
Lecture 3: the stable homotopy category

1/9/14

The stable homotopy category is the category of spectra where the mor-
phisms, instead of being maps of spectra, are something like homotopy classes
of maps of spectra.

There are many constructions of the stable homotopy category. Here is the
one in Adams [A, Part III. 2]. This construction starts from a category of
spectra, and then changes the maps (which he calls “functions”) to something
like homotopy classes of maps (which he calls “morphisms”). The reason that
there are other constructions is that there is a problem with this one. It is
important for the stable homotopy category to have an associative and commu-
tative smash product denoted ∧ (or sometimes ⊗ because of similarities with
the tensor product). For example, this smash product appears in the definition
of the generalized homology theory associated to a spectrum, as well as in the
definition of the cup product, and in duality theorems. The problem with the
category of spectra given here is that it does not have an associative and commu-
tative smash product, and then the resulting construction of an associative and
commutative smash product on the stable homotopy category is problematic
(but it exists).

1 Homotopy category of spectra

Definition 1.1. E is a CW-spectrum if

• for each n, En is a CW-complex with base point.

• each map εn : ΣEn → En+1 is an isomorphism from ΣEn to a sub complex
of En+1.

Remark 1.2. When we have a definition of weak equivalence, we will see that
any spectrum is weakly equivalent to a CW-spectrm. See [A, Part III, Exercise
after 3.12]. So it is okay to restrict attention to CW-spectra.
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A subspectrum A of a CW-spectrum E is a spectrum with An ⊂ En a
subcomplex.

A is said to be cofinal in E if for each n and each finite subcomplex K ⊂ En
there is an m such that ΣmK maps into Am+n under the canonical map

ΣmEn
Σm−1εn→ Σm−1En+1

Σm−2εn+1→ . . .
εn+m−1→ Em+n

If E and E′ are two cofinal subspectra of E, and f ′ : E′ → F and f ′′ :
E′′ → F are two maps, say that f ′ and f ′′ are equivalent if there is a cofinal
sub spectrum E′′ contained in E′ and E′′ such that the restrictions of f ′ and
f ′′ to E′′′ are equal. Since the intersection of two cofinal subspectra is a cofinal
subspectra, this defines an equivalence relation.

Adams calls the set of equivalence classes of maps from all cofinal subspectra
of E to F the “maps” from E to F . Since we’ve been using the word “map” as
a synonym for function, let’s use another word.

Definition 1.3. An equivalence class of a map from a cofinal subspectrum of
E to F will be called a pmap from E to F .

Example 1.4. Let S denote the sphere spectrum meaning the suspension spec-
trum of S0. Let K ⊂ S be the subspectrum with Kn = ∗ for n ≤ 2 and
Kn = Sn for n ≥ 3. Let η : S3 → S2 be the Hopf map. Σnη defines a
map Kn+3 → Sn+2 for n ≥ 0. For n < 0, Kn+3 = ∗ is a point and there
is a unique map Kn+3 → Sn+2. These maps Kn+3 → Sn+2 are the data of a
pmap of degree 1 from S to S. Equivalently, this data gives a pmap S→ Σ−1S,
although technically we haven’t defined Σ−1S.

Proposition 1.5. Composition of maps (“functions”) of spectra determines a
well-defined composition of pmaps.

Proof. Let F ′ be a cofinal subspectrum of a spectrum F and E → F a function
of spectra (or a function of degree r 6= 0). We claim that there is a cofinal sub-
spectrum of E which maps into F ′. Note that there is a largest CW subcomplex
E′n of En which is mapped to F ′, i.e. a cell is included precisely if it and all the
lower dimensional cells required by attaching maps are mapped into F ′. By the
definition of a function of spectra, and the fact that F ′ is a subspectrum, we
must have εn(ΣE′n) ⊂ E′n+1, where εn : ΣEn → En+1 is the structure map in
E. Thus there is a largest CW subspectrum E′ of E mapping to F ′. We claim
that this subspectrum is cofinal. Let K be a finite sub complex of En. The
image of K is compact, and therefore is contained in a finite sub complex KF

of Fn. See for example [H, Prop A.1 p 520]. Since F ′ is cofinal, there is an m
as above for KF . Since ΣmK maps into ΣmKF ⊂ F ′, we have that ΣmK maps
into F ′, from which it follows that ΣmK is in E′, showing E′ is cofinal.
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Given two pmaps f : E → F and g : F → H, we have cofinal sub spectra
F ′ and E′ of F and E on which g and f are defined respectively. By the
above, there is a cofinal subspectrum E′′ of E′ mapping into F ′ under f . It is
straightforward to check that a cofinal subspectrum of a cofinal subspectrum is
cofinal. Thus E′′ is a cofinal subspectrm of E. We may define g ◦ f on E′′.

Now we wish to define the homotopy class of a pmap. For a space X, let
X+ = X

∐
∗. Let Cyl(E) denote the spectrum whose nth space is [0, 1]+ ∧ En

and with structure maps given by the flip S1 ∧ [0, 1]+ ∧En → [0, 1]+ ∧ S1 ∧En
composed with [0, 1]+ ∧ εn. The maps {0}+ → [0, 1]+ and {1}+ → [0, 1]+ allow
us to define two maps E → Cyl(E). Two pmaps f, g : E → F are homotopic
if there is a pmap H : Cyl(E) → F such that H precomposed with our maps
E → Cyl(E) produces f and g. The standard proof that homotopy is an
equivalence relation applies.

Definition 1.6. A morphism E → F in the stable homotopy category from a
CW-spectrum E to F is a homotopy class of pmaps. A morphism of degree r is
a homotopy class of a degree r pmap. Let [E,F ] denote the morphisms from E
to F in the stable homotopy category, and let [E,F ]r denote the morphisms of
degree r.

Next: Generalized (co)homology. In particular, for a CW-complex X, we will
see

Fact 1.7. [Σ∞X,HZ]−r ∼= Hr(X,Z).
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