
NOTES FOR THE TALK: ON THE SECTION CONJECTURE

KIRSTEN WICKELGREN

1. INTRODUCTION: ANABELIAN CONJECTURES

Want: understand solutions to polynomial equations, maps between schemes.

Try: control maps between schemes using topological spaces.

X 7→ Et(X)

Et(X) denotes the étale homotopy type of Artin - Mazur, Friedlander. Et(X) is a pro-
object in simplicial sets. View Et as a functor to the homotopy category of pro-simplicial
sets.

1.1. Example.

• Let X be a finite type scheme over C. Then Et(X) is equivalent to the profinite
completion of the complex points of X, denoted X(C)∧.
• Let k be a field and Gk = Gal(ks/k) denote the absolute Galois group of k. Then
Et(Speck) ∼= BGk.

1.2. Question. For a,b in Q∗, when is GQ[
√
a]

∼= GQ[
√
b]?

Answer: if and only if Q[
√
a] ∼= Q[

√
b], i.e. if and only if a = b in Q∗/(Q∗)2.

1.3. Theorem. — (Neukirch, Uchida) Let k1 and k2 be finite extensions of Q. Then the natural
map

Iso(k2, k1) → Iso(Gk1, Gk2)

is a bijection.

Conclude: sometimes Et reflects isomorphisms.

1.4. Remark. Et is not fully faithful. For instance

Map(XC,A1C) = O(XC) 6= Map(Et(XC),Et(A1C)) = ∗.
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1.5. Definition. Let X be a pointed, normal scheme. The étale fundamental group π1(X)
of X is π1(Et(X)).

1.6. Example. Let X/k be a smooth curve over a number field. Suppose that the Euler
characteristic χ of X is < 0. Then

Et(X) = Bπ1(X).

1.7. Anabelian Conjectures. — (Grothendieck)Let k be a number field. There is a full subcate-
gory Ank of finite type smooth schemes over k including Speck, smooth curves with χ < 0, and
total spaces of vibrations with base and fiber in Ank, such that for all X1, X2 in Ank, the natural
map

(1) Mapdominant
Scheme (X1, X2) → Map

open,out
Gk

(π1X1, π1X2)

from dominant scheme maps to open maps of profinite groups over Gk up to equivalence by conju-
gation by elements of π1(X2), is a bijection.

1.8. Theorem. — (Mochizuki) The bijection (1) holds for k a number field, or more generally
k any subfield of a finitely generated extension of Qp – called sub-p-adic fields, X1 any smooth
scheme over k, X2 any smooth curve over k of negative Euler characteristic.

1.9. Section Conjecture. — (Grothendieck) Let X be a smooth, compact algebraic curve of genus
≥ 2 defined over a number field k. Then

Map(Spec k, X) → Map(Et(Spec k),Et(X))

is a bijection.

The section conjecture is analogous to an equivalence between fixed points and homo-
topy fixed points:

• Map(Speck, X) = X(k) = π0(X(k)) = π0(X(k)
Gk)

• Suppose that X has a fixed base point.

Map(Et(Speck),Et(X)) = H1(Gk, π1(Xk)) = π0(Et(Xk)
hGk),

where Et(Xk)
hGk denotes the homotopy fixed points of Et(Xk). (Here

Map(Et(Speck),Et(X))

means maps in the homotopy category of pro-simplicial sets over BGk.)

1.10. Sullivan Conjecture. — (Carlsson, Lannes, Miller, Dwyer-Miller-Neisendorfer) G
finite p-group. X finite G-CW-complex

(XG)∧p → (X∧
p )
hG,

is a weak equivalence, where (−)∧p denotes Bousfield-Kan p-completion.

2



• This implies the section conjecture over R which says that the natural map

π0(X(R)) → MapEt(R)(Et(R),Et(X))

is a bijection.
• The existence of the Selmer group shows that the Section Conjecture does not hold

for X an elliptic curve over a number field: let S denote the Selmer group. There
are natural inclusions

Map(Speck, X) ⊆ S ⊆ Map(Et(Spec k),Et(X))

with S not always equal to Map(Et(Speck),Et(X)).
• The Section Conjecture is unknown. The only cases for which it is verified are

for certain curves without sections and without points. These were constructed
independently by T. Szamuely and J. Stix.
• There is a modification of the Section Conjecture applying to smooth algebraic

curves which are not assumed to be compact.

