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Abstract. We show the A1-Euler characteristic of a smooth, projective scheme over a
characteristic 0 field is represented by its Hochschild complex together with a canonical
bilinear form, and give an exposition of the compactly supported A1-Euler characteristic
χc
A1 :K0(Vark) GW(k) from the Grothendieck group of varieties to the Grothendieck–

Witt group of bilinear forms. We also provide example computations.

1. Introduction

The Euler characteristic is one of the first combinatorial topological invariants. Leonhard
Euler originally introduced it for polyhedra, claiming that for any Euclidean polyhedron it
is the case that for any polyhedron

# vertices−# edges + # faces = 2.

Although this is true for any convex polyhedron, this is a surprisingly difficult fact to state
formally and correctly, and depends intrinsically on what one means by “polyhedron”. The
Euler characteristic turns out to be a topological invariant, which is most classically defined
for a finite CW complex X to be

χ(X)
def
=

∞∑
i=0

(−1)i dimQHi(X;Q).

To make the Euler characteristic well-defined for non-compact sets it is necessary to replace
homology with cohomology with compact support; with this definition it follows that for a
closed subspace Z of X with open complement U ,

(1.1) χ(X) = χ(Z) + χ(U).

If instead of general topological spaces we consider only varieties (or schemes) over C, the
Euler characteristic of a variety X can be defined by the formula

χ(X)
def
= χ(X(C)) =

∞∑
i=0

(−1)i dimQH
i
c(X(C);Q) ∈ Z.

This invariant can be elevated by replacing Q with any field k, and retaining more co-
homological information. Instead of taking dimensions, we can consider the vector spaces
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H i
c(X(C); k) as elements of K0(k), the Grothendieck group of the ground field. This gives

the new definition

χk(X)
def
=

∞∑
i=0

(−1)i[H i
c(X(C); k)] ∈ K0(k).

As K0(k) ∼= Z, with the isomorphism given by the dimension, this may not appear to be a
useful observation.

However, in the case when X is a smooth, projective variety, X(C) is a manifold and
Poincaré duality states that there is a duality on the cohomology. By keeping track of
the duality, we obtain an enriched Euler characteristic: such an Euler characteristic takes
values in bilinear forms, rather than vector spaces. The form-valued Euler characteristic has
beautiful applications in topology [Roh52] [Fre82] [Don83]. Stabilizing, we get an invariant
taking values in the Grothendieck–Witt group, enriching the Euler characteristic valued in
K0(k) ∼= Z.
Definition 1.2. Let k be a field. The Grothendieck–Witt group GW(k) is the free abelian
group generated by isomorphism classes of k-vector spaces equipped with a symmetric, non-
degenerate bilinear form, under the relation that

[V, b] + [V ′, b′] = [V ⊕ V ′, b⊕ b′].

To make this approach work correctly in the context of A1-homotopy theory, it is necessary
to shift perspective. We will work with coherent cohomology, and the relevant additional
structure is given by Grothendieck–Serre duality. Before describing the cohomological ap-
proach, we begin with the abstract definition of the categorical Euler characteristic. For the
rest of this paper we restrict to fields of characteristic 0.

Definition 1.3. Let X be a smooth, projective variety over a field k. Then the motivic
suspension spectrum Σ∞

T (X+) is dualizable in the stable motivic homotopy category SH(k)
[Hoy17, Theorem 5.22] [Hu05, Appendix A] [Lev20, Section 1 or ArXiv version 3 Section
1.1] [Rio05] [Voe03, Section 2]. Thus there exists an element

χA1

(X)
def
=

(
1k Σ∞

T (X+) ∧k D(Σ∞
T (X+)) D(Σ∞

T (X+)) ∧k Σ∞
T (X+) 1k

)
in EndSH(k)(1k), where 1k denotes the motivic sphere spectrum, the first and last maps
are coevaluation and evaluation, the middle is the symmetry swap isomorphism, and D(−)
denotes dualizing. See for example [Hoy15] or [Lev20] for further discussion.

It is a beautiful theorem of F. Morel that EndSH(k)(1k) ∼= GW(k), see for example [Mor06]

or [Mor12, Theorem 1.23, Corollary 1.24], giving the categorical Euler characteristic χA1
(X)

in GW(k). So, one can hope to recover an enhancement of a cohomological construction by
explicitly describing the map in Definition 1.3.

A description in terms of coherent duality was independently suggested by M.J.Hopkins,
A. Raksit, and J.-P. Serre in oral communication. It was proven to equal χA1

(X) by M.
Levine and A. Raksit [LR20, Theorem 1.3]. This is the description that motivated the
introduction above, and as we will use it to prove our main result, we give a more detailed
account now.

For any vector space V over k, write V [i] for the chain complex consisting of V concentrated
in degree −i, with 0’s elsewhere. Consider a smooth and proper variety X of pure dimension
d.
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Definition 1.4. Let

(1.5) Hdg(X/k)
def
=

d⊕
i,j

H i(X,Ωj
X/k)[j − i] ∈ Chk .

This is equipped with a symmetric bilinear form via the cup product and the canonical
trace map Tr:Hd(X; Ωd

X/k) k

(1.6) H i(X,Ωj
X/k)⊗Hd−i(X,Ωd−j

X/k) Hd(X,Ωd
X/k) k.∪ Tr

This structure produces a bilinear form Tr on Hdg(X/k).

See [LR20, Section 8D] for a review of the formalism of chain complexes with bilinear

forms. The bilinear form Tr in fact recovers χA1
as defined above.

Theorem 1.7 ([LR20, Theorem 1.3]). For X smooth and projective over a field k of char-
acteristic not 2,

χA1

(X/k) = (Hdg(X/k),Tr) ∈ GW(k).

We remind the reader that in this paper k will be a field of characteristic 0. Another
description is as follows.

Definition 1.8. Let pX :X Spec k denote the structure map of a smooth proper variety
X. Let

TX : = ⊕0
i=−d(∧−iT ∗

X),

with zero differential. This is the Kozsul complex of the tangent bundle TX with respect to
the zero section. It has a natural non-degenerate bilinear form

βX :TX ⊗ TX TX ∧d T ∗
X [d]

given by composing the multiplication of forms with projection to the −dth term of TX .

Because X is smooth and proper, Serre duality allows us to pushforward a non-degenerate
bilinear form valued in ∧dT ∗

X [d] and obtain a non-degenerate bilinear form valued in k [Har66,
p. 7 Ideal Theorem c], [CH09, Theorem 4.2.9]:

(1.9) RpX∗βX :RpX∗TX ⊗RpX∗TX RpX∗(TX ⊗ TX) RpX∗ ∧d T ∗
X [d]

Tr

k

There is more discussion of this in [BW, Section 2.2] and we will discuss a similar situation
in Lemma 2.4.

Proposition 1.10 ([BW, Proposition 2.4]). Let X be smooth and proper over k. With
notation as above, (RpX∗TX ,RpX∗βX) = (Hdg(X/k),Tr) in GW(k).

Each isomorphism class in GW(k) can be represented by a perfect chain complex over k
with a nondegenerate symmetric bilinear form. This is a result of Hermitian K-theory; see
[Sch10] and [Sch17] for background on Hermitian K-theory. A representing chain complex
with duality provides the opportunity to do further homotopy theory. The example we
have in mind will be described below. As a candidate representative, however, the Koszul
complex has the following property: it depends on a section. There are situations in which
one naturally has a section, e.g. [KW17], but the association of the Euler characteristic to
a scheme is arguably not one of them: We chose the zero section above, but is this a good
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choice? Any section would in fact do [BW, Proposition 2.4], and it may be desirable not to
choose at all. The main result of this paper allows this by offering the Hochschild complex
as an alternative.

