Atryah Duality:	M manibold
$D(S^{\infty}M)$ $\approx M^{-TM}$	
C View M in Sible hyp theory	
$V \rightarrow M$ vector bundle	
Hom space	M or Th (V) $M^V = \frac{Disk bundle}{sphere bundle}$
$M^V \approx \frac{P(C V \oplus I)}{P V}$	
$For M compact, M^V = \begin{matrix} \frac{1}{p} m V \\ \frac{1}{p} V \end{matrix}$	
$Ex:M I^n \approx \sum^n M$	
$Ex:M I^n \approx \sum^n M$	
$Ex:M I^n \approx \sum^n M$	
V Orisated, $For H \Rightarrow Thom isomophisw$ $H^n(M^V)$	
$V \approx KO(X)$ $V = V_0 \bigcup V_2$ W_1 and M have the oh W_2 and W_1 and W_2 are W_1 and W_1 and W_2 are W_1 and W_1 are the W_2 and W_2 and W_1 are the W_2 and W_2 and W_1 are the W_2 and W_2 are W_2 and W_1 are the W_2 and W_2 are W_2 and W_1 are W_2 and W_1 are W_2 and W_1 are W_1 and W_1 are W_1 and W_1 and W	

$$
E\times: (\mathbb{P}^{1})^{-T M} \approx (\mathbb{P}^{1})^{-\theta(x)} \approx (\mathbb{P}^{1})^{\theta(-2)-1} \approx \mathbb{Z}^{-2}(\mathbb{P}^{1})^{\theta(-2)}
$$
\n
$$
0 \rightarrow \theta C^{-2} \Rightarrow \theta \otimes \theta \rightarrow \theta C^{12} \rightarrow 0
$$
\n
$$
A\text{hych duality} \Rightarrow \text{Poincaré duality} \qquad \frac{\approx \mathbb{Z}^{-2}(\mathbb{P}^{1})^{\theta(-2)}}{\mathbb{P}(0c)}
$$
\n
$$
1 \rightarrow M_{+} \land M^{-TM} \qquad \text{Hirzebuch}
$$
\n
$$
1 \rightarrow M_{+} \land M^{-TM} \qquad \text{Hirzebuch}
$$
\n
$$
A\text{PPly } H^{*}, \text{Kannetv}_{[}
$$
\n
$$
H^{*}(M) \otimes H^{*}(M^{-TM}) \rightarrow H^{*}(I) \cong \mathbb{Z}
$$
\n
$$
P^{2}F^{2} \qquad \text{Hif } (M) \text{ in } \mathbb{Z} \times \mathbb{Z}
$$
\n
$$
H^{*}(M) \otimes H^{*}(M^{-TM}) \rightarrow \mathbb{Z}
$$
\n
$$
H^{*}(M) \cong H^{*+1}(\mathbb{Z}M) \qquad H^{*+1}(M) \cong H^{*+1}(\mathbb{Z}M)
$$
\n
$$
\Rightarrow H^{*+1}(\mathbb{Z}^{n})
$$
\n
$$
\Rightarrow \text{Perfect pairing} \qquad H^{*+1}(M) \rightarrow \mathbb{Z} \qquad \text{Poincaré duality}
$$
\n
$$
H^{*}(M) \otimes H^{*+1}(M) \rightarrow \mathbb{Z} \qquad \text{Poincaré duality}
$$
\n
$$
\Rightarrow \text{Perfect principal class } \mathbb{C}M \text{ is the mass in the}
$$
\n
$$
\text{described using the maps in the}
$$

drefinition of the dual DM
\n
$$
M \rightarrow \mathbb{R}^{k}
$$
 embedding
\n $TM \oplus N_{m} \mathbb{R}^{k} \cong 1^{k}$
\n $\Rightarrow TM = N_{m} \mathbb{R}^{k} - 1^{k}$
\n $\Rightarrow M^{-T}M \approx \sum n_{m} \mathbb{R}^{k} \times \mathbb{R}^{k}$
\nThen collapse map
\nC: $S^{k} = \mathbb{R}^{k} \times 2\infty 3 \rightarrow M \mathbb{R}^{k} \cong S^{k}$
\n $\therefore S^{k} = \mathbb{R}^{k} \times 2\infty 3 \rightarrow M \mathbb{R}^{k} \cong S^{k}$
\n $\therefore S^{k} = \mathbb{R}^{k} \times 2\infty 3 \rightarrow M \mathbb{R}^{k} \cong S^{k}$
\n $\therefore S^{k} = \mathbb{R}^{k} \times 2\infty 3 \rightarrow M \mathbb{R}^{k} \cong S^{k}$
\n $\therefore M \times M$
\n $\therefore M \times M$ <

