i ≥ 4,

d2hi = hi−1h
2
0 6= 0.

There is a clever inductive argument in [W, Thm 3.6] proving this theorem.

3 Hopf Invariant

Let C(f) denote the topological space which is the mapping cone of f : Sm → Sn

in topological spaces. Assume m < n so that the degree of f is 0. Note that
H̃∗(C(f)) ∼= Za ⊕ Zb with the a of degree n and b of degree m + 1. When
m = 2n− 1, define the Hopf invariant H(f) ∈ Z of f by the formula

a2 = H(f)b.

We could exchange b with −b, so to have a well-defined sign for H(f), we
specify that b maps to a fixed generator of H̃m(Sm) ∼= H̃m(Dm, ∂Dm) under
the map H̃m(C(f)) ∼= H̃m(C(f), Sn) → H̃m(Dm, ∂Dm) induced by the map
(Dm, ∂Dm)→ (C(f), Sn).

Theorem 3.1. (Adams) There is a map f : S2n−1 → Sn of Hopf invariant one
if and only if n = 2, 4, 8.

There is a list of interesting consequences of this theorem in Hatcher [H, p.
248].

Proof. The division algebra structures on the complex numbers C, the quater-
nions H, and the octonions O, give maps

η : S3 ⊂ C2 − {0} → CP1 ∼= S2

ν : S7 ⊂ H2 − {0} → HP1 ∼= S4

σ : S15 ⊂ O2 − {0} → OP1 ∼= S8

whose mapping cones are CP2, HP2, and OP2 respectively. The cup product
structure on projective spaces is polynomial, so these maps have Hopf invariant
1.

Take n 6= 2, 4, 8, and f : S2n−1 → Sn. We wish to show that f does not
have Hopf invariant one. Let C denote the mapping cone of f . Note that Sqn
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takes the n-dimensional class in H∗(C,F2) to the 2n-dimensional class. Thus
the extension

0→ H∗(S2n,F2)→ H∗(C,F2)→ H∗(Sn,F2)→ 0

does not split as a short exact sequence of A-modules. Therefore, f represents a
non-trivial class in Ext1A(F2[n],F2[2n]) ∼= Ext1A(F2,F2[n]). By Proposition 2.1,
it follows that n = 2i.

Since f represents an element of πn−1S, it follows that all the differentials
in the Adams spectral sequence vanish on the element of Ext1A(F2,F2[n]) corre-
sponding to f . By Theorem 2.2, it follows that i < 4.

4 Adams-Atiyah proof of the Hopf invariant one
theorem

Here is an alternate proof of the “only if” direction in Theorem 3.1 due to Atiyah
in the case where n is even. (Recall that our calculation of Ext1A(F2,F2[n])
implies that n is a power of 2.)

Let n be even and let f : S2n−1 → Sn be a map of Hopf invariant one. Let
C(f) be the mapping cone. We obtain an extension

0→ K̃−1(S2n−1) ∼= K̃0(S2n)→ K̃0(C(f))→ K̃0Sn → 0, (2)

since K̃−1Sn ∼= 0 and K̃−1(S2n) ∼= 0.

Let x be a generator of K̃0Sn ∼= Z, and let y be a generator of K̃0(S2n) ∼= Z.
It follows that there is an integer h(f) such that x2 = h(f)y. Recall the ring
homomorphism ch : K̃0(X) → H̃0(X,Q) from Lecture 1.3. By Proposition 1.3
of Lecture 1.3, we have that the Hopf invariant H(f) equals h(f) potentially
after swapping y for −y. Thus we have that x2 = y.

Recall that the Adams operations ψk act on all the groups in (2). By Lemma
1.1 of Lecture 17, we have that ψk acts on K̃0(S2n) by multiplication by kn.
Thus ψky = kny. Let m = n/2. We also have ψk acts on K̃0(Sn) by multipli-
cation by km. It follows that ψk(x) = kmx + cky for some ck ∈ Z. By Lecture
16 Theorem 1.1 (2), it follows that ψ2(x) ∼= x2 mod 2. Thus ψ2x ∼= y mod 2,
whence c2 is odd.

By Lecture 16 Theorem 1.1 (4), we have ψ3ψ2x = ψ2ψ3x. This implies

ψ3(2mx+ c2y) = ψ2(3mx+ c3y)
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3m2mx+ 2mc3y + c232my = 2m3mx+ c23my + 22mc3y.

Thus
c3(2m − 22m) = c2(3m − 32m).

Since c2 is odd, we must have that 3m− 32m is divisible by 2m. It is a fact from
number theory that this only happens when m = 1, 2, 4.

5 Useful websites

http://ext-chart.org

http://www.math.wayne.edu/~rrb/cohom/index.html

http://www.nullhomotopie.de/charts/index.html

References

[G] Paul Goerss, The Adams-Novikov Spectral Sequence and Homotopy
Groups of Spheres.

[H] Allen Hatcher, Algebraic Topology.

[Ma] H.R. Margolis Spectra and the Steenrod Algebra North-Holland
Mathematical Library, volume 29, 1983.

[M] Haynes Miller, The Adams Spectral Sequence, etc. (course notes).

[MT] Robert Mosher and Martin Tangora, Cohomology Operations and
Applications in Homotopy Theory, Dover, 1968, 2008.

[W] Wang, John On the cohomology of the mod 2 Steenrod algebra,
Topology, 10, 1971, p.53-65.

6