There is a canonical pairing on the Hochschild homology HH , which appears in greater
generality in work of Alonso-Jeremı́as-Lipman, [AJL14]. This pairing can be viewed as
coming from the connection between Grothendieck duality and Hochschild homology, due
to Avramov, Lipman, and Iyengar, among others. We give a construction specific to our
case of interest using work of Neeman in Section 2. We then show that this agrees with
(Hdg(X/k),Tr) and (RpX∗TX ,RpX∗βX) using the Hochschild–Kostant–Rosenberg theorem
for smooth and proper schemes X over a field of characteristic 0.

Theorem 1. Let X be a smooth, projective scheme over a field of characteristic 0. HH(X)
together with a canonical pairing represents the categorical A1-Euler characteristic for smooth
projective X.

This is Theorem 2.11 in Section 2. The example alluded to above is the following enrich-
ment of the A1-Euler characteristic. In joint as well as independent work, J. Campbell and
the fifth-named author have constructed a spectrum whose π0 is the Grothendieck group
of varieties K0(Vark). See [Cam19, Zak17]. Independently, O. Röndigs [Rön] constructs a
K-theory of varieties spectrum whose π0 receives a surjective map from K0(Vark). (The
Grothendieck group of varieties is by definition the universal cut-and-paste invariant, and
is described in more detail in for example [Bit04].) Bittner’s presentation promotes the
A1-Euler characteristic of a smooth, projective variety to a compactly supported A1-Euler
characteristic for any variety over k. In more detail:

Theorem 1.11 ([Bit04, Theorem 3.1]). Let k be a field of characteristic 0. The group
K0(Vark) is isomorphic to the free abelian group generated by smooth projective varieties
modulo the relation that for any smooth closed subvariety Y ⊆ X,

[BlY X]− [E] = [X]− [Y ],

where BlY X is the blow-up of X at Y , and E is the exceptional divisor of the blowup.

Definition 1.12. Let X be a smooth scheme over a field k of characteristic 0. We define
χc(X) as follows. For dimX = 0 we define χA1

c (X) = χA1
(X). For dimX > 0, write

[X] =
∑n

i=1 ϵi[Xi] in K0(Vark), where each Xi is smooth projective and ϵi = ±1. Then
define

χA1

c (X)
def
=

n∑
i=1

ϵiχ
A1

c (Xi).

Theorem 1.13. χA1

c is well-defined, and induces a homomorphism K0(Vark) GW(k).

This follows from [Rön, Theorem 5.2, Corollary 6.7]. We also provide an exposition in
Theorem 2.13.

Question 1.14. Does the compactly supported A1-Euler characteristic χA1

c lift to a map of
spectra from a spectrum level version of K0(Vark) to Hermitian K-theory? What kind of
information would such maps encode?

O. Röndigs gives an affirmative answer to the first question in [Rön, Theorem 6.6]. He
constructs his map using the categorical A1-Euler characteristic and Waldhausen’s model
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of K-theory. We suggest an alternate approach these questions, studying the association of
the Hochschild complex to a smooth, projective scheme, especially as related to Bittner’s
presentation. Section 3 provides sample computations.
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Notation. k will denote a field of characteristic 0.
By a variety over k we mean a reduced, irreducible, separated schemes of finite type over

a field k. For a variety X over k, the map pX denotes the structure map pX :X Spec k.
When X is clear from context we omit it from the notation, and write p for the structure
map. Our chain complexes are cohomological and often concentrated in negative degrees.
Write hCoh(X) for the derived category of coherent sheaves on X.

2. Hochschild complex represents the A1-Euler characteristic

We use the connection between Grothendieck duality and Hochschild homology to give
a bilinear form on the absolute Hochschild complex in this section. This form appears in
greater generality in work of Alonso-Jeremı́as-Lipman [AJL14]. We then show this complex
with duality represents the A1-Euler characteristic for a smooth, projective scheme over a
field of characteristic 0, and use Bittner’s presentation to give an exposition of the compactly
supported A1-Euler characteristic. Recall that we are working over a field of characteristic
0.

In future work we hope to use this formalism to lift the compactly supported Euler char-
acteristic to a spectrum-level construction from J. Campbell and the fifth-named author’s
spectrum of varieties [Cam19] [Zak17] landing in the Hermitian K-theory of k. As working
in the derived category is presumably not sufficient to make such a construction well-defined,
we keep track (and include in our notation) which functors are defined outside the derived
category, as well. Thus, for example, given a map f :X Y we think of f ∗ as a functor
Coh(Y ) Coh(X) and denote the derived functor by Lf ∗: hCoh(Y ) hCoh(X).
Let k be a field. We will shortly restrict to the case where k is characteristic 0.

Definition 2.1. Let p:X Spec k be a smooth separated scheme over k, and let hCoh(X)
be the derived category of coherent sheaves on X. Write ∆:X X ×X for the diagonal

map, and define O∆
X

def
= ∆∗OX . This inherits a ring structure from OX ; write µX :O∆

X ⊗
O∆
X O∆

X for the multiplication map.
5



Since ∆ is affine, R∆∗ = ∆∗, so this is in fact a derived construction. Define the Hochschild
complex HHX(X) in hCoh(X) to be

HHX(X)
def
= (L∆∗)(∆∗OX),

which is equivalent toO∆
X⊗L

X×XO∆
X . Since L∆

∗ is strongly monoidal, the Hochschild complex
inherits a multiplication

L∆∗µX : HH
X(X)⊗ HHX(X) HHX(X)

We then define the absolute Hochschild complex HH(X) in hCoh(k) to be

HH(X)
def
= Rp∗HH

X(X).

To see that the Hochschild homology is a good candidate to represent the A1-Euler char-
acteristic, we first note that it is a representative in K0(k) when the characteristic of k is
0:

Theorem 2.2 (Hochschild–Kostant–Rosenberg, [HKR62] [AV20, p.1]). Let k be a field of
characteristic 0. For a smooth projective X, [HH(X)] = Hdg(X/k) in K0(k).

We would like the Euler characteristic to take values in GW(k), rather than K0(k). To
accomplish this, we use the connection between Grothendieck duality and Hochschild ho-
mology found by Avramov and Iyengar [AI08], and particularly the work of Neeman [Nee18]
to construct a nondegenerate symmetric bilinear form on HHX(X). This pairing appears in
greater generality in Alonso-Jeremı́as-Lipman [AJL14].

The multiplication on O∆
X induces a multiplication

µ̂X : HH(X)⊗ HH(X) HH(X)

in the following manner. Define µ̂X to be the composition

HH(X)⊗ HH(X) Rp∗(HH
X(X)⊗ HHX(X))

(Rp∗)(L∆
∗
X)µX

HH(X),

where the first map is given by the lax monoidal structure on Rp∗. Using this multiplication,
HH(X) is equipped with the following canonical bilinear pairing.

Definition 2.3. Let X be proper, and let p:X Spec k be the structure map.1 Let π2:X×
X X be the projection onto the second coordinate, as in the following commutative
diagram:

X

X ×X X

X Spec k

∆

π2

π1

p

p

1Many of the constructions, and in particular the result of Neeman, are possible in much greater generality.
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By [Nee18, Proposition 3.3], there is a canonical isomorphism

δX : (L∆
∗)π!

2OX p!Ok.

Inside the derived category, the adjoint to the weak equivalence (π2)∗O∆
X = (π2)∗∆∗OX

∼ (π2◦
∆)∗OX = OX , is

t:O∆
X π!

2OX .

Define α′ to be the composition of L∆∗t with δX

α′: HHX(X) = (L∆∗)O∆
X (L∆∗)π!

2OX
δX

p!Ok.

The map α′ is a special case of the fundamental class of a flat map of Alonso-Jeremı́as-
Lipman [AJL14, p. 390]. Since X is proper, there is a natural equivalence p! p∗; the map
α adjoint to α′ can thus be written as

α: HH(X) Ok.

