Lecture 23: The Hopf invariant one problem
4/20/15-4/27/15

We consider the example of the Adams spectral sequence for HF; and the
stable homotopy groups of the sphere spectrum 7, (.5)

EZ?, = Ext} (HF3S, HF3%'S) = m_,S

We will see that the potential elements of Hopf invariant one lie on s = 1, and
discuss the Hopf invariant one problem.

We need some information about A.

1 The Steenrod Algebra

Recall that A = HF5HF5 is the Steenrod algebra. It can be computed in terms
of generators and relations in the following manner. By Brown representability,
elements of A are natural transformations from ordinary cohomology with Fo-
coefficients to itself that increase the grading by *. One can construct certain
elements Sq* of degree i for i > 0 with Sq” = 1 of A [MT, Ch 2,3] and show the
Adem relation

b—c—1

0 = R(a,b) = Sq* Sq” +2C( > Sqatt=esqe
a—2c

for 0 < a < 2b. Using representability of cohomology, one can see that the Sq’
generate all of A and the R(a, b) are all the relations by computing HF5 K (Z/2,n)
for all n. The answer is then (see [Ma, Ch 15] or [MT, Ch 2,3,6] or ...):

Theorem 1.1. There is an isomorphism
A=T(Sq" :i>0)/(1+9¢% R(a,b): 0 < a < 2b),

where T(Sq" : i > 0) denotes the tensor algebra over Z/2 with generators Sq'
with i > 0, and where (1+Sq°, R(a,b) : 0 < a < 2b) denotes the two sided ideal.



We will also use the following facts about the Sq’, which can be found in
[MT, Ch 3] and [H, 4.L]:

1. Sq: H*(X,Fy) — H*(X,Fy) defined by Sq(z) = ; Sq’ z is a ring homo-
morphism for all CW-complexes X.

2. For x € H'(X,Fy), we have Sq' # = 22 and Sq" z = 0 for all n > .

2 Computing Adams spectral sequence Ext} (HF5S, HF;Y'S) =
ﬂ_t—sS & ZQ

We commute E2, for s = 0,1. Note that HF3S is Fy in dimension 0 and 0
otherwise. Similarly HF5¥'S is Fy in dimension ¢ and 0 otherwise. Let Falt]
denote this module, i.e., Fo[t] = HF3%!S. Recall Ext® is naturally isomorphic
to Hom.

Proposition 2.1. 1. Homy (Fs,Fy) 2 Fy, and Homg (F2, Fo[t]) 20 for t #
0.

2. Bxtly(Fo, Fo[t]) =20 if t # 27, Fort =27, we have Ext} (Fa, Fy[t]) = Fy.

Proof. Let A denote the elements of positive degree of A, so we have a short
exact sequence

0—>A—>A—Fy—0.

One of the properties of derived functors like Ext is that short exact sequences
induce long exact sequences. In this case, we obtain

0 — Hom 4 (Fo, Fo[t]) — Hom (A, F3[t]) — Hom 4 (A, Fo[t]) —
Ext} (Fo, Fo[t]) — Extl (A, Falt]) =0,

where Ext!y (A, F2[t]) = 0 because A is a projective A module. For t # 0, we
have Homy (A, F2[t]) 2 0, giving an isomorphism

Ext} (Fa, Fy[t]) = Homy (A, Fot]). (1)

Note we also have an isomorphism Homy4 (Fo, Fo[t]) = 0 for ¢t # 0. For t = 0,
note that -
HOHIA(.A7 Fg) — HOHIA(.A, Fg)

is the map Z/2 — 0, so we have shown (1). We also have

02 Hom (A, Fy) — Extly (Fa, Fy) — Extl (A4, Fy) 20



giving that Ext% (Fy,F2) = 0 as claimed.

Returning to the isomorphism (1), note that

Ext)y (Fz, Fa[t]) = Hom (A, Fat])
=~ Homp, (Fy ®4 A, Fa[t])
> Homp, (A /A", Fa[t))

where the second isomorphism uses the change of rings A — Fy. We claim that
Z/ﬁz is 0 except in dimension 27 where it is generated by Sq’, showing the
proposition. To see this claim, suppose i is not a power of 2. Then i = a + 2F
with 0 < a < 2¥. Let b = 2*. Then the Adem relations imply

a b—1 a b—c—1 at+b—c c
Sq qu:( u )Sq+b+§]c>0( a26>8q+b Sq°.

Since b is a power of 2, it follows that (bgl) is odd. Thus Sq' = Sq**? is in ﬁz.

Now suppose that i is a power of 2. We wish to show that Sq’ is not in
A°. Choose an isomorphism H*(RP>°,Fy) = Fylz]. It follows from (2) that
Sqx = x + 2%. By (1), we have Sq(z') = (z + 2?)". Since i is a power of 2,
we have the equality (z + 22)" = 2’ + 2% modulo 2. Thus Sq’(z*) = 0 for
0 < j < i, and Sq*(x?) is non-zero. It follows that Sq" can not be written as a
linear combination of Sq® Sq° terms unless {a,b} = {0,4}. This implies that Sq’

. .2
isnot in A .

