Please read	coligiality statement	and	fill out	presbonaire
L-theory, biological and algebraic L-theory	Chomology theories			
L	is the	latter after K		
For context	we begin with remarks on	K-theory		
Topological K	algebraic	tepolysical		
Topological K	K-theory	K-theory		
Topological K	K-theory	K-theory		
Topological K	on X, \oplus "Monoid"			
There is no	but can be added formally			
The	Grothendieck group of group complelism			
of a monord M is	K ₀ (M) = M * M			

$$
(a_{+}, a_{-}) \sim (b_{+}, b_{-}) \iff \exists \text{ } k \in M \text{ s.t.}
$$

$$
a_{+} + b_{-} + k = b_{+} + b_{-} + k
$$

$$
P_{\alpha_{+}}(a_{-}) = Q_{+} - Q_{-}
$$
\n
$$
P_{\alpha_{+}}(x) := \text{graph } (V_{\alpha_{+}}(x))
$$
\n
$$
P_{\alpha_{+}}(x) := \text{graph } (V_{\alpha_{+}}(x))
$$
\n
$$
P_{\alpha_{+}}(x) = \text{spanorphism } (L_{\alpha_{+}}(x) \text{ and } L_{\alpha_{+}}(x) \text{ and } L_{\alpha_{+
$$

Ex:
$$
K(X) = K(X) \circ Z
$$
 $K(X) = \text{Var}(K(X) \circ \text{Var}(Y))$

\nBoth periodicity $K(X) \to K(X) \to K(X) \to \text{Var}(K)$ $K(X) \to \text{Var}(K)$

Rmk ; A projective module over a local ring is free, so projective modules are locally free
Free, so projective modules are locally free
$Ex:$ F field $K, (F) \rightarrow Z$
$CMmouPCM1$
$EXECise:$ R ring, I \subseteq R ideal contained in the Jacobson radical, Then K. CR) $\xrightarrow{\cong} K. (R/I)$ \n
In particular, for any local ring R, K. CR) $\Rightarrow Z$

$$
E_X : \Theta
$$
 Dedekind domain. The class gap
\n
$$
CRC(\Theta) = \text{Isom class of } n \text{ as } -2\text{cos}
$$

\n
$$
\text{with group } \text{operation } \mathbb{I} + \mathbb{J} = \mathbb{I} \text{ G ideal}
$$

\ngeneraled by ab , for $a \in \mathbb{I}$, $b \in \mathbb{J}$ Recall
\n
$$
\text{each } \mathbb{I} \text{ is a finite, projective, } \Theta
$$
\n
$$
\text{see } \text{we have } CL \text{ J} \in K_0(\Theta)
$$

There is a short exact sequence
\n
$$
0 \rightarrow CLCO) \rightarrow K_{o}(O) \rightarrow Z \rightarrow 0
$$

\n $CLJ \rightarrow CLJ\cdot [O]$
\n $CPJ \rightarrow rank_{O}P$

$$
\begin{array}{ll}\n\text{(Moreover: } & \text{Check: } & \text{that: } & \text{exact: } & \text{sequence:} \\
& \text{Write: } & \text{the: } \\
& \text{with } & \text{is: } & \text{the: } & \text{map: } & \text{the: } & \text{the: } & \text{the: } & \text{the: } \\
& \text{with } & \text{is: } & \text{the: } & \text{map: } & \text{the: } \\
& \text{with } & \text{is: } & \text{the: } &
$$

X *Smooth scheme* (variety) over a field
Def:
$$
K_o(X) = \mathcal{G}roup
$$

Complex - modules
 \mathcal{O}_{X} - modules
 \mathcal{O}_{X}
These are the
vector bundles on X

$$
Z \rightarrow X
$$
 irreducible closed subscheme
\n $O_Z =$ functions on $Z =$ structure sheaf of Z
\nThere exists a resolubon C needs proof)

$$
0 \leftarrow \mathcal{O}_{z} \leftarrow P_{o} \leftarrow \dots \leftarrow P_{d} \leftarrow o
$$
\n
$$
P_{i} \text{ vector bundle } \leftarrow X
$$
\n
$$
[z] := \sum_{i} (-1)^{i} [P_{i}]^{c} K_{o} (x)
$$
\n
$$
T_{he} \text{ topologyical}
$$
\n
$$
d = dim X
$$
\n
$$
K_{o} \supseteq F_{i}|_{d} \supseteq F_{i}|_{d-1} \supseteq \dots \supseteq F_{i}|_{o}
$$
\n
$$
F_{i}|_{i} K_{o} (x) := \text{Subgamp} \left\{ C z \right\} : \text{fixed closed}
$$
\n
$$
S_{measured} \left\{ C z \right\} : \text{fixed closed subscheme}
$$
\n
$$
dim_{y} \leq f
$$
\n
$$
P_{arf} \text{ of the Riemann-Roch Theorem 3tates}
$$
\n
$$
H_{arf}
$$
\n
$$
CH^{i} (x) \longrightarrow F_{i}|_{b} K_{o} (x) / F_{i}|_{j-i} K_{o} (x)
$$
\n
$$
\sum_{i \in S} \longrightarrow C z \}
$$
\n
$$
S_{mejective}
$$
\n
$$
and has Kenel Killed by (j-1).\nref. Follen "Intersection" thus "Example 16.15, 15.2.16
$$

