
CARTIER’S FIRST THEOREM FOR WITT VECTORS ON Zn≥0 − 0

KIRSTEN WICKELGREN

ABSTRACT. We show that the dual of the Witt vectors on Zn
≥0 − 0 as defined by An-

geltveit, Gerhardt, Hill, and Lindenstrauss represent the functor taking a commutative
formal group G to the maps of formal schemes Ân → G, and that the Witt vectors are
self-dual for Q-algebras or when n = 1.

1. INTRODUCTION

Hesselholt and Madsen computed the relative K-theory of k[x]/〈xa〉 for k a perfect field
of positive characteristic in [HM], and give the answer in terms of the Witt vectors of k.
In the analogous computation for the ring A = k[x1, . . . , xn]/〈xa11 , . . . , xann 〉, Angeltveit,
Gerhardt, Hill, and Lindenstrauss define an n-dimensional version of the Witt vectors,
which they use to express the relative K-theory and topological cyclic homology of A
[AGHL].

We show that the Cartier dual of the additive group underlying their Witt vectors on
the truncation set Zn≥0 − 0, denoted WZn

≥0
−0, represents the functor taking a commutative

formal group G to the pointed maps of formal schemes Ân → G (Theorem 2.2). We also
show that the additive group of WZn

≥0
−0 is self dual (Lemma 2.4) when n = 1 or R is

a Q-algebra. Combining these results implies that the additive formal group of WZn
≥0

−0

represents the functor sendingG to the group of maps Ân → Gwhen when n = 1 or R is a
Q-algebra. The case of n = 1 is Cartier’s first theorem [C] [H, Th. 27.1.14] on the classical
Witt vectors.
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2. CARTIER’S FIRST THEOREM FOR WITT VECTORS ON Zn≥0 − 0

Here is Angeltveit, Gerhardt, Hill, and Lindenstrauss’s n-dimensional version of the
Witt vectors, defined in Section 2 of [AGHL]: a set S ⊆ Zn≥0 − 0 is a truncation set if
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(kj1, kj2, . . . , kjn) in S for k ∈ N = Z>0 implies that (j1, j2, . . . , jn) is in S. For~J = (j1, . . . , jn)

in Zn≥0 − 0, let gcd(~J) denote the greatest common divisor of the non-zero ji. Given a ring
R and a truncation set S, let the Witt vectors WS(R) be the ring with underlying set RS and
addition and multiplication defined so that the ghost map

WS(R) → RS

that takes {r~I : ~I ∈ S} to {w~I :
~I ∈ S} where

w~I =
∑
k~J=~I

gcd(~J)rk~J

is a ring homomorphism, where in the above sum, k ranges over N and ~J is in S. In
[AGHL], one requires S to be a subset of Nn, but the same proof that there is a unique
functorial way to define such a ring structure [AGHL, Lem 2.1] holds for S ⊆ Zn≥0 − 0.
Note that

WS(R) =
∏

Z({1,...n}

WSZ(R)

where SZ is defined SZ = {(j1, . . . , jn) ∈ S : ji = 0 if and only if i ∈ Z}, and that for
S = Zn≥0 − 0, we have WSZ(R)

∼= WNm(R) withm = n− |Z|.

Let R be a ring. For any truncation set S, the additive group underlying the ring WS(R)
determines a commutative group scheme and formal group over R.

Let Ân = Spf R[[t1, t2, . . . , tn]] be formal affine n-space and consider Ân as a pointed
formal scheme, equipped with the point Spf R→ Ân corresponding to the ideal 〈t1, . . . tn〉.
Let Morfs(Ân, G) denote the morphisms of pointed formal schemes over R from Ân to a
pointed formal R-scheme G. The identity of a formal group G gives G the structure of a
pointed formal scheme.

For commutative formal groups G1 and G2 over R, let Morfg(G1, G2) denote the corre-
sponding morphisms.

2.1. Theorem. — Suppose R is a Q-algebra or n = 1. The additive formal group of WZn
≥0

−0(R)

represents the functor
G 7→ Morfs(Ân, G)

from commutative formal groups over R to groups, i.e. there is a natural identification

Morfg(WZn
≥0

−0(R), G) ∼= Morfs(Ân, G)

for commutative formal groups G over R.

Theorem 2.1 is proven by combining Theorem 2.2 and Lemma 2.6 below.

