Please read collegiality statement and fill out questionnaire
L-theory, bilinear Forms, and surgery
L-theory, topological and algebraic L-theory cohomology theories
L is the letter after K
For context we begin with remarks on K-theory
algebraic topological
K-theory K-theory
Topological Ko
X top space
Vect
$$(X) =$$
 isomorphism classes of C-vector bundles
on X, \oplus "monoid"
There is no \bigcirc , but can be added formally
The Grothendieck group or group completion
of a monoid M is
 $K_0(M) = M \times M$

$$(a_{+}, a_{-}) \sim (b_{+}, b_{-}) \Leftrightarrow \exists k \in M \text{ s.t.}$$
$$a_{+} + b_{-} + K = b_{+} + b_{-} + \lambda$$

$$\begin{array}{l} {}^{ll}(\widehat{A}_{+}, \alpha_{-}) = \alpha_{+} - \alpha_{-} {}^{\prime \prime} \\ \hline \\ \underline{Def}: \\ \overline{K}^{o}(X) := group completion (Vect_{C}(X)) \\ equivalently (although needs proof) \\ \hline \\ \underbrace{Sisomorphism}_{bindles on X} (Lasses of C - vector S) \\ \hline \\ \underline{K}^{o}(X) = \underbrace{P] \sim (P_{o}] \oplus (P_{1}]}_{(P] \sim (P_{o}) \oplus (P_{1})} \\ \hline \\ \\ When \ O \Rightarrow P_{o} \Rightarrow P \Rightarrow P_{1} \Rightarrow O \\ \hline \\ \underbrace{En:}_{c} K^{o}(pt) \stackrel{s}{=} Z \\ \hline \\ Vector bundles on X \\ \hline \\ \underline{En:}_{c} K^{o}(pt) \stackrel{s}{=} Z \\ \hline \\ K^{c}(S^{2}) \stackrel{s}{=} Z \\ \hline \\ CO(1) \xrightarrow{T} P^{1} \stackrel{s}{=} S^{2} \\ \hline \\ \hline \\ Vector (O(1) - 1)^{2} \end{array}$$

Ex:
$$K^{2}(X) = K^{2}(X) \otimes Z$$
 $R^{2}(X) = ker(K^{2}(X) \rightarrow K(r^{+}))$
Both periodicity
 $K^{2}(X) \rightarrow K(E^{2}X)$ $E X = \frac{S^{2} \times X}{S^{2} \times \cdots \times X}$
Algebraic K-theory (Grothendicek 1950'S)
R ring
Def: Ko(R) := group completion of monoid
of isomorphism classes of
finite projective R-modules
 $\sum_{i=1}^{N} \frac{S}{1}$ isomorphism classes of
finite projective R-modules $\frac{S}{1}$
 P
 $CPJ \sim CP_{0}J \oplus CP_{1}J$
when
 $0 \rightarrow P_{0} \rightarrow P \rightarrow P, \rightarrow 0$
is a short exact Sequence

Rmk: A projective module over a local ring is
free, so projective modules are locally free
$$E \times :$$
 F field K. (F) $\xrightarrow{\cong} Z$
(PJ \mapsto dim P
(Aurou PCMI)
Exercise : R ring, I \subseteq R ideal contained
in the Jacobson radical, Then
Ko (R) $\xrightarrow{\cong}$ Ko (R/I)
In particular, for any local ring R,
Ko (R) \cong Z

There is a short exact sequence

$$0 \longrightarrow Cl(0) \longrightarrow K_0(0) \longrightarrow Z \longrightarrow 0$$

 $CIJ \mapsto CIJ - [0]$
 $CPJ \longrightarrow rank_0 P$

(Morrow PCMI)
Exercise: Check this short exact sequence.
Why is the map
$$CL(O) \rightarrow K_0(O)$$

a well-defined group homomorphism

$$Z \longrightarrow X$$
 irreducible closed subscheme
 $O_Z = Functions$ on $Z = structure$ sheaf of Z
There exists a resolution (needs proof)