image of C is	M	elln(M)
Thus: Let M be a simply connected, oriented, smooth manifold of dimension n. Then there exists a vector bundle 5 on M of dimension nC namely the tangent bundle) and a class M ₀ ($z_{-k}c$) in $\pi_{0}M^{-5}$ such that the image of 7m under the composition $\pi_{0}(M^{-3}) \rightarrow H_{0}(M^{-3}, Z) \approx H_{0}(M,Z)$		
is a fundamental class of M		

Question 3 : Let X be a simply connected Poincaré complex of dimension n. Suppose we are given ^a vector bundle 3 of dimension ⁿ on ^X and a homotopy class $\eta \in \pi_0 \times$ $\frac{3}{5}$ whose image in $H_n(x,z)$ is a fundamental class for X .

Does there exist a smooth manifold M of
\ndion n and a htyp equivalence
\n
$$
F: M \rightarrow X
$$

\n5.7. $F^T S = T_M$ in KOLX) and $F^T \eta = \eta_M \in M^{T} M$.
\n
\n $A_n \oplus$ answer :
\nAssume n = YR
\nnon-deg symmetric bilinear form
\n $\langle , \rangle : H^{2L}(X; \mathbb{R}) \times H^{2K}(X; \mathbb{R}) \rightarrow H^{4K}(X; \mathbb{R}) \xrightarrow{[X]} \mathbb{R}$
\n
\nfrom Poincaré duality

Sylvester's Hun Cwe'll see generalization next time)

$$
\begin{aligned}\n\frac{1}{3} \text{ basis } \{x_{1, ..., x_{a, x_{a_{1}}...x_{b_{t_{a}}}}} \} \text{ for } h^{2k}(x; \mathbb{R}) \\
\text{s.t. } < x_{i,x_{i}} > = \begin{bmatrix} 1_{1, ..., x_{a_{i}}} & 1_{1, ..., x_{a_{i}}}\\ 1_{1, ..., x_{a_{i}}}\\ 1_{1, ..., x_{a_{i}}}\end{bmatrix}\n\end{aligned}
$$

Signature
$$
(\langle , \rangle) := a - b
$$

\nLet $\nabla_{M} = \nabla_{\nabla_{M}}$
\nHirzebruch Signature Formula
\nLet $P_{i}(\overline{m})$ i=1, . ., R denote the Pohyagin classes
\noff TM
\n $P_{i}(\overline{m}) = (-1)^{i} C_{2i} (\nabla_{M} \otimes \mathbb{C}) \in H^{1i}(M; \mathbb{Z})$
\n C Chern classes
\n $\nabla_{M} = L(P_{i}(\overline{m}), ..., P_{n}(\overline{m})) [M]$
\n $\Delta_{i_{1}} \text{ some polynomial}$

For example

$$
n=4
$$
 $L = \frac{P_{i}CL_{M}}{3}[M]$
\n $n=8$ $L = \frac{P_{i}CT_{M}}{9} - P_{i}CT_{M}^{2}[M]$

Remark (Lurie Ll 12) For manifold M, Poincaré duality satisfied for a local reason, so one might expect a "local" formula for τ_M Clune L24-225) Signature formula results from 2 onentations on L1 HQ \mathcal{L} conomology thy representing $X \mapsto M$ (X, \emptyset) surgery theory gives converse They (Browder, Novikov?) Let X be a simply \mathcal{C} onnected, poincaré complex of dimension $\forall k > q$ let 5 be an oriented vector bundle on X of rk $4K$ let $\eta_c \in \pi_\circ \times \mathbb{R}^3$ be such that the image of η_c in $H_{V\!u}(X;Z)$ is a fundamental class Question 3 answer is yes