O

Let h; denote the non-zero element of Exty (Fa, H]F;E2j S). Here is a picture
of the E%-page. Just like Hom has a non-commutative ring structure, so does

Ext and there are some products labeled in the figure below. On the 2-line
hih; = h;h;.

h2 0 h? hohg 0 0 h2 hsho hsha
h0:2 h1:’l7 0 hQZV 0 0 0 h3:(7 0
1 0 0 0 0 0 0 0 0

Figure 1: The first three rows, nine columns of the Es-page of the Adams
spectral sequence. s is on the vertical axis, and ¢ — s on the horizontal axis.



It is a result originally due to Adams that the differential ds has the following
behavior on the line s = 2.

Theorem 2.2. Fori > 4,

doh; = hi_1h% # 0.

There is a clever inductive argument in [W, Thm 3.6] proving this theorem.

3 Hopf Invariant

Let C(f) denote the topological space which is the mapping cone of f : S™ — S™
in topological spaces. Assume m < n so that the degree of f is 0. Note that
H*(C(f)) = Za @ Zb with the a of degree n and b of degree m + 1. When
m = 2n — 1, define the Hopf invariant H(f) € Z of f by the formula

a® = H(f)b.

We could exchange b with —b, so to have a well-defined sign for H(f), we
specify that b maps to a fixed generator of H™(S™) = H™(D™,dD™) under
the map H™(C(f)) = H™(C(f),S™) — H™(D™,dD™) induced by the map
(D™, 9D™) — (C(f),S™).

Theorem 3.1. (Adams) There is a map f : S>"~1 — S™ of Hopf invariant one
if and only if n = 2,4, 8.

There is a list of interesting consequences of this theorem in Hatcher [H, p.
243].

Proof. The division algebra structures on the complex numbers C, the quater-
nions H, and the octonions O, give maps

n:8%cC?-{0} - CP! = §?
v:S" Cc H? - {0} — HP' =~ &*
o:8% c0?-{0} - OP = g8

whose mapping cones are CP?, HP?, and OP? respectively. The cup product
structure on projective spaces is polynomial, so these maps have Hopf invariant
1.

Take n # 2,4,8, and f : $?"~1 — S". We wish to show that f does not
have Hopf invariant one. Let C denote the mapping cone of f. Note that Sq”



takes the n-dimensional class in H*(C,F3) to the 2n-dimensional class. Thus
the extension

0 — H*(S?" Fy) — H*(C,Fy) — H*(S™,Fy) =0

does not split as a short exact sequence of A-modules. Therefore, f represents a
non-trivial class in Ext} (Fo[n], F2[2n]) = Ext} (Fy, F2[n]). By Proposition 2.1,
it follows that n = 2°.

Since f represents an element of m,,_1.S5, it follows that all the differentials
in the Adams spectral sequence vanish on the element of Ext’, (Fo, Fy[n]) corre-
sponding to f. By Theorem 2.2, it follows that i < 4. O

4 Adams-Atiyah proof of the Hopf invariant one
theorem

Here is an alternate proof of the “only if” direction in Theorem 3.1 due to Atiyah
in the case where n is even. (Recall that our calculation of Extl (Fy,Fa[n])
implies that n is a power of 2.)

Let n be even and let f : $?"»~! — S™ be a map of Hopf invariant one. Let
C(f) be the mapping cone. We obtain an extension

0— K1(s2 1 = KO(§*™) - K°(C(f)) = K°S™ — 0, (2)

since K18 20 and K~'($%") = 0.

Let 2 be a generator of K°5™ 2 7, and let y be a generator of f(O(Sz") = 7.
It follows that there is an integer h(f) such that 22 = h(f)y. Recall the ring
homomorphism ch : IN(O(X) — H°(X,Q) from Lecture 1.3. By Proposition 1.3
of Lecture 1.3, we have that the Hopf invariant H(f) equals h(f) potentially
after swapping y for —y. Thus we have that 22 = y.

Recall that the Adams operations ¥ act on all the groups in (2). By Lemma
1.1 of Lecture 17, we have that ¥* acts on f(O(Sz”) by multiplication by k™.
Thus ¢*y = k™y. Let m = n/2. We also have ¢* acts on K°(S™) by multipli-
cation by k™. Tt follows that 1*(z) = K™z + ¢y for some ¢, € Z. By Lecture
16 Theorem 1.1 (2), it follows that ¢?(z) = 2% mod 2. Thus ¥?z =y mod 2,
whence ¢y is odd.

By Lecture 16 Theorem 1.1 (4), we have 13t%x = ¢?y3x. This implies

V(2" + cay) = (3™ + c3y)



gmom . + 27nc3y + 6232my — 9gm3gm,. + 023’my + 22mC3y.

Thus
c3(2™ — 22™) = ¢ (3™ — 3*™).

Since ¢, is odd, we must have that 3™ — 32™ is divisible by 2. It is a fact from
number theory that this only happens when m = 1,2, 4.

5 Useful websites

http://ext-chart.org
http://www.math.wayne.edu/~rrb/cohom/index.html

http://www.nullhomotopie.de/charts/index.html
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