
Lecture 2: Spectra

1/7/14

We are going to study stable phenomena in homotopy theory, so we build
a category of Spectra where homotopy theory of spaces makes sense and where
suspension is forced to be an equivalence. There are a number of equivalent
points of view on spectra. Here is the one in Adams [A, Part III. 2].

1 Category of Spectra

Definition 1.1. A spectrum E is a sequence of spaces En with a basepoint
together with maps

εn : S1 ∧ En = ΣEn → En+1.

The index n may vary over Z or Z≥0. Let’s have n vary over Z to be definite.

For a based space Y , let ΩY = Map∗(S
1, Y ) denote the topological space of

based maps S1 → Y . Note that there is a natural equivalence

Map∗(ΣX,Y ) ∼= Map(X,ΩY )

for any based spaces X and Y . Thus the maps εn are equivalent to the data of
maps

ε′n : En → ΩEn+1.

If En is connected, then the image of ε′n will automatically lie inside the con-
nected component of the base point in ΩEn+1. Let Ω0En+1 denote the con-
nected component of the base point. If all our spaces are connected, we could
then consider ε′n as a map to Ω0En+1.

Definition 1.2. A map (“function of degree 0” in [A]) E → F of spectra is a
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sequence of maps fn : En → Fn such that

ΣEn

fn

��

εn // En+1

fn+1

��
ΣFn

εn // Fn+1

commutes.

This diagram is required to commute strictly, as opposed to commuting up
to homotopy.

We do not yet have a notion of homotopy classes of maps or a good way to
do homotopy theory on this category. We will start to do that on Friday.

It’s useful to also have a notion of a function of degree r E → F . This is a
sequence of maps fn : En → Fn−r such that the analogous diagram commutes.

1.1 Examples

1.2. Suspension spectra. Given a space X, the suspension spectrum Σ∞X of

X is the spectrum with (Σ∞X)n =

{
ΣnX ∼= Sn ∧X if n ≥ 0

∗ if n < 0.
.

1.3. Eilenberg-MacLane spectra. An Eilenberg-MacLane space of type (π, n)
is a space K(π, n) with a base point such that

π∗(K(π, n)) =

{
π if ∗ = n

0 otherwise.

For any space X, the sequence

0→ Ext(Hn−1(X), π)→ Hn(X,π)→ Hom(Hn(X), π)→ 0

is exact by the universal coefficient theorem for cohomology. Thus if X is (n−1)-
connected, Hn(X,π) ∼= Hom(Hn(X), π). When πn(X) = π, the inverse of the
Hurewicz homomorphism is an element of the right hand side, whence we have
an element of Hn(X,π). Call this element ι.

Theorem 1.3. (Representability of cohomology) For any Y , the map [Y,K(π, n)]→
Hn(Y, π) defined by [f ] 7→ f∗ι is a bijection.
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This is an nice illustration of obstruction theory. See, for example, [MT,
Theorem 1, chapter 1] or [H, Theorem 4.57].

Corollary 1.4. There is a canonical homotopy equivalence between any two
K(π, n) spaces.

Since ΩK(π, n+1) is a K(π, n)-space, we therefore have map ε′n : K(π, n)→
ΩK(π, n+ 1).

Let Hπ be the spectrum whose nth space is K(π, n) together with the maps
ε′n. This is the Eilenberg-MacLane spectrum for the group π.

Spectra where the maps ε′n are weak equivalences are called omega spectra,
so in particular, Hπ is an omega spectrum.

1.4. Thom spectra: MO, MU, MSO etc..

For a vector bundle E → X, we can choose a continuously varying norm on
the fibers. Then we have the associated disk bundle D(E) = {e ∈ E : |e| ≤ 1}
and the associated sphere bundle S(E) = {e ∈ E : |e| = 1}

Definition 1.5. Let Th(E) = D(E)/S(E) be the Thom space of E.

If X is a compact CW-complex, then Th(E) is homotopy equivalent to E+

the one point compactification of E. (Proof: D(E) is compact because it is
a fiber bundle with compact base and fiber, thus Th(E) is compact. E is
homotopy equivalent to D(E)−S(E) using a homotopy equivalence of Rn with
the open ball. Note that D(E)−S(E) is a subspace of Th(E) whose complement
is a point. To see that the topology is right, one could proceed as follows: E+

is the terminal compactfication, so there is a continuous map Th(E) → E+.
We have just seen that this is a bijection. Since E+ is Hausdorff and Th(E) is
compact, Th(E)→ E+ is therefore a homeomorphism.)

Let 1 be the trivial real vector bundle of rank 1 on X. By choosing a sup-
metric, we can have D(1 ⊕ E) ∼= [0, 1] ×D(E), and S(1 ⊕ E) ∼= ∂D(1 ⊕ E) =
{0, 1} ×D(E) ∪ [0, 1]× S(E). Thus Th(1⊕ E) ∼=

[0, 1]×D(E)

{0, 1} ×D(E) ∪ [0, 1]× S(E)
∼=

S1 ×D(E)

∗ ×D(E) ∪ S1 × S(E)
∼=

S1 × Th(E)

∗ × Th(E) ∪ S1 × ∗
= S1∧Th(E).

Exercise 1.6. If p : E → X and p′ : E′ → Y are two sphere bundles, we can
define the fiber wise join

E∗̂E′ =
E × [0, 1]× E′

∼
,
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where (x, 1, y) ∼ (x, 1, y′) if p′y = p′y and (x, 0, y) ∼ (x′, 0, y) if px = px′. You
can check that E ∗ E′ is a sphere bundle over X × Y . The Thom space of a
sphere bundle E → B is its mapping cone. Show that

1. Th(S(V )) ∼= ThV for a vector bundle V

2. Th(X × Sn−1) ∼= ΣnX+, where X+ = X
∐
∗

3. Th(E∗̂E′) ∼= Th(E) ∧ Th(E′).

A model forBO(n) is the Grassmannian of n-planes in R∞, meaningBO(n) =
EO(n)/O(n) where EO(n) is the colimit m → ∞ of the space of orthogonal
n-tuples in Rm. Let ζn → BO(n) be the vector bundle whose fiber over a
point of BO(n) is the vector space spanned by the orthogonal n-tuples. ζn is
called the tautological bundle over the classifying space of BO(n), or the uni-
versal real vector bundle of rank n. Any rank n real vector bundle over a space
Y is the pull-back of ζn under some map Y → BO(n). See [H2, Theorem
1.16]. Thus the n + 1 bundle 1 ⊕ ζn maps to ζn+1. Applying Th, we have
εn : Σ Th(ζn) = Th(1⊕ ζn)→ Th(ζn+1).

Definition 1.7. MO is the spectrum whose nth space is Th(ζn) and structure
maps εn

Definition 1.8. MU is the spectrum whose 2nth space is the Thom space of the
tautological bundle over BU(n), and whose (2n+ 1)st space is the suspension of
the (2n)th space.

Alternatively, we could constructMU as follows. Once Σ is an equivalence, it
makes sense to define a spectrum MU(n) = Σ−2n Th(ζn) where ζn now denotes
the tautological bundle over BU(n). There is a canonical map

MU(n− 1) ∼= Σ2−2n Th(ζn−1) ∼= Σ−2n Th(ζn−1⊕ 1)→ Σ−2n Th(ζn) ∼= MU(n).

Then MU = colimn→∞MU(n).
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