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A manifold M is oriented in the

classical sense iff
the tangent bundle TMM is oriented

with respect to Hk ordinary singular co homology
with Z coefficients

Our current goal is to show

thy let M be a compact smooth oriented

manifold Then TMM has a canonical

orientation with respect to H Data Is
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Let V be a vector bundle
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RMI Lurie's notation replaces
M by its associated

spherical fibration 3
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I think of QconstV perhaps erroneously as follows
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For the versions twisted by M

Dold Kan correspondence
connective chain completes a simplicial

abelianequiv
groups
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Corresponds to
the complex of sheaves

concentrated in degree r rank v

with the sheaf given by the locally

free R module with transition functions

equal to those from detV

So for R B Th VIA HIR
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is the complex detter'd of IRmodules

and
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OC1 II Thus we may assume

all transition functions are mult by
1 or 1 which are in Z

This gives meaning
to detvery in
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Back to orienting TM with respect to
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Since M is oriented we have an equivalence
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This gives
an equivalence of the corresponding

CO invertible elements of Shucons M D
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Giving a canonical orientation of TM
with

respect to It

Alternate description of the orientation for Qs

We give a Thom class for TM

i e a canonical element of 1 The Tm
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Since M is oriented dettm is trivial

cobordism classes of
Poincaré objects
in ShreongCM Dre f z

with Ot QS orQE
BCP Q Mor P.IQ Z

ShyonstenDPertz

The constant sheaf I equipped with

multiplication
Z Z Z

gives a unimodular symmetric bilinear form on Z