 \Longleftrightarrow X satisfies the \dot{H}_{ir} zebruch signature theorgy

Algebraic motivation for L-theory
\nR field
\nX smooth, proper scheme /R dim n
\n
$$
S_X =
$$
 Kähler differahals $X/k \cong T^*X$
\n $W_X = det S_X$
\n $V \rightarrow X$ vector bundle rank r
\nGrothendieck - Seme duality tr: Hⁿ(X, W_k) $\rightarrow R$
\nPerfect pairs, Hⁿ(X, F) $\gg H^{n-2}(X, Hx(E, W)) \rightarrow R$
\nDef: V is oriented by the data (Lc)
\n $L \rightarrow X$ line bundle and
\n $W_X \gg det V \cong L^{\otimes 2}$
\n $V \Rightarrow X$ re section of V
\nDef: The Koszul complex Kos (V, r)
\n \rightarrow Kos CV, r) deg n deg
\n $O \rightarrow A^r V \stackrel{*}{\rightarrow} A^{r-1} V \stackrel{*}{\rightarrow} ... \rightarrow A^r V \stackrel{*}{\rightarrow} V^* \stackrel{*}{\rightarrow} O \rightarrow O$

$$
d_{\ell} (e_{i}A...Ae_{n}) = \sum_{i=1}^{k} (-1)^{i+1} \text{Tr}(e_{i}) e_{i}A...A_{i}^{T}A...A_{k}
$$

\nThere is a pairing
\nKos(V, T) \otimes Kos(V, T) \rightarrow $\Lambda^{r} V^{*}[A]$
\ni.e. for the duality
\nD: $\text{Perf}(X) \rightarrow \text{Perf}(X)$
\n $\mathbb{D} (C_{*}) = \text{RHom} (-, \text{det} V^{*}[A])$
\ndet V^{*} = $\Lambda^{r} V^{*}$
\nKos(V, T) is self-dual

Suppose V is oriented and n=f
Then
$$
(Kos(V,r)\otimes\chi) \otimes (Kos(V\otimes\chi)) \rightarrow detV\otimes\chi_{G}^{\otimes 2}
$$

112e
WxG1

Perfect pairing
\n
$$
H^{e}(X, \Lambda^{e}V^{r_{\theta}}X) \otimes H^{n-e}(X, \Lambda^{r_{\theta}}Y^{r_{\theta}}X)
$$

\n $H^{n}(X, \omega_{x})$
\n $W^{n}(X, \omega_{x})$
\n R
\n $W^{n}(X, \omega_{x})$
\n R
\nThis is an Euler class in A-hfay thy
\n $Chachmann-U, Lwire-Raksif for hf bundles, Kopkins, Sene)$
\n $Witt groups$

R commutative ring
$$
M
$$
 line bundle on Spec R
in. Projectine R module rank l
 $\sigma: M \rightarrow M$ $\sigma^2 = l_m$ $\sigma^2 = l_m$

Proof:
$$
(R) = \text{finitely generated projective } R
$$
-modules

\nLet: $0_{\mu}: P_{rg}(R)^{op} \xrightarrow{ex} P_{rg}(R)$

\nProof: $P \mapsto \text{Hom}_{R}(P, M)$

\nis the duality associated to M

\nEx: When M is the symmetric linearly

\n $D_{m} = D$

\nHom_{R}(P \otimes P, M) = M-valued bilinear forms on P

\n $\mathcal{O}_{C_{1}} \cong \text{ads by } \sum_{i=1}^{n} \sum_{j=2}^{n} \sum_{j=1}^{n} V_{ij}$