Bott periodicity ; $\widetilde{K}^{\circ}(\mathbb{P}'\wedge\chi) \cong \widetilde{K}^{\circ}(X)$ r $M - n$ tpy theory

Why is this mini course happening now 9 authors Calme's Dotto Harpaz Hebestreit Land Moi Nikolaus Steinle inspired by Lurie

mbivations

\n**ref**
$$
U
$$
 line

\n**Ques there** $exrst$ α **Smooth complex**, **When does there** $exrst$ α **smooth compact manifold** M **and** α **homotopy equivalence**\n $\chi \simeq M$

or what distinguishes the homotopy type of ^a compact smooth manifold from the htpy type of other CW complexes A1 compact manifolds satisfy Poincaré duality M din ⁿ smooth compact oriented HELM ^E ^H ECM ^D HCM ² MMM^a 112 Z non degenerate graded symmetric bilinear pairing

melt of an ^L group Def Let ^X be ^a simply connected CW complex ^X is ^a simplyconnectedPincare g.mg jqofdim ifFCxJeHncx ^x H'CX.AE Hn eCxi2 X is called ^a fundamental class go ZEHEX ² Halt X 1 H x ^a well defined up to sign ^q ⁿ ^H ^X ² Hn ex ^z ^o ⁿ determined by X If ^X is htpy equivalent to an oriented compact smooth mfld then ^X must be ^a Poincaré complex Question Let ^X be ^a simply connected Poincaré complex of dim ⁿ When does

There
$$
exfs \vdash a
$$
 homotopy equivalence
\n $\times \simeq M$
\nM Smodty, which, compact manifold dim 2
\nAl: M has tangent bundle TM closely
\nrelated to Poincaré duality.
\nDvanly: V finite dim'1 vector space on k
\n $V^* = Hom(V, A)$
\n $V^* = Hom(V, A)$
\n $Vardy$ symbilinear form $Var \rightarrow k$
\n $Derig$ sum bilinear form $Var \rightarrow k$
\n $Derig$ sum bilinear form $Var \rightarrow k$
\n $Derig$ is a category
\nwith a tensor or Smash product 0: $Ex \rightarrow C$
\nwith a unit 1 sh: $Loc \simeq C$ and
\n $Col \simeq C$ and $C: Co D \xrightarrow{G} Do C$
\nis a symmetry isomorphism.

Ex	Vector spaces	
Modules over a comm ring		
Chain c plus of modules		
Stable why cat		
A' -stable <i>http</i> Cat		
A' -stable <i>http</i> cat		
A' -stable <i>http</i> cat		
A' -stable <i>http</i> cat		
A' -stable <i>http</i> cat		
A' -stable <i>http</i> at A		
A' -stable <i>http</i> at A		
and	1	1
1	1	
2	1	
3.1	1	
4	1	
5.2	1	
6.1	1	
7	1	
8	1	
9	1	
10	2	

 $Notabbn: $DA = B$$

Exercise: Hom(A, C)
$$
\cong
$$
 Hom(1, DAOB)
\n**Exercise:**
\n $\frac{R_{x \cdot x \cdot C}}{R_{x \cdot C}}$ = $\frac{R_{x \cdot C}}{R$

$$
M^{\vee} \simeq \frac{\mathbb{P}CV\oplus I}{\mathbb{P}V} \qquad For \ M compact, \ M^{\vee} \cong \mathbb{P}^{n\times (V)} \qquad \text{For } M \text{ compact, } M^{\vee} \cong \mathbb{P}^{n\times (V)} \qquad \text{for } M \text{ compact, } M^{\vee} \cong \mathbb{P}^{n\times (V)} \qquad \text{(copndshab, } W^{\vee} \cong \mathbb{P}^{n\times n} \qquad \text{(d)} \qquad \text{(eop)} \qquad \text{(fop)} \qquad \text{(gop)} \qquad \text{(h)} \qquad \text{(i)} \qquad \text{(ii)} \qquad \text{(iii)} \qquad \text{(iv)} \qquad \text{(v)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(v)} \qquad \text{(vi)} \qquad \text{(v)} \qquad \text{(vi)} \
$$

$$
M \rightarrow \mathbb{R}^{k}
$$
 embedding
\n $TM + N_{M} \mathbb{R}^{k} \approx 1^{k}$
\n $\Rightarrow -TM = N_{M} \mathbb{R}^{k} - 1^{k}$
\n $\Rightarrow M^{-TM} \simeq 2^{-k} M^{N_{M} \mathbb{R}^{k}}$

 $\frac{N}{\omega_{n}+\frac{1}{2}}H_{R-cn}(\mu)$

$$
\int_{\text{image of }C} \int_{\text{is}}^{\infty} M_{n}(M)
$$

Thus: Let M be a simply connected, oriented, smooth
manifold of dimension n. Then there exists
a vector bundle
$$
\leq on M
$$
 of dimension
n C namely the tangent bundle) and a class
 $M(z \leq - {}_{k}c)$ in $M^{-}S$ such that
the image of M_{m} under the compression

$$
\pi_{0}(M^{-5}) \longrightarrow H_{0}(M^{-5},\mathbb{Z}) \cong H_{n}(M;\mathbb{Z})
$$

Then is for
orientation

is ^a fundamental class of M

Question 3 : Let X be a simply connected Poincaré complex of dimension n. Suppose we are given ^a vector bundle 3 of dimension ⁿ on ^X and a homotopy class $\eta \in \pi_o \times \mathbb{R}^3$ whose image in $H_n(x,z)$ is a fundamental class for X .