2. TOWARDS THE SECTION CONJECTURE

We study

MapEt(Spec k)(Et(Speck),Et(X)) = MapBGk
(BGk, Bπ1X)

by approximating

Et(X) → Et(Spec k)

which is equivalent to approximating

EGk ×Gk
Bπ→ BGk

where

π = π1(Xk).

We will use the lower central series, denoted as follows:

[π, π] = [π]2 ⊇ [π]3 ⊇ [π]4 ⊇ . . .

[π]n = [π, [π]n−1].
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This gives a tower approximating X

(2)
...

��
Bπ1(X)/[π]n

��
...

��
Bπ1(X)/[π]3

��
Bπ1(X) //

88

EE

Bπ1(X)/[π]2

(2) is similar to the Goodwillie tower of Bπ as a Gk-space.

We study MapEt Spec k(Et Speck,EtX) by its approximations

MapEt Spec k(Et Speck, Bπ1(X)/[π]n).

For notational convenience, given two objects Y and Z in the homotopy category of pro-
spaces over Et Speck ∼= BGk, let Z(Y) = MapEt Spec k(Y, Z). This notation is meant to recall
that the k points of X are denoted X(k), so it’s natural to denote the maps

Et Speck→ EtX

by EtX(Et Speck). Abbreviate EtX(Et Speck) by EtX(Etk).

It is also convenient to define

(Bπ1(X)/[π]n)(Etk)
ab = Image(Bπ1(X)/[π]n(Etk) → Bπ1(X)/[π]2(Etk))

EtX(Etk)ab = Image(EtX(Etk) → Bπ1(X)/[π]2(Etk)).

The lifting problem
Bπ1(X)/[π]n+1

��
BGk

88

// Bπ1(X)/[π]n

gives rise to obstructions of Jordan Ellenberg.

For k = R, the first of these obstructions is enough to determine π0(X(R)), strengthen-
ing the section conjecture over R. Moreover, replacing π1(X) by the absolute Galois group
of the function fieldGR(X) and defining the analogous obstructions determines X(R) itself:

2.1. Theorem. — (W.) For an algebraic curve X over R such that each component has a real point

π0(X(R)) = (Bπ1(X)/[π]3)(EtR)ab.
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2.2. Corollary. — (W.) Let X be a smooth, compact, algebraic curve over R with a real point. Let
X(R)± denote the real points of X equipped with a real tangent direction. Then

X(R)± = (BGR(X)/[GC(X)]3)(EtR)ab.

The approximations (Bπ1(X)/[π]n)(Etk) all suffer from a defect which we will correct.
First, we explain the problem:

2.3. Remark. Nilpotent groups are products of p-groups, so

π/[π]n =
∏
p

(π/[π]n)p

and
Bπ/[π]n =

∏
p

B(π/[π]n)p.

Maps
f1, f2 : Etk→ EtX = EGk ×Gk

π

over Etk give rise, and are equivalent to, Gk-equivariant maps f1, f2 : EGk → Bπ. We
obtain maps (fi)p : EGk → B(π/[π]n)p by composition. Then construct the map

(f1)q ×
∏
p6=q

(f2)p : EGk → ∏
p

B(π/[π]n)p = B(π/[π]n)

and the corresponding map

(f1)q ×
∏
p6=q

(f2)p : Etk→ EGk ×Gk
π/[π]n = Bπ1(X)/[π]n.

This map does not necessarily come from a map

Etk→ EtX,

so we should eliminate maps like (f1)q ×
∏

p6=q(f2)p from approximations of EtX(Etk).
(When Gk is a p-group, all maps Etk → EGk ×Gk

(π/[π]n)q for q 6= p are null homotopic,
so we did not run into this problem for k = R.)

Thus, we need maps to satisfy some sort of compatibility across different primes. Here
is one way to do this: consider the Abel-Jacobi map X→ Pic1 X from the smooth curve X
to its Picard scheme. There is a commutative diagram

X(k) //

��

EtX(Etk)

��
Pic1 X(k) // EtPic1X(Etk)

We study EtX(Etk) by approximating the set

Pic1 X(k) ∩ Image(EtX(Etk) → EtPic1 X(Etk))
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by
Pic1 X(k) ∩ Image(Bπ1(X)/[π]n(Etk) → EtPic1 X(Etk))

It follows from Poincaré duality and the fact that Pic1 X is a semi-abelian variety that
the map

EtX→ EtPic1 X

is naturally identified with
Bπ1X→ Bπ1X/[π]2.

