

Lecture 7: Cofiber sequences are fiber sequences

1/23/15

1 Cofiber sequences and the Puppe sequence

If $f : X \rightarrow Y$ is a map of CW complexes, recall that the reduced *mapping cone* is the space $Y \cup_f CX = (Y \coprod X \wedge [0, 1]) / \sim$, where $(x, 1) \sim f(x)$. If we vary f by a homotopy, $Y \cup_f CX$ changes by a homotopy equivalence.

We may likewise form the reduced mapping cone of a map $f : X \rightarrow Y$ in the stable homotopy category. f is represented by a function of spectra $f : X' \rightarrow Y$, where X' is a cofinal subspectrum of X . By replacing f by a homotopic map, we may assume that $f'_n : X'_n \rightarrow Y_n$ is a cellular map. Then $Y \cup_f CX$ is the spectrum whose n th space is $Y_n \cup_{f'_n} CX'_n$ and whose structure maps are induced from those of X and Y . This is well-defined up to isomorphism, because varying f by a homotopy does not change the isomorphism class of $Y \cup_f CX$.

If $i : A \rightarrow X$ is the inclusion of a closed subspectrum, then define X/A be the spectrum whose n th space is X_n/A_n and whose structure maps are those induced from the structure maps of X . The evident map $X \cup_i CA \rightarrow X/A$ is an isomorphism in the stable homotopy category because on the level of spaces we have homotopy equivalences which therefore induce isomorphism on π_* .

Definition 1.1. A cofiber sequence is any sequence equivalent to a sequence of the form $X \xrightarrow{f} Y \xrightarrow{i} Y \cup_f CX$

Proposition 1.2. ([A, III Prop 3.9]) For each Z , the sequence $[Y \cup_f CX, Z] \rightarrow [Y, Z] \rightarrow [X, Z]$ is exact.

Proof. Since the composite $X \rightarrow Y \cup_f CX$ is null, we have that the image of $[Y \cup_f CX, Z] \rightarrow [Y, Z]$ is indeed in the kernel of $[Y, Z] \rightarrow [X, Z]$. Suppose $g : Y' \rightarrow Z$ is a function such that Y' is a cofinal subspectrum of Y and such that the associated morphism is null in $[X, Z]$. We wish to construct a pmap $Y \cup_f CX \rightarrow Z$ extending the pmap $g : Y \rightarrow Z$. To do this, choose a cofinal

subspectrum X' of X such that gf is defined as a function on X' and such that there is a function $H : X' \wedge [0, 1]_+ \rightarrow Z$ giving a homotopy between gf and the constant map. We checked that we may choose a cofinal subspectrum Y'' of Y containing the image of X' . H and g determine a function $Y'' \cup_f CX' \rightarrow Z$. \square

Any map can be extended to a cofiber sequence. In particular, we can extend cofiber sequences to the right

$$X \xrightarrow{f} Y \xrightarrow{i} Y \cup_f CX \rightarrow (Y \cup_f CX) \cup_i CY \rightarrow$$

Since $(Y \cup_f CX) \cup_i CY \cong \Sigma X$, we get that

$$X \xrightarrow{f} Y \xrightarrow{i} Y \cup_f CX \rightarrow \Sigma X \rightarrow \Sigma Y \rightarrow \Sigma(Y \cup_f CX) \rightarrow \Sigma\Sigma X \quad (1)$$

has all three term sequences cofiber sequences.

Note that desuspensions and suspensions of cofiber sequences are cofiber sequences. Applying Σ^{-1} to the cofiber sequence $Y \cup_f CX \rightarrow \Sigma X \rightarrow \Sigma Y$, we have that $\Sigma^{-1}Y \cup_f CX \rightarrow X \rightarrow Y$ is a cofiber sequence. Thus we may continue (1) to the left.

Corollary 1.3. *If $X \rightarrow Y \rightarrow Z$ is a cofiber sequence in the stable homotopy category, then for any W , the sequence*

$$\dots \rightarrow [X, W]_{n+1} \rightarrow [Z, W]_n \rightarrow [Y, W]_n \rightarrow [X, W]_n \rightarrow \dots$$

is exact.

Proof. The sequence

$$\dots \rightarrow [\Sigma^{n+1}X, W] \rightarrow [\Sigma^n Z, W] \rightarrow [\Sigma^n Y, W] \rightarrow [\Sigma^n X, W] \rightarrow \dots$$

is exact by the above chain of cofiber sequences and Proposition 1.2. Since we have identified desuspension with a shift, suspension may also be identified with a shift. Thus $[\Sigma^n Y, W] = [Y, W]_n$. \square

2 Fiber sequences are cofiber sequences

Proposition 2.1. *If $X \xrightarrow{f} Y \xrightarrow{i} Z$ is a cofiber sequence in the stable homotopy category, then for any W , the sequence*

$$\dots \rightarrow [W, X]_n \rightarrow [W, Y]_n \rightarrow [W, Z]_n \rightarrow [W, X]_{n-1} \rightarrow \dots$$

is exact.

Proof. As above, it suffices to show that

$$[W, X] \rightarrow [W, Y] \rightarrow [W, Z]$$

is exact. Since the composite $X \rightarrow Z$ is null, we have that the composite $[W, X] \rightarrow [W, Z]$ is 0. Let $g : W \rightarrow Y$ be a pmap such that ig is nullhomotopic. The choice of a null-homotopy gives the morphism $h : CW \rightarrow Z$ from cone on W to Z . We then obtain j and k in the commutative diagram

$$\begin{array}{ccccccc} X & \xrightarrow{f} & Y & \xrightarrow{i} & Z & \longrightarrow & \Sigma X & \xrightarrow{-f} & \Sigma Y \\ & & \uparrow g & & \uparrow h & & \uparrow j & & \uparrow \Sigma g \\ W & \longrightarrow & W & \longrightarrow & CW & \longrightarrow & \Sigma W & \xrightarrow{-1} & \Sigma W \end{array}$$

Since suspension is an equivalence, we have that the image of $\Sigma^{-1}j$ under $[W, X] \rightarrow [W, Y]$ is g . \square

One could define a fiber sequence to be $X \rightarrow Y \rightarrow Z$ such that the composite $X \rightarrow Z$ was the constant map and such that the sequence satisfies the conclusion of Proposition 2.1. Dually, one could also define a cofiber sequence to be $X \rightarrow Y \rightarrow Z$ such that $X \rightarrow Z$ is null and satisfying the conclusion of 1.3. This is the same as the above (exercise: use a natural map and the 5 lemma to show it induces an isomorphism on π_*). Proposition 2.1 can therefore be stated by saying that fiber sequences and cofiber sequences are the same in the stable homotopy category.

References

- [A] J.F. Adams, *Stable Homotopy and Generalized Homology* Chicago Lectures in Mathematics, The University of Chicago Press, 1974.