Cartier duality gives a contravariant equivalence between certain topological R-algebras
and R-coalgebras [H, Prop 37.2.7]. For such a topological R-algebra (respectively coalge-
bra) B, let B? denote its Cartier dual

B? = MorR(B, R)
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where MorR(B, R) denotes the continuous R-module homomorphisms from B to R (re-
spectively the R-module homomorphisms from B to R). Say that an algebra or coalgebra
is augmented if it is equipped with a splitting of the unit or counit map. It is straight-
forward to see that Cartier duality induces an equivalence between augmented topolog-
ical R-algebras satisfying the conditions of [H, 37.2.4] and augmented R-coalgebras sat-
isfying the conditions of [H, 37.2.5]. Denote the morphisms in the former category by
Mortop alg(−,−) and the morphisms in the latter category by Morcoalg(−,−).

The commutative group scheme determined by the additive group underlying WS(R)
has a Cartier dual WS(R)

? which is a topological Hopf algebra or formal group.

2.2. Theorem. — The Cartier dual of the additive group scheme of WZn
≥0

−0(R) represents the
functor

G 7→ Morfs(Ân, G)
from commutative formal groups over R to groups, i.e. there is a natural identification

Morfg(WZn
≥0

−0(R)
?, G) ∼= Morfs(Ân, G)

for commutative formal groups G over R.

Proof. First assume that the formal group G is affine. Let A denote the functions of G, so
A is a Hopf algebra and G = Spf A.

Morfs(Ân, G) = Mortop alg(A,R[[t1, t2, . . . , tn]]).

By Cartier duality,

Mortop alg(A,R[[t1, t2, . . . , tn]]) = Morcoalg(R[[t1, t2, . . . , tn]]
?, A?).

Let F denote the left adjoint to the functor taking a Hopf algebra (as defined [H, 37.1.7])
to its underlying augmented coalgebra. Since A is a Hopf algebra, so is A?. Therefore,

Morcoalg(R[[t1, t2, . . . , tn]]
?, A?) = MorHopf alg(F(R[[t1, t2, . . . , tn]]

?), A?)

= Mortop Hopf alg(A, F(R[[t1, t2, . . . , tn]]
?)?) = Morfg(Spf F(R[[t1, t2, . . . , tn]]?)?, G),

where Mortop Hopf alg(−,−) denotes morphisms of topological Hopf algebras whose un-
derlying topological R-algebra is as before.

By Lemma 2.3 proven below, the formal group Spf F(R[[t1, t2, . . . , tn]]
?)? is isomorphic

to the Cartier dual of the additive group scheme of WZn
≥0

−0(R).

Thus WZn
≥0

−0(R)
? represents the functorG 7→ Morfs(Ân, G) restricted to affine commuta-

tive formal groups G. Since WZn
≥0

−0(R)
? is an affine formal group, the identity morphism

determines an element of Morfs(Ân,WZn
≥0

−0(R)
?), which in turn defines a natural trans-

formation
η : Morfg(WZn

≥0
−0(R)

?,−) → Morfs(Ân,−).

For any formal groupG, the sets Morfg(WZn
≥0

−0(R)
?, G) and Morfs(Ân, G) extend to sheaves

on Spf R. Since locally on Spf R, every formal groupG is affine, η is a natural isomorphism.
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2.3. Lemma. — The group scheme determined by the Hopf algebra F(R[[t1, t2, . . . , tn]]?) is iso-
morphic to the additive group scheme of WZn

≥0
−0(R).

Proof. For notational convenience, given ~I = (i1, i2, . . . , in) and ~J = (j1, . . . , jn) in Zn≥0, let
t
~I = ti11 t

i2
2 · · · tinn , and write~I ≤ ~Jwhen ik ≤ jk for all k.

R[[t1, t2, . . . , tn]]
? is a free R-module on the basis {b~I : ~I = (i1, i2, . . . , in) ∈ Zn≥0} where b~I

is dual to ti11 t
i2
2 · · · tinn . The R-coalgebra structure is given by the comultiplication

(1) b~I 7→ ∑
0≤~J≤~I

b~J ⊗ b~I−~J,

and the augmentation R→ R[[t1, t2, . . . , tn]]
? sends r to rb~0.

It follows that F(R[[t1, t2, . . . , tn]]?) is the polynomial algebra

R[b~I :
~I ∈ Zn≥0]/〈b~0 − 1〉

with comultiplication equal to the R-algebra morphism determined by (1). Thus, for any
R-algebra B

Moralg(F(R[[t1, t2, . . . , tn]]
?), B)

is the group under multiplication of power series in n variables t1, t2, . . . , tn with leading
coefficient 1 and coefficients in B

(2) {1+
∑

~I∈Zn
≥0

−0

b~It
~I : b~I ∈ B}.

