Surgery following Raniki Ch I

$$M$$
 m-manifold
with embedding $S^n \times D^{m-n} \longrightarrow M$
 Def : The Surgery is the new m-manifold
 $M' = M - (S^n \times D^{m-n}) \cup (D^{n+1} \times S^{m-n-1})$
 $S^n \times S^{m-n-1}$

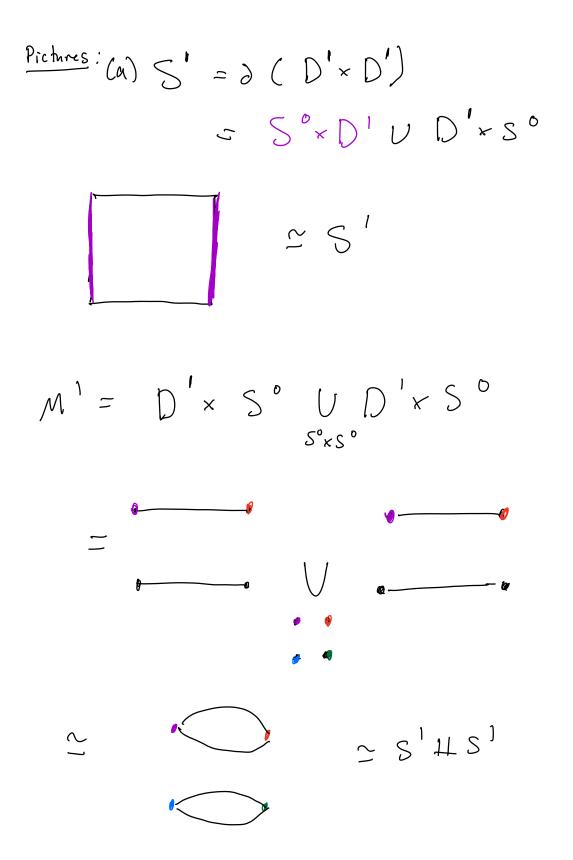
$$S^{n} \times D^{n-n} \qquad S^{m}$$

$$M' = D^{n+1} \times S^{m-n-i} \qquad D^{n+i} \times S^{m-n-i}$$

$$= S^{n} \times S^{m-n-i}$$

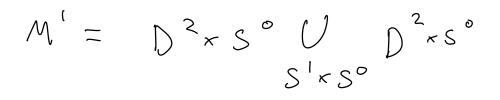
$$= S^{n+i} \times S^{m-n-i}$$

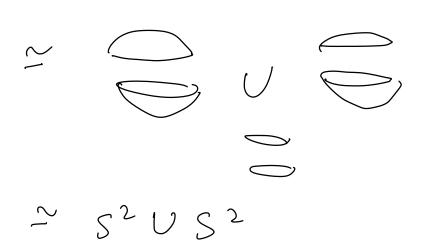
$$\frac{R_{m}k}{K} : For m=n, \quad M' = \beta$$



(b)
$$S^{2} = \Im (D^{2} \times D^{1})$$

 $= S^{1} \times D^{1} \cup D^{2} \times S^{\circ}$
 $S^{1} \times S^{\circ}$
 $S^{1} \times S^{\circ}$

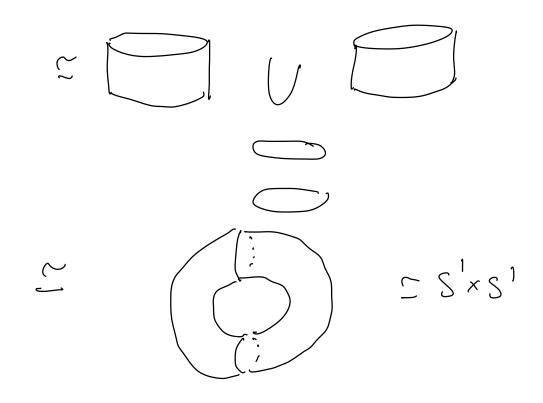




$$(c) S^{2} \simeq \Im (D^{2} \times D^{1})$$
$$\simeq S' \times D' U D^{2} \times S^{\circ}$$
$$S' \times S^{\circ}$$

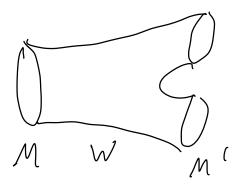
$$M' \cong S' \times D' \cup S' \times D'$$

S' \times S'