Define the bilinear form

BX : HH(X)⊗ HH(X) Ok by BX
def
= α ◦ µ̂X .

Since µX is a commutative multiplication and Rp∗ is lax symmetric monoidal, µ̂X is
commutative; it follows that BX is symmetric.

Lemma 2.4. (Alonso-Jeremı́as-Lipman) BX is nondegenerate.

Lemma 2.4 is a special case of Alonso, Jeremı́as, and Lipman’s [AJL14, Corollary 4.8.4].
We provide a proof adapted to our level of generality to provide a self-contained exposition.

Proof. The map α′ ◦ (L∆∗
X)µX determines a map

(2.5) HHX(X) RHom(HHX(X), p!Ok),

which we claim is an isomorphism. To see this, observe that (2.5) is equal to the composition

L∆∗O∆
X RHom(L∆∗O∆

X ,L∆
∗π!

2OX)
δX◦

RHom(L∆∗O∆
X , p

!Ok),

where the first map is induced from the multiplication. Since δX is an isomorphism, the
second is as well, so it remains to show that

(2.6) L∆∗O∆
X RHom(L∆∗O∆

X ,L∆
∗π!

2OX)

is an isomorphism. Since X is smooth, ∆ is perfect [Sta20, Section 37.54, Lemma 37.54.18.],
and thus has finite Tor-dimension [Sta20, Section 0685 Lemma 37.53.11]. Since ∆ is proper
and finite Tor-dimension,

L∆∗RHom(O∆
X , π

!
2OX) ≃ RHom(L∆∗O∆

X , π
!
2OX)

by [Nee18, Lemma 4.3], and the morphism (2.6) is induced by L∆∗ applied to

O∆
X RHom(O∆

X , π
!
2OX).

This is an isomorphism, since it equal to the composition

∆∗OX
∼= ∆∗RHom(OX ,OX) ∼= ∆∗Hom(OX ,∆

!π!
2OX) ∼= Hom(∆∗OX , π

!
2OX),

where the third isomorphism is by [Nee18, (2.5.2)] and the fourth is by [Nee18, p.14].
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By coherent duality [Har66, p. 7 Ideal Theorem c], the composition of the natural map

RHomX(HH(X), p!Ok) RHomY (Rp∗HH(X),Rp∗p
!Ok)

with the map induced by the trace Rp∗p
! 1 is isomorphism

Rp∗RHomX(HH(X), p!Ok)
∼=

RHomk(HH(X),Ok).

Since (2.5) is an isomorphism, it follows that the map HH(X) RHomk(HH(X),Ok)
induced by α ◦ µ̂X ◦ ζX is an isomorphism. □

In order to show that (HH(X), BX) gives the A1-Euler characteristic, we will use that the
algebra structure on HH(X) is compatible with the algebra structure on differential forms:
let TX denote the Koszul complex as in Definition 1.8.

Theorem 2.7 (Hochschild–Kostant–Rosenberg Theorem). Let k be a field of characteristic
0. Giving H∗(HHX(X)) the algebra structure induced from L∆∗µX and TX the algebra
structure from wedge product of forms, there is an algebra isomorphism H∗(HHX(X)) TX .

See also [TV11, Corollaire 1.2], identifying the relevant Tor in commutative differential
graded algebras.

Proof. Let I denote the ideal sheaf of the closed immersion ∆. There is an exact sequence

0 I OX×X ∆∗OX 0

of coherent sheaves on X ×X. Applying L∆∗, we obtain the distinguished triangle

L∆∗I L∆∗OX×X HHX(X) L∆∗I[1].

The associated long exact sequence on homology sheaves defines a map

(2.8) HHX
1 (X) ∼= H1(HHX(X)) H0L∆∗I ∼= ∆∗I ∼= I/I2 ∼= ΩX/k,

where HH1 denotes the first Hochschild homology and H1(HHX(X)) denotes the first ho-
mology sheaf of the complex HHX(X) (which is denoted with a superscript 1 because our
complexes are graded cohomologically). H1(L∆∗OX×X) = 0 because OX×X is a flat OX×X-
module. Thus (2.8) is injective. Moreover the map OX

∼= ∆∗OX×X ∆∗∆∗OX
∼= OX is

the identity. We therefore have that (2.8) is an isomorphism.
The map L∆∗µX induces a multiplication on H(HHX(X)) compatible with the multipli-

cation an open affines of [HKR62]. By [HKR62, Theorem 3.1], H(HHX(X)) is the exterior
algebra on H1(HHX(X)) after restricting to affine open subsets of X. Thus H(HHX(X))
is the exterior algebra on H1(HHX(X)). Therefore, (2.8) extends to an algebra homomor-
phism H∗(HHX(X)) TX . Since TX is the exterior algebra on ΩX/k, the homomorphism

H∗(HHX(X)) TX is an isomorphism. □

We now show that the A1-Euler characteristic is represented by the form on HH(X) just
constructed. Given a bilinear form on a graded vector space V • × V • k, the 0-th graded
piece V 0, and the direct sums V (n): = V −n + V n for n > 0 carry a nondegenerate bilinear
form. We denote the corresponding elements of GW(k) by [V 0] and [V (n)] respectively. The
class in GW(k) determined by the form is the alternating sum [V 0] +

∑
n>0(−1)n[V (n)].

Definition 2.9. Given a nondegenerate, symmetric β:V • × V • Ok in hCoh(k), let [β]
denote the class in GW(k) given by [H0(V •)] +

∑
i>0(−1)i[H∗(V •)(i)].
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In the following theorem, we prove that [BX ] = χA1
(X) by identifying the former with

the pairing on (Hdg(X/k),Tr). It is proved analogously to the proof of [BW, Proposition
2.4]. However, we also need a key duality result, which gives us a better understand of the
constituents used to define BX .

Theorem 2.10 ([AJL14, Proposition 2.4.2][Nee18, Theorem 3.5],[Lip87, Proposition 4.6.3]).
Let d = dimX, and let α′: HHX(X) p!Ok be as defined above. Then the map Hd(α′)
induced on d-th cohomology sheaves over X is an isomorphism.

With this result, we have the following:

Theorem 2.11. Let X be smooth and projective over a field k of characteristic 0. Then the
class of BX in GW(k) is the categorical A1-Euler characteristic χA1

(X) of X. When X is
smooth and proper, the class of BX is the Euler number of the tangent bundle.

Remark 2.12. The Euler class of a vector bundle was defined by [BM00] and developed
further by J. Fasel [Fas08] and others. Under orientation conditions on the vector bundle
which are always satisfied by the tangent bundle, the Euler class can be pushed forward to an
Euler number. It is a theorem of M. Levine that for X smooth and projective, the categorical
A1-Euler characteristic equals the Euler number of the tangent bundle [Lev20, Theorem 3.1
or ArXiv version 3 Theorem 1.1], and in particular, X is dualizable in an appropriate sense,
see loc. cit.

Proof. Let n = dimX. There is a hypercohomology spectral sequence

Ei,j
2 = Rip∗H

j HHX(X) H i+j HH(X).

By the isomorphism Hj HHX(X) ∼= Ω−j
X of the Hochschild–Kostant–Rosenberg theorem,

Ei,j
2

∼= H i(X,Ω−j
X ). The hypercohomology spectral sequence is multiplicative, giving a bilin-

ear form on the Er-pages for r ≥ 2 coming from the cup product

Ei,j
2 × Ei′,j′

2 Ri+i′p∗H
j+j′(HHX(X)⊗ HHX(X)).

Composing with α ◦ (Rp∗(µ̂)) ◦ ζX , we obtain a new form on the Er-page which we denote
βr

βr:E
i,j
r × En−i,n−j

r k.