Does there exist a smooth manifold M of
\ndion n and a htyp equivalence
\n
$$
F: M \rightarrow X
$$

\n5.7. $F^{\alpha}S = T_M$ in 100°(X) and $F^{\alpha}q = q_{m}e M^{T}m^{2}$
\n6.7. $F^{\alpha}S = T_M$ in 100°(X) and $F^{\alpha}q = q_{m}e M^{T}m^{2}$
\nof F -vector
\n F -vector
\n F -vector
\n Δ ssume n = 412
\n Δ
\n Δ ssume a 412° (X; R) and 41° (X; R) 100° (X) 100° (X)

Signature
$$
(\langle , \rangle) := a - b
$$

Let $\nabla_{M} = \text{Signature } (\langle , \rangle)$

Mirzebruch Signature Formula:

Let
$$
P_i(GM)
$$
 i=1, $P_i(XM)$
\n $P_i(GM) = (-1)^i C_{2i} (\text{TM} \otimes \text{C}) \in H^{1i}(M; \mathbb{Z})$
\n $P_i(M) = (-1)^i C_{2i} (\text{TM} \otimes \text{C}) \in H^{1i}(M; \mathbb{Z})$
\n $C_{Chern classes}$
\n $T_M = L(P_i(M), ..., P_n(TM)) [M]$
\n $L_{is \text{Some polynomial}}$

For example

$$
n=4
$$
 $L = \frac{P_{1}CH_{1}}{3}[M]$
\n $n=8$ $L = \frac{P_{2}CTM-P_{1}CTM)^{2}}{45}[M]$

- Remark (Larie Ll 12) For manifold M, Poincaré duality satisfied for a local reason, so one might expect a "local" formula for \sqrt{m}
- Clune L24-225) Signature formula results from 2 onentations on L1 HQ \mathcal{L} conomology thy representing $X \mapsto M$ (X, Ω)

surgery theory gives converse

Thus (Browder, Novikov?) Let X be a simply R connected, poincaré complex of dimension $4k > 4$, let 5 be an oriented vector bundle on X of rK $4K$ Let $\eta_c \in \pi_\circ \times \mathbb{R}^3$ be such that the image of η_c in $H_{\Psi\mu}$ $(X;Z)$ is a fundamental class Then Question 3 answer is $y e s$

X satisfies the Hirzebruch signaturetheorem

Algebraic motivation
\nR field
\nX smooth, proper scheme /R dom n
\n
$$
S_X = Kähler diffusion
$$

\n $W_X = det R_X$
\n $W_X = det R_X$
\n $V \rightarrow X$ vector bundle rank r
\nGrothendieck - Seme duality Tr: $H^n(X, W_X) \rightarrow R$
\n $Perfect paray H^n(X, F) \otimes H^{n-q}(X)HomlF(X)$
\n $Def: V$ is pricht by the data (hc)
\n $L \rightarrow X$ lieahale and
\n $W_X \otimes det V \stackrel{e}{\approx} L^{\infty}$
\n $\sum_{T} Y$ is rechone of V
\n $\sum_{T} X$ is

$$
d_{e} (e_{1}A...Ae_{n}) = \sum_{i=1}^{k} (-1)^{i+1} \sigma(e_{i}) e_{1}A...A_{i}A...A_{k}
$$

\nTherefore *is a* pairing
\nKos (V, σ) \otimes Kos(V, σ) \rightarrow A^r V* In]
\n
\n1.2. *for the duality*
\nD: $\rho e_{1} f(x) \rightarrow \rho e_{1} f(x)$
\nD(V_r) = RHom(-, det V*In])
\n
\n
$$
det V^{*} = A'V^{*}
$$

\nKos (V, σ) is self-dual
\n
\n
$$
\cdot
$$
 Suppose V is oriented and n=0
\nThen (Kos (V, σ) \otimes Kos (V \circ X)) \rightarrow det V^{*} X_{is}²²
\n
\n1120

$$
\omega_{x\ell n1}
$$

Perfect pairing
\n
$$
H^{e}(X, \Lambda^{e}V^{a}d) \otimes H^{n-e}(X, \Lambda^{n-q}V^{a}d)
$$

$$
\iint_{V}^{n}(X, W_{x})
$$
\n
$$
\vee
$$
\n
$$
\vee
$$
\n
$$
\wedge
$$

references Lurie L-thy and sugery L1, L2 Morrow PCMI LI W 8803 L8, LIO