Thus, in total we study EtX(Etk) by approximating the set

Pic1 X(k) ∩ EtX(Etk)ab

by
Pic1 X(k) ∩ (Bπ1(X)/[π]n)(Etk)

ab.

We can also consider obstructions coming from unipotent representations of the funda-
mental group. These are very similar to Ellenberg’s.

Let Un denote the subgroup of GLn(Ẑ) consisting of those matrices with diagonal en-
tries 1 and whose entries below the diagonal are 0, i.e. n × n-matrices (aij) such that
aii = 1 and aij = 0 for i > j. Let Z ⊂ Un be the center. There is a corresponding central
extension

Z ⊂ Un � Un/Z.

2.4. Obstruction construction. Define an action of Gk on Un and a Gk-equivariant map

π→ Un.

From this, consider the lifting problem

EGk ×Gk
Un

��
BGk

77

// EGk ×Gk
(Un/Z) Et(X)oo

gg

which gives rise to an obstruction.

We will compute some of these obstructions in the case X = P1k − {0, 1,∞}.1 Then
X→ Pic0 X can be identified with2

P1k − {0, 1,∞} → Gm,k ×Gm,k

x 7→ (x, 1− x).

Applying H∗(Gk,−) to the Kummer sequence

1→ µ`m → Gm
z 7→z`m→ Gm → 1

1P1
k−{0, 1,∞} is not compact, but there is a modification of the section conjecture for non-compact smooth

curves.
2We translate by a chosen base point so the Abel-Jacobi map is X→ Pic0 X instead of X→ Pic1 X.
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gives

k∗ → H1(Gk,Z`(1)).

2.5. Notation.

• x in k∗ also denotes the corresponding element of H1.
• 〈x1, x2, . . . , xn〉 denotes the n-fold Massey product.
• One can define a certain class fn in H1(Gk,Z`(n− 1)). For k a number field, fn can

be expressed in terms of Deligne-Soulé classes.

Note that Pic0 P1k − {0, 1,∞}(k) = (Gm,k ×Gm,k)(k) = k
∗ × k∗.

2.6. Theorem (W.). — Let X = P1k − {0, 1,∞}. There are unipotent representations of π1(Xk)
which show that for all

(x, y) ∈ Pic0 X(k) ∩ EtX(Etk),

we have

〈x, x, . . . , x, y, x, . . . , x, x〉 = 0(3)
〈y, x, x, . . . , x, x, y〉 = fn ∪ y(4)

where the Massey products on the left hand side are order n, the y can appear in any position in
(3), and n = 2, 3, . . ..

Furthermore, for n = 2, 3 the subset of Pic0 X(k) determined by (3) and (4) is

Pic0(k) ∩ Bπ1(X)/[π]n+1(Etk)ab.

We have been careless about defining systems of Massey products. For n < 4 this is
simply an artifact of the talk. For higher n, there is more to be understood.

The representations in Theorem 2.6 come from the failure of the section conjecture for
Gm.3

Since we know the rational points of P1k − {0, 1,∞}, the purpose of Theorem 2.6 is to
study EtX(Etk). For instance, the section conjecture for P1k − {0, 1,∞} implies that the
section conjecture holds for an open subset of any curve defined over a number field.

From the opposite point of view, since we know the rational points of P1k−{0, 1,∞}, The-
orem 2.6 places restrictions on the differential graded algebra C∗(Spec k) of étale cochains
of Spec k.

3Since Gm does not have negative Euler characteristic, it is not one of the curves discussed by the section
conjecture.
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2.7. Corollay (W.). — For x ∈ k∗ − {1},

〈x, . . . , x, 1− x, x, . . . x, 〉 = 0.
〈1− x, x, . . . , x, 1− x〉 = fn ∪ (1− x)

Because of the existence of tangential base points, the same method shows that

〈x, . . . , x,−x, x, . . . x〉
〈−x, x, . . . , x,−x〉 = fn ∪ (−x).

2.8. Remark. Guillou and Sharifi have results which overlap with this corollary by com-
pletely different methods from each other and me.
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