Note that Ei,j
2 is the degree (i, j) summand of (Hdg(X/k),Tr), as defined in (1.5). By

Theorems 2.10 and 2.7, β2 is the cup product pairing, whence [β2] = [(Hdg(X/k),Tr)].
Recall that the notation [β2] was defined in 2.9. By [BW, Lemma 2.7], it follows that βr
is symmetric, non-degenerate and [βr] = [β2] for all r ≥ 2, including r = ∞. By [BW,

Lemma 2.6], [β∞] = BX . For X smooth and projective [(Hdg(X/k),Tr)] = χA1
(X) by

[LR20, Theorem 1.3]. By [BW, Theorem 1.1,second Corollary p. 3] [(Hdg(X/k),Tr)] is the
Euler number of the tangent bundle. Combining, we see [β2] = [βr] = BX , which completes
the proof by the previous. □

Using Bittner’s presentation, we now show that [X] [BX ] defines a homomorphism out
of the Grothendieck ring of varieties, and which agrees with the usual Euler characteristic.
In future work we hope to prove this theorem using scdh-descent and Hochschild homology.
It is interesting to note that, by contrast, Hochschild homology does not satisfy cdh-descent.
The below proof is similar to one of O. Röndigs in that it uses cut and paste properties of
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the categorical Euler characteristic [Rön, Theorem 5.2] [MV99, 3 Remark 2.30]. The below
is of a more computational flavor, relying on recent work of M. Levine.

Theorem 2.13. Let k be a field of characteristic 0. The map X [BX ] for X smooth and
projective defines a homomorphism K0(Vark) GW(k) which agrees with the categorical
A1-Euler characteristic.

Proof. That [BX ] is the categorical A1-Euler characterstic χA1
(X) is Theorem 2.11. (Also

see Remark 2.12 for context.)
Let

E BlY X

Y X,

be the blow-up diagram of a smooth, proper k-variety X along a smooth closed subvariety Y
of codimension c. It follows from [Lev20, Proposition 1.4 (5) or ArXiv version 3 Proposition

1.10 (4)] that χA1
(BlY X) = χA1

(X) +
∑c−1

i=1⟨−1⟩iχA1
(Y ). The exceptional divisor E is the

projectivization PNYX of the normal bundle of Y in X. By [Lev20, Proposition 1.4 (4) or

ArXiv version 3 Proposition 1.10 (3)], χA1
E =

∑c−1
i=0⟨−1⟩iχA1

(Y ). Thus

χA1

(BlY X) = χA1

(X)− χA1

(Y ) + χA1

(E)

and the homomorphism is well-defined by Bittner’s presentation (see Theorem 1.11). □

3. A direct perspective

In this section, we compute χA1
(X) = χA1

c (X) for the smooth, proper varietiesX = Spec k,
P1, P2, and Bl0 P2 using the complex with duality (Hdg(X/k),Tr) described in Definition 1.4.
In other words, we compute A1-Euler characteristics explicitly using coherent duality. This
allows a direct verification that the association of the complex with duality (Hdg(X/k),Tr)
to a smooth projective varietyX satisfies the relation [(Hdg(P2/k),Tr)]+[(Hdg(P1/k),Tr)] =
[(Hdg(Bl0 P2/k),Tr)] + [(Hdg(k/k),Tr)] in GW(k) imposed on classes of smooth projective
varieties in Bittner’s presentation (see 1.11). It gives an alternate proof of the n = 1, 2 case

of M. Hoyois’s computation of χA1
(Pn) [Hoy15, Example 1.7], and an alternate proof of the

case X = Bl0 P2 of M. Levine’s computation of the A1-Euler characteristic of a blow up
[Lev20, Proposition 1.4 or ArXiv version 3 Proposition 1.10]. As before, we work over a field
of characteristic 0.

The collapse of appropriate spectral sequences renders (Hdg(X/k),Tr) equivalent to the
complex with duality (RpX∗TX ,RpX∗βX) described in (1.9). Let pX :X Spec k denote
the structure map of X; recall that

TX
def
= ⊕0

i=−d(∧−iT ∗
X)

is equipped with the natural duality given by composing multiplication of forms with pro-
jection off of the top wedge power of T ∗

X . After pushforward to Spec k, this complex with

duality represents χA1
for smooth projective varieties, by [BW, Proposition 2.4].

10



Consider the blow-up square

(3.1)

P1 Bl0 P2

Spec k P2.

i′

f

i

f ′

The goal is to show the equality

(3.2) [RpP1∗TP1 ] + [RpP2∗TP2 ] = [RpSpec k∗TSpec k] + [RpBl0 P2∗TBl0 P2 ]

GW(k); we have omitted the dualities from the notation for legibility, but these too must
be considered.

Remark 3.3. In this section we write p for the map pX :X Spec k whenever X is clear
from context.

3.1. Verification in K0(k). In this subsection, k is any field. As a 1-category, hCoh(k) is
equivalent to the category of graded k-vector spaces by taking homology. We now compute
Rp∗TSpec k, Rp∗TP1 , Rp∗TP2 , and Rp∗TBl0 P2 as k-vector spaces using the hypercohomology
spectral sequence [McC01, Theorem 12.12]

(3.4) Ei,j
2 = H i

(
X,TjX

)
= H i

(
X,∧jT ∗

X

)
Hj−i((pX)∗TX).

Along the way, we verify (3.2) in K0(k).
Consider (3.2). The complex Rp∗TSpec k is k in degree zero and trivial otherwise.
The computations of Rp∗TP1 , Rp∗TP2 , and Rp∗TBl0 P2 as graded k-vector spaces are done

in Propositions 3.5, 3.6, and 3.8, respectively; we compute the forms in Subsection 3.2. We
will not explicitly discuss differentials in the spectral sequence, as each of the examples we
compute will end up concentrated in a single diagonal, and therefore no differentials are
possible.

Proposition 3.5. Rp∗TP1
∼= k2 where k2 is concentrated in degree 0.

Proof. Consider the E2-page of (3.4) when X = P1, illustrated in Figure 1. Noting that
T ∗
P1

∼= O(−2), Serre duality implies that

H1
(
P1,OP1

)
= H0

(
P1,O(−2)

)
= 0

and

H1
(
P1,O(−2)

)
= H0

(
P1,OP1

)
= k.

Thus the spectral sequence is as illustrated in Figure 2. □

Proposition 3.6. Rp∗TP2
∼= k3 where k3 is concentrated in degree zero.

Proof. The reader can refer to Figure 3 for the E2-page of (3.4) when X = P2.
The computation of Rp∗TP2 is similar to the computation of Rp∗TP1 . In this case the

Koszul complex takes the form

TP2 = OP2 ⊕ T ∗
P2 ⊕ ∧2T ∗

P2 .

Thus we have possibly nonzero terms Ei,j
2 for i, j ∈ {0, 1, 2}.

11



0 1 2

0

1

2

i

j

H0
(
P1,OP1

)H0
(
P1,O(−2)

)
H1

(
P1,OP1

)H1
(
P1,O(−2)

)0 0

0

0

0

Figure 1. (3.4) for X = P1

0 1 2

0

1

2

i

j

k

k0

0

0

0

0

0

0

Figure 2. Result of computation

Recall that H i
(
Pk,O(n)

)
= 0 for all n and all 0 < i < k. Note also that ∧2T ∗

P2
∼= O(−3).

It follows that H1
(
P2,∧2T ∗

P2

)
and H1

(
P2,OP2

)
are trivial. Moreover, Serre duality implies

that
H2

(
P2,OP2

)
= H0

(
P2,O(−3)

)
= 0

and
H2

(
P2,O(−3)

)
= H0

(
P2,OP2

)
= k.

Since TPn = Hom
(
O(−1),On+1/O(−1)

)
, there is a short exact sequence

0 → OPn → O(−1)n+1 → TPn → 0.