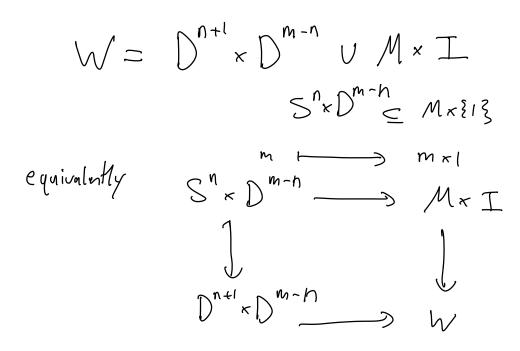
Ex: Mumford's plumbing game

$$V \longrightarrow P^{m}$$
 complex variety
 $P \in V$ isolated Singularity
 $M = V \cap S_{\epsilon,p}^{m-1} \iff Sphere of radius \epsilon$
 $J \qquad S^{m-1}$
 S^{m-1}

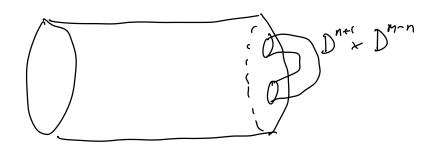


· A Surgery on M determines a cobordism

between M and M' called the trace W of the Swgery

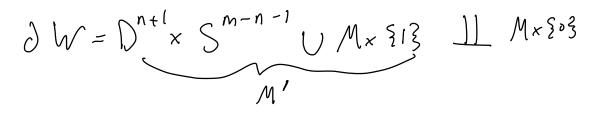


Picture:

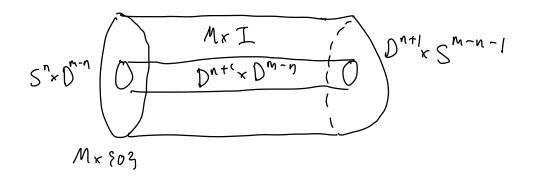


<u>Μκ</u>ξο<u>ξ</u>

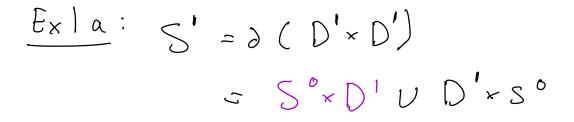
 $W = M \times I V D^{n+i} \times D^{m-n}$

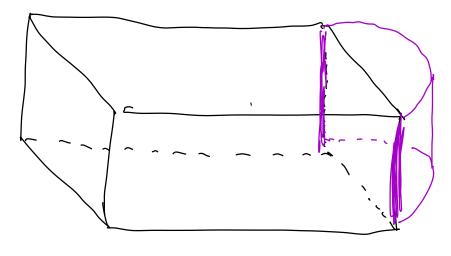


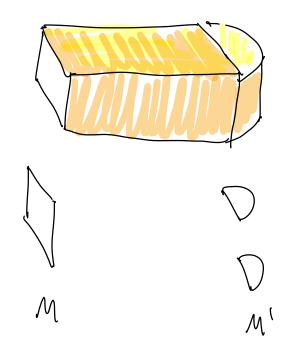
More symmetric picture



 \mathcal{W}







$$\begin{aligned} &\mathcal{L} = \mathcal{D}^{Perf}(\mathbf{R}) \\ &\mathcal{B} : \mathcal{L}^{oP} \leftarrow \mathcal{C}^{oP} \longrightarrow Sp \\ &\mathcal{B}(\mathcal{P}_{o}, \mathcal{Q}_{o}) = Mor_{\mathcal{C}}(\mathcal{P}_{o} \otimes \mathcal{Q}_{o}, \mathcal{M}(-n]) \end{aligned}$$

$$Q^{2}(P,) = B(P,P)_{hc_{2}}$$

 $Q^{s}(P,) = B(P,P)_{hc_{2}}$

Let (X,q) and (X',q') be Poincaré objects Def: A cobordism From (X, q) to (X, ?) is the data: (i) LEE and maps a: L -> X $x^{1} \rightarrow X^{l}$ (ii) a path joining the images of q and q' in So Q(L) path gives a homotopy between the two $L \rightarrow D_Q(L)$ in the diagram: This maps $X \leftarrow \alpha \land \Box \xrightarrow{\alpha'} X'$ e# Ct l $\mathbb{D}_{Q} \times \xrightarrow{\mathbb{D}_{Q}} \mathbb{D}_{L} \leftarrow \mathbb{D}_{Q} \times \mathbb{D}_{Q} \times \mathbb{D}_{Q}$