Bott periodicity: R°(P'AX) = K°(X) A'-htpy theory

Table from 1 Minus Hemition K-theory	Mrre 22 n K-theory	"m Hemitian c K-theory -	odulo obordism 'r D-theory
input:	Projective module	projective module with quadratic or bilinear form	projective module with quadratic or bilinear form
for R- vector ' Spaces	dimension	dimension and signature	Signature
classical : Version	K٥	Grothendieck- Wult group GW	Witt group W
invariants : of manifolds	Euler characteristic	Euler char 8 8ignature	Signature
local to global principle	Gauss - Bonnet thm		Mirzebruch Signature Theorem

$$\frac{e_{X}}{e_{X}}: \text{ Vector spaces} \\ \text{modules over a comm ring} \\ \text{Chain cplxs of modules} \\ \text{Stable htpy Cat} \\ \text{A}^{1} - \text{stable htpy Cat} \\ \text{A}^{1} - \text{stable htpy Cat} \\ \text{Finite dim'l replaced by ...} \\ \text{Ae Ob(E) is olualizable if $\exists Bob(E) \\ \text{and } 1 \xrightarrow{n} A \otimes B, B \otimes A \xrightarrow{e} I \\ \text{s.t.} \qquad A \xrightarrow{n \otimes N} A \otimes B = B \otimes A \otimes B \xrightarrow{n} B \\ \xrightarrow{I} B \xrightarrow{n} B \otimes A \otimes B \xrightarrow{n} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \otimes I \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \\ \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \xrightarrow{I} B \xrightarrow{I} B \xrightarrow{I} B \otimes A \otimes B \xrightarrow{I} B \xrightarrow{I}$$$

Notation: DA = B

$$M^{V} \simeq \frac{\mathbb{P}(\nabla \otimes 1)}{\mathbb{P} \vee} \qquad For \ M \ compact, \ M^{V} = \underset{eqt}{} \stackrel{qft}{} \stackrel{(M)}{} \stackrel{(M)}{} \stackrel{(M)}{} \stackrel{(M)}{} \simeq \sum^{n} M \qquad E_{X}: \ Th (\mathbb{P}^{n}, m^{(D)}) \simeq \mathbb{P}^{n+n} \qquad (M_{t}) \wedge M^{-TM} \longrightarrow 1 \qquad (M_{t}) \wedge M^{-TM} \longrightarrow 1 \qquad M^{*}(1) \cong \mathbb{Z}$$

$$Poly \ M^{*}, \ Kinneth \qquad H^{*}(M) \otimes H^{*}(M^{-TM}) \rightarrow H^{*}(1) \cong \mathbb{Z}$$

$$Perfect \ pairing \qquad H^{2}(M) \otimes H^{-2}(M^{-TM}) \rightarrow \mathbb{Z}$$

$$Thom \ isomorphism (TM \ oriented) \ H^{2}(M^{-TM}) \cong \mathbb{Z}$$

$$Sign \ s^{t} shift: \qquad H^{*}(M) \cong H^{**t}(\mathbb{Z}M) \qquad H^{2+n}(M) \cong \mathbb{Z}$$

$$Sign \ s^{t} shift: \qquad H^{*}(M) \cong H^{**t}(\mathbb{Z}M) \qquad H^{2+n}(M) \cong \mathbb{Z}$$

$$Perfect \ pairing \qquad H^{2}(M) \otimes H^{-2}(M) \rightarrow \mathbb{Z}$$

$$Poincare \qquad Mainty$$

$$Prince \ fundamental \ class \ is \ described \ by \ the \ structure \ maps \ in \ 1 \longrightarrow M_{t} \Lambda^{-TM}$$

$$as \ follows:$$

$$M \longrightarrow \mathbb{R}^{k} \quad \text{embedding}$$

$$TM + N_{M} \mathbb{R}^{k} \simeq 1^{k}$$

$$\implies -TM = N_{M} \mathbb{R}^{k} - 1^{k}$$

$$\implies M^{-TM} \simeq 2^{-k} M^{N_{M} \mathbb{R}^{k}}$$

 $\frac{N}{\text{orintation}}$ HR-CR-m) (M)

image of C is
$$(M] \in H_n(M)$$

Thus: Let
$$M$$
 be a simply connected, oriented, smooth
manifold of dimension n . Then there exists
a vector bundle S on M of dimension
 n C namely the tangent bundle) and a class
 $M(= \Sigma - \kappa C)$ in $T_0 M^{-S}$ such that
the image of Z_m under the composition

$$\pi_{\mathcal{S}}(\mathcal{M}^{-3}) \longrightarrow \mathcal{H}_{\mathcal{S}}(\mathcal{M}^{-3}; \mathbb{Z}) \cong \mathcal{H}_{\mathcal{N}}(\mathcal{M}; \mathbb{Z})$$
Then iso for orientation

is a fundamental class of M

Question 3: Let X be a simply connected Poincaré complex of dimension n. Suppose we are given a vector bundle 3 of dimension n on X and a homotopy class $M \in TTo X^{-3}$ whose image in $M_n(X, \mathbb{Z})$ is a fundamental class for X.