The dual sequence is

(3.7) 0 → T ∗
Pn → O(1)n+1 → OPn → 0.

From the long exact sequence associated to (3.7), it follows that

H0
(
P2, T ∗

P2

)
= H2

(
P2, T ∗

P2

)
= 0

and
H1

(
P2, T ∗

P2

)
= k.

These computations are summarized in Figure 4. □

0 1 2 3

0

1

2

3

i

j

H0
(
P2,OP2

)H0
(
P2, T ∗

P2

)H0
(
P2,O(−3)

)

H1
(
P2,OP2

)H1
(
P2, T ∗

P2

)H1
(
P2,O(−3)

)

H2
(
P2,OP2

)H2
(
P2, T ∗

P2

)H2
(
P2,O(−3)

)0 0 0

0

0

0

0

Figure 3. (3.4) for X = P2.

0 1 2 3

0

1

2

3

i

j

k

k

k

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 4. Result of computation.
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Proposition 3.8. Rp∗TBl0 P2
∼= k4 where k4 is concentrated in degree zero.

In order to prove this we must first carry out two auxilliary computations in 3.9 and 3.10.

Lemma 3.9.

Hyi
(
Bl0 P2; ΩBl0 P2/P2

) ∼= {
k i = 1,

0 i ̸= 1.

Proof. Let i′:P1 → Bl0 P2 be the inclusion of the exceptional divisor. Since Kähler differ-
entials commute with pullback [Sta20, Tag 01UM], the support of ΩBl0 P2/P2 is contained in

the exceptional divisor. In fact, the canonical map ΩBl0 P2/P2 i′∗(i
′)∗ΩBl0 P2/P2 is an isomor-

phism. To see this: let I denote the sheaf of ideals associated to the closed immersion i′. By
the proof of [Sta20, Tag 01QY], it suffices to see that IΩBl0 P2/P2 = 0. Since the support of
ΩBl0 P2/P2 is contained in the exceptional divisor, it thus suffices to see that IΩBl0 A2/A2 = 0.
This can be seen by direct computation. The blow-up

Bl0A2 ∼= Projk[x,y]
k[x, y][Z,W ]

⟨xZ − yW ⟩

is covered by two affine opens, one canonically isomorphic to Spec
k[x,y,W

Z
]

⟨x−yW
Z
⟩ and the other

canonically isomorphic to Spec
k[x,y, Z

W
]

⟨x Z
W

−y⟩ . The sheaf of relative differentials of, say, the first

over Spec k[x, y] has a single generator dW
Z

with a single relation −ydW
Z
. The sheaf of

differentials of the second is computed similarly, showing that IΩBl0 A2/A2 = 0. Thus
ΩBl0 P2/P2

∼= i′∗(i
′)∗ΩBl0 P2/P2 as claimed.

It follows that ΩBl0 P2/P2
∼= i′∗T

∗
P1 by another application of the commutativity of Kähler

differentials and pullback[Sta20, Tag 01UM]. Thus

H i
(
Bl0 P2; ΩBl0 P2/P2

) ∼= H i
(
Bl0 P2; i′∗T

∗
P1

) ∼= H i
(
P1;T ∗

P1

)
.

The result then follows from Proposition 3.5. □

Lemma 3.10.

H i
(
Bl0 P2; f ∗T ∗

P2

) ∼= {
k i = 1,

0 i ̸= 1.

Proof. Consider the blow-up square (3.1).

Claim 3.11. This gives a distinguished triangle in the bounded derived category of P2:

OP2 i∗OSpec k ⊕Rf∗OBl0 P2 Rm∗OP1 ,

where m: = f ◦ i′ = i ◦ f ′.

Given the claim, note that T ∗
P2 is a flat module (in fact, locally free) since P2 is smooth,

so tensoring preserves exact sequences. Thus we get a distinguished triangle:

T ∗
P2 (T ∗

P2 ⊗Ri∗OSpec k)⊕ (T ∗
P2 ⊗Rf∗OBl0 P2) T ∗

P2 ⊗Rm∗OP1 ,

Now, using a projection formula from [Sta20, Theorem 20.49.2] we have that

T ∗
P2 ⊗Rf∗OBl0 P2 ≃ Rf∗(f

∗T ∗
P2),

and similarly for other terms. Thus we have a distinguished triangle:
13



T ∗
P2 Ri∗(i

∗T ∗
P2)⊕Rf∗(f

∗T ∗
P2) Rm∗(m

∗T ∗
P2).

Now, we apply R(pP2∗) to get a long exact sequence on cohomology.

(3.12)

H0
(
P2;T ∗

P2

)
H0

(
Spec k; i∗T ∗

P2

)
⊕H0

(
Bl0 P2; f ∗T ∗

P2

)
H0

(
P1; (i ◦ f ′)∗T ∗

P2

)

H1
(
P2;T ∗

P2

)
H1

(
Spec k; i∗T ∗

P2

)
⊕H1

(
Bl0 P2; f ∗T ∗

P2

)
H1

(
P1; (i ◦ f ′)∗T ∗

P2

)

H2
(
P2;T ∗

P2

)
H2

(
Spec k; i∗T ∗

P2

)
⊕H2

(
Bl0 P2; f ∗T ∗

P2

)
H2

(
P1; (i ◦ f ′)∗T ∗

P2

)
.

Considering dimensions, we see that

H1
(
Spec k; i∗T ∗

P2

)
= H2

(
Spec k; i∗T ∗

P2

)
= H2

(
P1; (i ◦ f ′)∗T ∗

P2

)
= 0,

implying that H2(Bl0 P2; f ∗T ∗
P2) = 0.

From the proof Proposition 3.6 we know

Hj
(
P2;T ∗

P2

)
= 0

unless j = 1, in which case it is k.
Recall that i: Spec k ↪→ P2 is the inclusion. By definition i∗T ∗

P2 = i−1T ∗
P2 ⊗i−1OP2

Ok.
Therefore

i∗T ∗
P2 = T ∗

P2|Spec k ⊗OP2 |Spec k
Ok

∼= T ∗
P2|Spec k ∼= O⊕2

k .

This implies

H0
(
Spec k; i∗T ∗

P2

)
= H0

(
Spec k;O⊕2

k

)
= H0

(
Spec k;Ok

)
⊕H0

(
Spec k;Ok

)
= k2.

Observing that (i ◦ f ′)∗T ∗
P2

∼= (f ′)∗O⊕2
k

∼= O⊕2
P1 , we get that:

H0
(
P1; (i ◦ f ′)∗T ∗

P2

)
= H0

(
P1;O⊕2

P1

)
= k2,

and

H1
(
P1; (i ◦ f ′)∗T ∗

P2

)
= H1

(
P1;O⊕2

P1

)
= H1

(
P1;OP1

)
⊕H1

(
P1;OP1

)
= 0.

Plugging this in to (3.12) gives the exact sequence

0 k2 ⊕H0
(
Bl0 P2; f ∗T ∗

P2

)
k2 k H1

(
Bl0 P2; f ∗T ∗

P2

)
0.

The desired result follows. □

Proof of Claim 3.11. Consider the short exact sequence of OBl0 P2-modules

0 OBl0 P2(−E) OBl0 P2 i′∗OE 0,

where E ≃ P1 is the exceptional divisor of the blow-up. Applying Rf∗ gives an exact triangle
in the derived category of P2

(3.13) Rf∗OBl0 P2(−E) Rf∗OBl0 P2 Rf∗(i
′
∗OE),

14



whose associated long exact sequence on cohomology gives

0 f∗OBl0 P2(−E) f∗OBl0 P2 ≃ OP2 m∗OE ≃ i∗OSpec k R1f∗OBl0 P2(−E).

