Lecture 2: Spectra

1/7/14

We are going to study stable phenomena in homotopy theory, so we build
a category of Spectra where homotopy theory of spaces makes sense and where
suspension is forced to be an equivalence. There are a number of equivalent
points of view on spectra. Here is the one in Adams [A, Part III. 2].

1 Category of Spectra

Definition 1.1. A spectrum FE is a sequence of spaces E, with a basepoint
together with maps
en:S'ANE, =%E, = E,.1.

The index n may vary over Z or Z>q. Let’s have n vary over Z to be definite.

For a based space Y, let QY = Map, (S*,Y) denote the topological space of
based maps S' — Y. Note that there is a natural equivalence

Map, (£X,Y) = Map(X, QY)

for any based spaces X and Y. Thus the maps ¢, are equivalent to the data of
maps
6% B, — QETL—‘,—l'

If E, is connected, then the image of €, will automatically lie inside the con-
nected component of the base point in QF,, 1. Let QoF,+1 denote the con-
nected component of the base point. If all our spaces are connected, we could
then consider €, as a map to QoE,41.

Definition 1.2. A map (“function of degree 0” in [A]) E — F of spectra is a



sequence of maps fn : E, — F, such that

z:Ewn g’ En+1

ifn lfn-u

SF, —"> Fuy1

commutes.

This diagram is required to commute strictly, as opposed to commuting up
to homotopy.

We do not yet have a notion of homotopy classes of maps or a good way to
do homotopy theory on this category. We will start to do that on Friday.

It’s useful to also have a notion of a function of degree r E — F. This is a
sequence of maps f, : E,, = F,_, such that the analogous diagram commutes.

1.1 Examples

1.2. Suspension spectra. Given a space X, the suspension spectrum 3*°X of
YPX=2S"AX ifn>0

X is the spectrum with (X*°X),, = { 0.
* if n<0.

1.3. FEilenberg-MacLane spectra. An Eilenberg-MacLane space of type (m,n)
is a space K (m,n) with a base point such that

T if*x=n

(K (m,n)) = {

0 otherwise.

For any space X, the sequence
0 — Ext(H,,—1(X),7) = H"(X,7) = Hom(H,(X),7) = 0

is exact by the universal coefficient theorem for cohomology. Thus if X is (n—1)-
connected, H"(X, 7) & Hom(H,(X),n). When m,(X) = , the inverse of the
Hurewicz homomorphism is an element of the right hand side, whence we have
an element of H"(X, 7). Call this element ¢.

Theorem 1.3. (Representability of cohomology) For anyY , the map [Y, K (7, n)] —
H"(Y, ) defined by [f] — f*i is a bijection.



This is an nice illustration of obstruction theory. See, for example, [MT,
Theorem 1, chapter 1] or [H, Theorem 4.57].

Corollary 1.4. There is a canonical homotopy equivalence between any two
K(m,n) spaces.

Since QK (m,n+1) is a K (7, n)-space, we therefore have map €/, : K(m,n) —
QK(m,n+1).

Let Hm be the spectrum whose nth space is K (7, n) together with the maps
e),. This is the Eilenberg-MacLane spectrum for the group .

Spectra where the maps €/, are weak equivalences are called omega spectra,
so in particular, H7 is an omega spectrum.

1.4. Thom spectra: MO, MU, MSO etc..

For a vector bundle £ — X, we can choose a continuously varying norm on
the fibers. Then we have the associated disk bundle D(E) = {e € E : |e| < 1}
and the associated sphere bundle S(E) = {e € E : le|] = 1}

Definition 1.5. Let Th(E) = D(E)/S(E) be the Thom space of E.

If X is a compact CW-complex, then Th(E) is homotopy equivalent to E™
the one point compactification of E. (Proof: D(FE) is compact because it is
a fiber bundle with compact base and fiber, thus Th(E) is compact. E is
homotopy equivalent to D(E) — S(FE) using a homotopy equivalence of R™ with
the open ball. Note that D(E)—S(E) is a subspace of Th(E) whose complement
is a point. To see that the topology is right, one could proceed as follows: ET
is the terminal compactfication, so there is a continuous map Th(E) — ET.
We have just seen that this is a bijection. Since E7 is Hausdorff and Th(FE) is
compact, Th(E) — ET is therefore a homeomorphism.)

Let 1 be the trivial real vector bundle of rank 1 on X. By choosing a sup-
metric, we can have D(1 @ E) = [0,1] x D(E), and S(1® FE) 2 0D(1® FE) =
{0,1} x D(E) U [0,1] x S(E). Thus Th(l & E) =
1 1
[0,1] x D(E) ~ St x D(E) o St x Th(E) _ S'ATh(E).
{0,1} x D(E)U[0,1] x S(E) *x D(E)US! x S(E) *x Th(E)US! x

lé

Exercise 1.6. Ifp: E — X and p' : E' =Y are two sphere bundles, we can
define the fiber wise join
,  Ex[0,1] x E'

)

EXE

~



where (z,1,y) ~ (z,1,y') if p'y = p'y and (2,0,y) ~ (z/,0,y) if pr = px’. You
can check that E x E' is a sphere bundle over X x Y. The Thom space of a
sphere bundle E — B is its mapping cone. Show that

1. Th(S(V)) 2 ThV for a vector bundle V
2. Th(X x S" 1) =2 ¥nX,  where X4 = X [[*
9. Th(E4E') = Th(E) A Th(E').

A model for BO(n) is the Grassmannian of n-planes in R>, meaning BO(n) =
EO(n)/O(n) where EO(n) is the colimit m — oo of the space of orthogonal
n-tuples in R™. Let {, — BO(n) be the vector bundle whose fiber over a
point of BO(n) is the vector space spanned by the orthogonal n-tuples. (, is
called the tautological bundle over the classifying space of BO(n), or the uni-
versal real vector bundle of rank n. Any rank n real vector bundle over a space
Y is the pull-back of ¢, under some map Y — BO(n). See [H2, Theorem
1.16]. Thus the n + 1 bundle 1 ® ¢, maps to (,4+1. Applying Th, we have
€n 2 2 Th(¢,) = Th(l & ¢,) — Th(Cut1)-

Definition 1.7. MO is the spectrum whose nth space is Th((,) and structure
maps €,

Definition 1.8. MU is the spectrum whose 2nth space is the Thom space of the
tautological bundle over BU(n), and whose (2n+ 1)st space is the suspension of
the (2n)th space.

Alternatively, we could construct MU as follows. Once X is an equivalence, it
makes sense to define a spectrum MU (n) = =27 Th((,,) where ¢,, now denotes
the tautological bundle over BU(n). There is a canonical map

MU(n—1) 2 %> 2" Th(¢,_1) 2 X 2" Th(¢, 1 ®©1) = X" Th(¢,) & MU(n).
Then MU = colim,, o, MU (n).
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