Does there exist a smooth manifold M of
dim n and a htpy equivalence
F:
$$M \xrightarrow{\longrightarrow} X$$

s.t. $F^* \underbrace{\zeta} = T_M$ in KO(X) and $F^* \underbrace{\eta} = \underbrace{\eta}_M e \underbrace{M^{T_N}}_{h = M_M} e \underbrace{M^{T_N}}_{h = M$

Signature
$$(\langle , \rangle) := a - b$$

Let $\nabla_{M} = Signature (\langle , \rangle)$

Mirzebruch Signature formula:

Let
$$P_i(fM) = (-1)^i C_{2i} (TM \otimes C) \in H^{4i}(M; \mathbb{Z})$$

 $P_i(fM) = (-1)^i C_{2i} (TM \otimes C) \in H^{4i}(M; \mathbb{Z})$
 $C \text{ Chern classes}$
 $T_M = L(P_i(TM)_{1..., P_k}(TM))[M]$
 $L \text{ is some polynomial}$

For example

$$n=4 \qquad L = \frac{P_{i}(T_{M})[M]}{3}$$

$$n=8 \qquad L = \frac{P_{i}(T_{M})[M]}{45} \qquad (M]$$

- <u>Remark</u> (Lurie U 12) For manifold M, Poincare duality satisfied for a local reason, so one might expect a "local" formula for TM
- Clurie L24-L25) Signature formula results from 2 orientations on LAHQ Cohomology thy representing XHM(X;Q)

Then (Browder, Movikor?) Let X be a simply connected, poincaré complex of dimension 4K>4, let 5 be an oriented vector bundle on X of rK 4K let METTOX⁻³ be such that the image of M in Hym(X;Z) is a fundamental class Then: Question 3 answer is X es

Algebraic motivation
R field analogue compact
X smooth, proper scheme /k dim n

$$SZ = Kähler differentials X/K \cong T^*X$$

 $W_x = det \Omega_X$
 $W = det \Omega_X$
 $V \to X$ vector bundle rank r
Grothendiec K - Serre duelity $Tr: H^n(X, W_X) \to K$
perfect pairing $H^n(X, F) \otimes H^{n-q}(X, Han(F, W_X)) \to k$
 $\underline{DeF}: V$ is oriented by the data (h, e) floally
 $L \to X$ line bundle and
 $W_X \otimes det V \stackrel{e}{=} L^{\otimes 2}$
 $V \stackrel{\to}{\to} X = section of V$
 $\underline{DeF}: The Koszul complex Kos(V, τ)
is Kos(V, τ) deg n
 $O \to \Lambda^n V \stackrel{*}{=} \Lambda^{n-1} V \stackrel{*}{\to} \dots \to \Lambda^n V \stackrel{*}{=} V \stackrel{*}{\to} O \to O$$

$$d_{k} (e_{i} \wedge \dots \wedge e_{k}) = \sum_{i=i}^{k} (-i)^{i+1} \nabla (e_{i}) e_{i} \wedge \dots \wedge e_{i} \wedge \dots \wedge e_{k}$$
There is a pairing
Kos $(V, \tau) \otimes Kos(V, \tau) \longrightarrow \Lambda^{r} V^{*} [n]$
i.e. for the duality

$$D : \operatorname{Perf} (X) \longrightarrow \operatorname{Perf} (X)$$

$$D (C_{*}) = \operatorname{RHom} (-, \operatorname{det} V^{*} [n])$$

$$\operatorname{det} V^{*} = \Lambda^{r} V^{*}$$
Kos (V, τ) is self dual
· Suppose V is oriented and $n = r$
Then $(\operatorname{Kos} (V, \tau) \otimes \chi) \otimes (\operatorname{Kos} (V \otimes \chi) \longrightarrow \operatorname{det} V^{*} \chi_{GS}^{*2})$

$$H^{e}(X, \Lambda^{e}V^{*} \otimes \chi) \otimes H^{n-e}(X, \Lambda^{n-*}V^{*} \otimes \chi)$$

references Lurie L-thy and sugery LI, L2 Morrow PCMI 21 W 8803 L8, L10