But in fact Rif∗OBl0 P2(−E) = 0 for i > 0, as the following argument shows. Note first that
Rif∗OBl0 P2(−E)) is a coherent sheaf ∀i ≥ 0 by [Sta20, Theorem 30.19.1].
It is enough to check that the fibers are all zero. Combining [Gro61, Theorem 3.2.1],

[Har13, Exercise II.3.10], and [Har13, Corollary III.9.4], we see that the fiber over p ∈ P2 is

(Rif∗OBl0 P2(−E))(p) ∼= H i(Bl0 P2
p,OBl0 P2(−E)f−1(p)) ∼= H i(f−1(p),OBl0 P2(−E)).

Consider the case where p ∈ P2−0. Since f |P2−0 : Bl0 P2−E P2−0 is an isomorphism,
f−1(p) is a point and therefore affine. Thus H i(f−1(p),OBl0 P2(−E)) = 0 for all i > 0, as
desired.

Consider the case p = 0. Then we have f−1(p) ∼= P1, and

H1(f−1(p),OBl0 P2(−E)) ∼= H1(P1,OP1(1)) = 0,

as desired. Therefore Rif∗OBl0 P2(−E) = 0 for i > 0, and so we get a short exact sequence

0 f∗OBl0 P2(−E) OP2 i∗OSpec k 0,

which in fact represents a distinguished triangle

Rf∗OBl0 P2(−E) OP2 i∗OSpec k,

in the derived category of P2 with the property that the shift map i∗OSpec k Rf∗OBl0 P2(−E)[1]
is zero. By [Sta20, Theorem 13.4.10], we get that

(3.14) OP2 = Rf∗OBl0 P2(−E)⊕ i∗OSpec k

in the derived category of P2.
Now, note that (3.13) becomes

(3.15) Rf∗OBl0 P2(−E) Rf∗OBl0 P2 Rm∗OP1 .

The modifications to the last term follow from recalling that E ≃ P1 and that the inclusion
i′ : P1 X ′ is affine. By [Sta20, Theorem 36.5.3], Ri′∗ = i′∗, and hence

Rf∗(i
′
∗OE) = Rf∗Ri

′
∗OP1 = Rm∗OP1 .

Moreover, we also have a trivial distinguished triangle:

(3.16) i∗OSpec k i∗OSpec k 0.

Using [Sta20, Lemma 13.4.9] we get a distinguished triangle by summing (3.15) and (3.16):

Rf∗OBl0 P2(−E)⊕ i∗OSpec k Rf∗OBl0 P2 ⊕ i∗OSpec k Rm∗OP1 .

But, appealing to (3.14), this is precisely the distinguished triangle claimed. □

We are now ready to prove Proposition 3.8.
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Proof of Proposition 3.8. Consider the top row E2-page of the spectral sequence (3.4) for
Bl0 P2; this is given in Figure 5. Following the proof of [Har13, Proposition V.3.4] we see
that H2

(
Bl0 P2,OBl0 P2

)
= H1

(
Bl0 P2,OBl0 P2

)
= 0. Since Bl0 P2 is smooth and compact,

Serre duality implies that

H2
(
Bl0 P2, ωBl0 P2

)
= H0

(
Bl0 P2,OBl0 P2

)
= k,

H1
(
Bl0 P2, ωBl0 P2

)
= H1

(
Bl0 P2,OBl0 P2

)
= 0, and

H0
(
Bl0 P2, ωBl0 P2

)
= H2

(
Bl0 P2,OBl0 P2

)
= 0.

To compute the terms in the second row of the E2-page, consider the blow-up map
f : Bl0 P2 → P2. There is an exact sequence of sheaves on Bl0 P2,

f ∗T ∗
P2 → T ∗

Bl0 P2 → ΩBl0 P2/P2 → 0.

In general this sequence is not left exact, but we will show that f ∗T ∗
P2 → T ∗

Bl0 P2 is injective
in this specific example. We can explicitly write

Bl0 P2 = Proj

(
k[x, y][X, Y ]

⟨Xy − xY ⟩

)
where x and y have degree 0 and X and Y have degree 1. We will show the map is injective
on the affine open sets

UX
def
= {X ̸= 0}

and

UY
def
= {Y ̸= 0}.

The situation is symmetric, so we will only give the argument on UX . Observe

UX = Spec

(
k[x, y][X, Y ][1/X]0

⟨Xy − xY ⟩

)
= Spec

(
k[x, y, Y/X]

⟨Y − xY/X⟩

)
.

Considering f |UX
: UX Spec k[x, y] ⊆ P2, we have an explicit description

f ∗T ∗
P2(UX) = Odx⊕Ody

and
T ∗ Bl0 P2(UX) = Odx⊕Od(Y/X).

Under this identification, the map of sheaves f ∗T ∗
P2(UX) T ∗ Bl0 P2(UX) is given in coor-

dinates by
dx 7→ dx

and

dy 7→ d(x
Y

X
) = (dx)(

Y

X
) + xd(

Y

X
).

This is the map we want to show is injective.
Observe that given (g, h) ∈ O ⊕O,

(g, h) 7→ (g + h
Y

X
, xh).

If xh = 0 ∈ k[x,y,Y/X]
⟨Y−xY/X⟩ , then h = 0. Therefore if (0, 0) = (g + h Y

X
, xh) = (g, 0), we must have

g = 0. Thus,
ker(f ∗T ∗P2(UX) T ∗

Bl0 P2(UX)) = {(0, 0)},
16



as desired. Applying the same argument for UY , we conclude that f
∗T ∗

P2 → T ∗
Bl0 P2 is injective.

It follows that there is a short exact sequence of coefficients

0 → f ∗T ∗
P2 → T ∗

Bl0 P2 → ΩBl0 P2/P2 → 0,

that induces a long exact sequence on cohomology

(3.17)

H0
(
Bl0 P2; f ∗T ∗

P2

)
H0

(
Bl0 P2;T ∗

Bl0 P2

)
H0

(
Bl0 P2; ΩBl0 P2/P2

)

H1
(
Bl0 P2; f ∗T ∗

P2

)
H1

(
Bl0 P2;T ∗

Bl0 P2

)
H1

(
Bl0 P2; ΩBl0 P2/P2

)

H2
(
Bl0 P2; f ∗T ∗

P2

)
H2

(
Bl0 P2;T ∗

Bl0 P2

)
H2

(
Bl0 P2; ΩBl0 P2/P2

)
→ · · ·

Substituting the results of Lemmas 3.9 and 3.10 implies that (3.17) takes the form

0 → H0
(
Bl0 P2;T ∗

Bl0 P2

)
→ 0 → k → H1

(
Bl0 P2;T ∗

Bl0 P2

)
→ k → 0 → H2

(
Bl0 P2;T ∗

Bl0 P2

)
→ 0.

Consequently,

H0
(
Bl0 P2;T ∗

Bl0 P2

)
= H2

(
Bl0 P2;T ∗

Bl0 P2

)
= 0

and

H1
(
Bl0 P2;T ∗

Bl0 P2

)
= k2.

Therefore, the second page of the spectral sequence takes the form shown in Figure 6, which
means that the spectral sequence collapses on this page. □

0 1 2 3

0

1

2

3

i

j

H0
(
Bl0 P2,OBl0 P2

)
H0

(
Bl0 P2, T ∗

Bl0 P2
)

H0
(
Bl0 P2, ωBl0 P2

)

H1
(
Bl0 P2,OBl0 P2

)
H1

(
Bl0 P2, T ∗

Bl0 P2
)

H1
(
Bl0 P2, ωBl0 P2

)

H2
(
Bl0 P2,OBl0 P2

)
H2

(
Bl0 P2, T ∗

Bl0 P2
)

H2
(
Bl0 P2, ωBl0 P2

)
0 0 0

0

0

0

0

Figure 5. (3.4) for X = Bl0P2

0 1 2 3

0

1

2

3

i

j

k

k2

k

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 6. Result of computation

This completes the proof that equality (3.2) holds after applying the forgetful homomor-
phism GW(k) K0(k). It remains to show the relation is satisfied by forms.
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3.2. Verification in GW(k). In this subsection, k denotes a field of characteristic not 2.
We compute the bilinear form on Rp∗TX for X = Spec k,P1,P2 or Bl0 P2, and complete the
verification of equality (3.2) in GW(k). We begin by defining elements in GW(k) which we
will use to express these classes.