This
$$Fib(d) \rightarrow L \xrightarrow{\alpha'} X'$$

 $\int \mathcal{L}_{\alpha}^{\prime} \mathcal{D}_{\alpha} \chi'$
 $D_{Q} L \leftarrow D_{Q} X'$
 $Thus, there is an induced map
Fib(d) \xrightarrow{U} Fib(D_{Q} (d'))$
We require that U is an equivalence
 \underline{Rmk} : Informally Fib $d = \mathcal{L}$ cofib(d)
 $= \mathcal{D}_{Q} (X/L)$
and Fib($D_{Q} (a')$) = $D_{Q} (cofib d')$
 $= D_{Q} (X'/L)$

So u is an equivalence $SL(X/L) \xrightarrow{u} D_Q(X'/L)$

Let
$$C^{*}(-;\mathbb{Z})$$
: SSet $\longrightarrow \mathcal{D}^{\text{od}}(\mathbb{Z})$ denote the
functor taking M to its singular cochain complex
and let
 $\mathcal{Q}_{M}: C^{*}(M;\mathbb{Z}) \otimes C^{*}(M;\mathbb{Z}) \longrightarrow C^{*}(M;\mathbb{Z}) \xrightarrow{[M]} \mathbb{Z}[-n]$

$$Q_{M} \in \Sigma^{\infty} Q_{Z[-m]}^{S(C^{*}(M;Z))}$$
 be the point of the O-space
of $Q_{Z[-m]}^{S} (C^{*}(M;Z))$ corresponding to the
intersection pairing

Let
$$L = C^{*}(W; \mathbb{Z})$$
 giving
 $\xrightarrow{a'} C^{*}(M; \mathbb{Z})$

d[w] = [M] - [M']

- giving a path between the images of Q_M and Q_M in $\Sigma^{\infty}Q^{\infty}(1)$
- \mathcal{N} cofib ($(\mathcal{M};\mathbb{Z}) \in \mathcal{A} (\mathcal{W};\mathbb{Z})) \cong$ $C^*(W, M; \mathbb{Z})$ $f_{ib} \left(Mor\left(C^{\ast}(M;\mathbb{Z})\right) \mathbb{Z}[-m] \right) \xrightarrow{\mathbb{D}_{\mathcal{Q}} \alpha^{1}} Mor\left(L \mathbb{Z}[-m] \right) \xrightarrow{\mathbb{D}_{\mathcal{Q}}} Mor\left(L \mathbb{Z}[-m] \right) \xrightarrow{\mathbb{D}_{\mathcal{Q}}} Mor\left(L \mathbb{Z}[-m] \right) \xrightarrow{\mathbb{D}_{\mathcal{Q}}} Mor\left(\mathbb{Z}[-m] \right) \xrightarrow{\mathbb{D}_{$ $\mathbb{D}_{Q}\left(\operatorname{cof;b} \mathcal{A}'\right) = \mathbb{D}_{Q}\left(\mathbb{Z}\mathcal{C}^{*}(\mathcal{W}, \mathcal{M}')\right)$ $Mor_{\mathcal{O}} + (\mathcal{M}, \mathcal{M}') [-(\mathcal{M}, \mathcal{M}')]$ $U: C^{\ast}(W, M; \mathbb{Z}) \xrightarrow{\cap [W]} C_{\ast}(W, M'; \mathbb{Z}) [-C^{m+1}]$ Poincaré duality implies the induced map degrees $H'(W,M;Z) \xrightarrow{\alpha[W]} H_{m+1-i}(W,M;Z)$ is an iso

$$=) \quad \text{U is an equivalence} \\ \xrightarrow{(m+1)-\dim'l} \\ \text{Thus an oriented } a geometric (obordism gives an algebraic (obordism b/w Poincaré objects of ($\mathcal{D}^{\text{Perf}}(Z), \mathcal{Q}^{\text{S}}_{ZC-mj}$) \\ \xrightarrow{\text{Ex When } (X, q) = (0, q) \text{ is the } \\ \end{array}$$

O Poincaré object a cobordism is
(i)
$$L \xrightarrow{a'} X'$$

(ii) a null homotopy of the image of el
in $\Sigma^{\infty}Q(L)$

Lurie [5 Prop 5: Cobordism of Poincaré objects
of
$$(Ce, Q)$$
 is an equivalence relation

We have

$$L_n(L_e, Q) = S_{cobordism} classes of S_{Poincare} objects of S_{CE, S^nQ}$$