\nHom_{R}(P \otimes P, M)_{C_{2}} = M-valued quadratic forms

\n $\sum_{i=1}^{n} S_{ij} m$

\nHom_{R}(P \otimes P, M)_{C_{2}} = M-valued symmetric plane

Exercise 1 and L1: Show that M-valued quadratic
\nforms are equivalently described by
\na) b: P@P
$$
\rightarrow
$$
 M symmetric bilinear
\nb) e: P \rightarrow M c₂ s.t.
\n $q(rx)=r^2q(x)$
\n $l(x+y)=q(x)-l(y)=[b(x_{1}y)]$
\n $b(x,x)=q(x)+r(n)$
\n $l(tx)=r^2q(x)$
\nand
\n $l(tx)=r^2q(x)$
\n $l(tx)=r^2q(x)$

$$
2(x+y)-e(x)-e(y) = 5(x,y)+5(y,x)
$$

\nDefine: $b = 5ym$ 6
\n $b(x,y)= 5(xy)+\sqrt{6}(y,x)$
\n $\pi_{n} M_{c_{2}} = 5(k+y)+\sqrt{6}(y,x)$ \Rightarrow
\n $2(x+y)-e(x)-e(y) = b(x,y)$ in $M_{c_{2}}$
\n $\cdot b(x_{i}x_{i}) = 5(k,x)+\sqrt{6}(x,x)$
\n $\cdot b(x_{i}x_{i}) = 2(kx)+\sqrt{6}(x,x)$
\n $\therefore b(x_{i}x_{i}) = 2(kx)+\sqrt{6}(x,x)$
\n $\therefore b(x_{i}x_{i}) = e(x)$ in $M_{c_{2}}$
\n $\therefore b(x_{i}y_{i}) + \sqrt{6}(y_{j}x_{i}) = b(x_{i}y_{j}) = \sqrt{6}(y_{i}x) \text{ in } M$
\nSuppose P is free. Let $\{e_{i},...,e_{n}\}$ be
\na basis
\nFor $i \leq j$ let $\overline{b}(e_{i},e_{j}) = b(e_{i},e_{j})$

and
$$
\tilde{b}(e_{j}, e_{i}) = 0
$$

\nChoose *lifts* $q(e_{i})$ in *M* of $q(e_{i})$ in $M_{c_{2}}$
\nLet $\tilde{b}(e_{i}, e_{i}) = q(e_{i})$
\nextended \tilde{b} be bilinear.
\nWe satisfy $b = Sym \tilde{b}$ by (\tilde{x})
\nand bilinearly.
\nQ: Is this really well defined in $Ham_{c}(Ref, M)_{c_{i}}$

What about the case with P not free

" An M-valued form bis Recfect or if the associated map $P \cong D_m P$ is an isomorphism

If
$$
P \in \text{Proj}(R)
$$

\ndeline
\nhyp(P) = (P $\oplus D_{M}P$, ev)
\n $(P \oplus D_{M}P) \otimes (P \oplus D_{M}P) \rightarrow M$
\nis a symmetric, uninodular M-valued
\nExercise: Show $hp(P)$ is canonically a quadratic
\n \uparrow A symmetric uninodular from b on
\nP is called metabolic if 3 a Lagrangian
\n $h \in L \subseteq P$ Le $Pr_{G}(R)$ s.t.
\n $O \rightarrow L \rightarrow P \stackrel{G}{\simeq} D_{M}P \rightarrow D_{M}L \rightarrow O$
\nis exact $(\Rightarrow b|_{L} = o)$
\n• if $Ch_{P}(R)$ is quadr and L α

Lagrangian tor b, we say that L is ^a quad Lagrangian if in addition $\bigcup_{l} = 0$ Land LI
Exercise: Let (b, q) be a quadr form on P show: if I a quadr Lagrangian L, then $(b, q) \cong h_{\chi \rho} (L)$ I owe you hint Show that not every sym metabolic form is hyperbolic $\frac{1}{2}$ olasses

$$
\frac{12eF: M_{T}^{S}(R;M)}{N^{S}(R;M)} = \frac{15 \text{ cm. Classes}}{M \cdot valueled} \times \frac{18325}{M \cdot valueled} \times \frac{18325}{M \cdot valueled}
$$

$$
W_{\pi}^{q}(R;M) = \sum_{\sigma f}^{is_{\sigma\pi}} \begin{matrix} classies \\ transd & \rho \end{matrix} (R;M) = \begin{matrix} 1 & \text{using } 1 & \text{using } 1 & \text{using } 1 & \text{and } 1 & \text{and } 1 & \text{and } 1 & \text{using } 1 & \text{for }
$$

references

- o Lurie L1
a Land L1
-