Definition 3.18. The hyperbolic bilinear form H is defined to be the rank 2 symmetric
bilinear form with Gram matrix (

0 1
1 0

)
.

Definition 3.19. Let a ∈ k. Then we write ⟨a⟩ for the rank 1 bilinear form (x, y) 7→ axy.

Remark 3.20. In GW(k) there is an equality between the class of H and ⟨1⟩+⟨−1⟩ in GW(k).

We start with computing the form for Rp∗TSpec k: recall that the complex Rp∗TSpec k is k
in degree zero. The following result is immediate:

Proposition 3.21. Rp∗TSpec k has the trivial duality ⟨1⟩.

Next, consider P1.

Proposition 3.22. χA1
(P1) = H in GW(k).

Remark 3.23. This provides an alternate proof of the n = 1 case of [Hoy15, Example 1.7].

Proof. Referring to the spectral sequences in Figures 1 and 2, we recall that

Rp∗TP1 ≃ H0(P1,OP1)⊕H1(P1,ΩP1) ≃ k2,

in degree 0. The cup product composed with the trace, which computes our bilinear form
on Rp∗TP1 , gives the Serre duality isomorphism H0(P1,OP1)∗ ≃ H1(P1,ΩP1).
From this, we can express the bilinear form of interest in terms of evaluation onH0(P1,OP1)⊕

H0(P1,OP1)∗ k. Indeed, our form can be written as the composition:(
H0(P1,OP1)⊕H0(P1,OP1)∗

)
⊗
(
H0(P1,OP1)⊕H0(P1,OP1)∗

)
(
H0(P1,OP1)⊗H0(P1,OP1)∗

)
⊕
(
H0(P1,OP1)∗ ⊗H0(P1,OP1)

)
k,

where the first map is projecting onto the cross terms, and the second is given by

e⊗ f + f ′ ⊗ e′ 7→ f(e) + f ′(e′).

From this formula, we readily verify that Gram matrix is(
0 1
1 0

)
.

□

Proposition 3.24. χA1
(P2) = H + ⟨1⟩ in GW(k).

Remark 3.25. This provides an alternate proof of the n = 2 case of [Hoy15, Example 1.7].
18



Proof. We refer to the spectral sequences depicted in Figures 3 and 4 for computations of
underlying vector spaces. We first note that the rank 2 bilinear form on H0(P2,OP2) ⊕
H2(P2,Ω2

P2) is equal to H, by an argument virtually identical to that in Proposition 3.22.
To complete the proposition, we will show that the symmetric bilinear form

(3.26) H1(P2, T ∗
P2)⊗H1(P2, T ∗

P2) H2(P2, ωP2) k∪ Tr

is the map k × k → k given by (x, y) 7→ xy, which is ⟨1⟩ as defined in Definition 3.19.
We first find a basis for H1(P2, T ∗

P2). To this end, consider the Euler sequence

0 T ∗
P2 O(−1)3 OP2 0.

ψ ϕ

Say P2 = P(k[x, y, z]). Let f ∈ k[x, y, z], we denote the distinguished open set of f by P2
f .

Following [Har13, Theorem II.8.13], the homomorphism ψ is defined on distinguished open
sets as follows

ψ
(
f1d

(y
x

)
+ f2d

(z
x

))
=

(
− y

x2
f1 −

z

x2
f2,

f1
x
,
f2
x

)
on P2

x,

ψ

(
g1d

(x
y

)
+ g2d

(z
y

))
=

(
g1
y
,− x

y2
g1 −

z

y2
g2,

g2
y

)
on P2

y, and

ψ
(
h1d

(x
z

)
+ h2d

(y
z

))
=

(
h1
z
,
h2
z
,− x

z2
h1 −

y

z2
h2

)
on P2

z.

with
fi

def
= fi(y/x, z/x),

gi
def
= gi(x/y, z/y),

and
hi

def
= hi(x/z, y/z)

for i ∈ {1, 2}. The homomorphism ϕ is defined by

ϕ(s0, s1, s2) = xs0 + ys1 + zs2.

Let δ:H0(P2,OP2) → H1(P2, T ∗
P2) be the zeroth connecting homomorphism in the long

exact sequence associated to the Euler sequence. Since δ is an isomorphism, δ(1) is a basis
for H1(P2, T ∗

P2) ∼= k. We next use Čech cohomology to calculate δ(1).
Let U be the affine covering of P2 by distinguished open sets P2

x, P2
y and P2

z. In what

follows,
(
C∗(U,F), d∗

)
denotes the Čech complex associated to F and U, where F is a sheaf

of abelian groups on P2.
We recall the definition of the connecting homomorphism. The Euler sequence induces a

short exact sequence of cochain complexes, [Har13, Theorem III.4.5]:

0 → C∗(U, T ∗
P2

)
→ C∗(U,O(−1)3

)
→ C∗(U,OP2

)
→ 0,

then δ is defined by diagram chasing in the diagram below,

(3.27)

0 C0
(
U, T ∗

P2

)
C0

(
U,O(−1)3

)
C0

(
U,OP2

)
0

0 C1
(
U, T ∗

P2

)
C1

(
U,O(−1)3

)
C1

(
U,OP2

)
0.

d0 d0 d0
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Take (1, 1, 1) ∈ OP2(P2
x) × OP2(P2

y) × OP2(P2
z) the generator of H0(P2,OP2) ∼= k. By the

definition of ϕ, d0 and ψ we see that δ(1, 1, 1) =
(
y
x
d
(
x
y

)
, z
y
d
(
y
z

)
, z
x
d
(
x
z

))
∈ H1(P2, T ∗

P2), as

diagram (3.28) illustrates.

(3.28)

((
1
x
, 0, 0

)
,
(
0, 1

y
, 0
)
,
(
0, 0, 1

z

))
(1, 1, 1)

(
y
x
d
(
x
y

)
, z
y
d
(
y
z

)
, z
x
d
(
x
z

)) ((
1
x
,− 1

y
, 0
)
,
(
0, 1

y
,−1

z

)
,
(
1
x
, 0,−1

z

))
Our next task is to calculte Q(δ(1)⊗δ(1)). We first compute δ(1)∪δ(1), as Q(δ(1)⊗δ(1)) =

Tr(δ(1) ∪ δ(1)). Consider the diagram below

(3.29)

H0(P2,OP2)⊗H1(P2, T ∗
P2) H1(P2, T ∗

P2)⊗H1(P2, T ∗
P2)

H1(P2,OP2 ⊗ T ∗
P2) H2(P2, T ∗

P2 ⊗ T ∗
P2) H2(P2, ωP2) k,

δ⊗id

∪ ∪

∂ ∧ Tr

where ∂ is the first connecting homomorphism in the long exact sequence associated to the
short exact sequence

0 T ∗
P2 ⊗ T ∗

P2 O(−1)3 ⊗ T ∗
P2 OP2 ⊗ T ∗

P2 0,
ψ⊗id ϕ⊗id

which is obtained by tensorizing the Euler sequence with T ∗
P2 . By commutativity of diagram

(3.29), we have that δ(1) ∪ δ(1) = ∂(1 ∪ δ(1)) = ∂(δ(1)).

Claim 3.30. Let α denote the Čech cocycle

z2

xy
d
(x
z

)
∧ d

(y
z

)
∈ H2(P2, ωP2).

We claim that the composite H1(P2,OP2 ⊗ T ∗
P2) H2(P2, T ∗

P2 ⊗ T ∗
P2) H2(P2, ωP2)∂ ∧

satisfies
δ(1) 7→ −α.

Given the claim, we complete the argument. The canonical trace map sends the form of
[Har13, Remark 7.1.1] to 1. Since α differs from this by the permutation swapping x and z,
which has sign −1, we deduce that α maps to −1 under the trace. By claim 3.30 it follows
that Tr(δ(1)⊗ δ(1)) = 1. □

Proof of claim 3.30. We calculate ∂(δ(1)) via the commutative diagram below.

(3.31)

0 C1
(
U, T ∗

P2 ⊗ T ∗
P2

)
C1

(
U,O(−1)3 ⊗ T ∗

P2

)
C1

(
U,OP2 ⊗ T ∗

P2

)
0

0 C2
(
U, T ∗

P2 ⊗ T ∗
P2

)
C2

(
U,O(−1)3 ⊗ T ∗

P2

)
C2

(
U,OP2 ⊗ T ∗

P2

)
0.

d1 d1 d1

Note that

δ(1) =
(
y
x
⊗ d

(
x
y

)
, z
y
⊗ d

(
y
z

)
, z
x
⊗ d

(
x
z

))
∈ H1(P2,OP2 ⊗ T ∗

P2).
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For ease of notation, we define

A
def
=

(( y
x2

⊗ d
(x
y

)
, 0, 0

)
,
(
0,
z

y2
⊗ d

(y
z

)
, 0
)
,
( z

x2
⊗ d

(x
z

)
, 0, 0,

))
and

B
def
=

z2

xy
d
(x
z

)
⊗ d

(y
z

)
.

By definition of ϕ we have that (ϕ⊗ id)(A) = δ(1). Moreover, d1(A) is equal to(
1⊗

( y
x2
d
(x
y

)
− z

x2
d
(x
z

))
, 1⊗ z

y2
d
(y
z

)
, 0

)
∈
(
O(−1)3 ⊗ T ∗

P2

)
(P2

xyz).(3.32)

To simplify (3.32) we use the equality

z

x
d
(x
z

)
=
z

x

(
y

z
d
(x
y

)
+
x

y
d
(y
z

))
=
y

x
d
(x
y

)
+
z

y
d
(y
z

)
.(3.33)

Substituing (3.33) into the first coordinate of (3.32) yields

d1(A) =

(
− z

xy
,
z

y2
, 0

)
⊗ d

(y
z

)
.(3.34)

We now compute (ψ ⊗ id)(B) and d1(A) + (ψ ⊗ id)(B). By definition of ψ we have

(ψ ⊗ id)(B) =

(
z2

xy

1

z
, 0,− z2

xy

x

z2

)
⊗ d

(y
z

)
=

(
z

xy
, 0,−1

y

)
⊗ d

(y
z

)
,(3.35)

and combining (3.34) and (3.35) we obtain

d1(A) + (ψ ⊗ id)(B) =

(
0,
z

y2
,−1

y

)
⊗ d

(y
z

)
= ψ ⊗ id

(
−d

(z
y

)
⊗ d

(y
z

))
.

Note that we have actually proved that ∂(δ(1)) = d
(
z
y

)
⊗ d

(
y
z

)
− B, as we can see in the

diagram below.

(3.36)

A δ(1)

d
(
z
y

)
⊗ d

(
y
z

)
−B d1(A)

Since

d
(z
y

)
⊗ d

(y
z

)
= d

(z
y

)
⊗ d

(y
z

)
= −y

2

z2
d
(y
z

)
⊗ d

(y
z

)
,

it follows that d
(
z
y

)
∧ d

(
y
z

)
= 0. From this we obtain the claim:

H1(P2, T ∗
P2 ⊗OP2) H2(P2, T ∗

P2 ⊗ T ∗
P2) H2(P2, ωP2)

δ(1) d
(z
y

)
⊗ d

(y
z

)
−B −α.

∂ ∧

□

Proposition 3.37. χA1
(Bl0 P2) = 2H in GW(k).
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Proof. As before, we first consider the pairing on H0(Bl0 P2,OBl0 P2)⊕H2(Bl0 P2,Ω2
Bl0 P2) and

show it is H in GW(k). The argument here is again as in Proposition 3.22.
Now let Q′ denote the class of the symmetric bilinear form

H1(Bl0 P2, T ∗
Bl0 P2)⊗H1(Bl0 P2, T ∗

Bl0 P2) H2(Bl0 P2, ωBl0 P2) k.∪ Tr

We will show that Q′ isomorphic to H.
To do this it is enough to find a non-zero element v in H1(Bl0 P2, T ∗

Bl0 P2) such that the

image of v ∪ v in H1(Bl0 P2, ωBl0 P2) is 0. To see this, note that we may extend v to a

basis {v, w} of H1(Bl0 P2, T ∗
Bl0 P2). Replacing w by w − Q′(w,w)

2Q′(v,w)
v (note that we use that the

characteristic is not 2 here), we obtain a new basis {w′, v} so that the Gram matrix of Q′ is(
0 Q′(w′, v)

Q′(w′, v) 0

)
.

Rescaling v, we have (
0 1
1 0

)
.

which is H in GW(k).
The blow-up T ∗

Bl0 P2 can be described as the projectivization of total space of the bundle

O(−1)⊕O on P1:

T ∗
Bl0 P2

∼= ProjProj k[x,y,z] k[x, y, z][S, T ]/⟨Sx− Ty⟩ ∼= PProj k[S,T ](O(−1)⊕O).

Let π: Bl0 P2 P1 denote the projection. The map π induces a mapH1(P1,ΩP1) H1(Bl0 P2, π∗ΩP1).
Composing with the map π∗ΩP1 ΩBl0 P2 , we obtain

π∗:H1(P1,ΩP1) H1(Bl0 P2,ΩBl0 P2).

Since H2(P2,ΩP1 ⊗ ΩP1) = 0, any v in the image of π∗ satisfies Q′(v, v) = 0 by naturally of
the cup product.

We have thus reduced the problem to showing that π∗ is nonzero. Since πi′ is the identity
on P1, the composition of π∗ with the map

H1
(
Bl0 P2;T ∗

Bl0 P2

)
H1

(
Bl0 P2; ΩBl0 P2/P2

) ∼= H1
(
Bl0 P2; i′∗ΩP1

) ∼= H1(P1,ΩP1)

of Equation (3.17) is the identity. Since H1(P1; ΩP1) ∼= k, it follows that π∗ is nonzero as
claimed. □

Now we can verify the equality (3.2); that is, that χA1
(P1) + χA1

(P2) = χA1
(Spec k) +

χA1
(Bl0 P2). Substituting in the results of Propositions 3.21, 3.22, 3.24 and 3.37, we obtain

the result.
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340(6):431–436, 2005.

[Roh52] V. A. Rohlin. New results in the theory of four-dimensional manifolds. Doklady Akad. Nauk SSSR
(N.S.), 84:221–224, 1952.

23
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l’Institut des Hautes Études Scientifiques, 98:59–104, 2003.
[Zak17] Inna Zakharevich. The K-theory of assemblers. Adv. Math., 304:1176–1218, 2017.

Department of Mathematics, Duke University, Durham NC, US
Email address: niny.arcilamaya@duke.edu, kirsten.wickelgren@duke.edu

Department of Mathematics, University of South Carolina, Columbia SC, US
Email address: betheac15@gmail.com

Department of Mathematics, University of California, Los Angeles CA, US
Email address: mopie@math.ucla.edu

Department of Mathematics, Cornell California, Ithaca NY, US
Email address: zakh@math.cornell.edu

24