Any such power series can be written uniquely in the form

(3)
∏

~I∈Zn
≥0

−0

(1− a~It
~I)

with a~I ∈ B. It follows that F(R[[t1, t2, . . . , tn]]?) is isomorphic as a Hopf algebra to the
polynomial algebra R[a~I : ~I ∈ Zn≥0−0] with comultiplication determined by multiplication
of power series of the form (3). By the definition of the Witt vectors, it suffices to show
that the Witt polynomials

∑
k~J=~I gcd(

~J)ak~J are primitives for this comultiplication for all ~I
in Zn≥0−0. To show this, we may assume that R is a free ring, since every ring is a quotient
of a free ring. Then R embeds into its field of fractions, so we may further assume that k
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is invertible for all k ∈ Z>0. Note that

log
∏

~I∈Zn
≥0

−0

(1− a~It
~I) = −

∑
~I∈Zn

≥0
−0

∑
k∈N

ak~I
k
tk

~I

= −
∑

~I∈Zn
≥0

−0

∑
k~J=~I

ak~J
k
t
~I

=
∑

~I∈Zn
≥0

−0

(∑
k~J=~I

gcd(~J)ak~J
) −t

~I

gcd(~I)
.

Thus the group under multiplication with elements (3) is isomorphic to the group with
elements {a~I ∈ B} and whose group operation is such that

(∑
k~J=~I gcd(

~J)ak~J

)
is an addi-

tive homomorphism, i.e. the Witt polynomials
∑

k~J=~I gcd(
~J)ak~J are indeed primitives as

desired. �

The additive group scheme of WZn
≥0

−0(R) corresponds to a graded Hopf algebra, mean-
ing that there is a grading on the underlying R-module such that the structure maps are
maps of graded R-modules. This grading can be defined by giving a~J as in Lemma 2.3
degree j1 + j2 + . . .+ jn. A graded Hopf algebra Bwhose underlying graded R-module is
free and finite rank in each degree has a graded Hopf algebra dual B∗ which we define to
havemth graded piece Grm B

∗ = HomR(Grm B, R) and

B∗ = ⊕mGrm B
∗.

Note the difference with the Cartier dual

B? =
∏
m

Grm B
∗.

Say that a graded Hopf algebra B is self dual if there is an isomorphism B ∼= B∗. An
affine group scheme corresponding to a graded Hopf algebra will be called self dual if its
corresponding graded Hopf algebra is self dual.

2.4. Lemma. — The graded additive group scheme of WZn
≥0

−0(R) is self dual if R is a Q-algebra or
if n = 1.

Proof. We give an isomorphism of graded Hopf algebras

F(R[[t1, t2, . . . , tn]]
?) ∼= F(R[[t1, t2, . . . , tn]]

?)∗

which is equivalent to the claim by Lemma 2.3.

We saw above that F(R[[t1, t2, . . . , tn]]?) is the polynomial algebra

R[b~I :
~I ∈ Zn≥0]/〈b~0 − 1〉

with comultiplication determined by (1). Thus, an R-basis for F(R[[t1, t2, . . . , tn]]?) is given
by the collection of monomials bm1

~I1
bm2

~I2
bm3

~I3
· · ·bmk

~Ik
in the variables {b~I :

~I ∈ Zn≥0 − 0}. Let
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C = {c~Im1
1

~I
m2
2

~I
m3
3 ···~I

mk
k

: mj > 0,~Ij ∈ Zn≥0 − 0} denote the dual basis of F(R[[t1, t2, . . . , tn]]?)∗.
For notational convenience, we will also write c~Im1

1
~I
m2
2

~I
m3
3 ···~I

mk
k

even when some of the mj

are 0; it is to be understood that such an expression is identified with the corresponding
expression with the~Imj

j terms withmj = 0 removed.

Let {e1, e2, . . . , en} be the standard basis of Zn, so e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0)

etc. For notational convenience, for ~M = (m1,m2, . . . ,mn) in Zn≥0 − 0, let C ~M abbreviate
cem1

1 e
m2
2 ···e

mn
n

.

Note that

µ(C ~M) =
∑
0≤~J≤ ~M

C~J ⊗ C ~M−~J

where µ denotes the comultiplication of F(R[[t1, t2, . . . , tn]]?)∗.

Sending b~I to C~I thus defines a morphism of Hopf algebras

F(R[[t1, t2, . . . , tn]]
?) → F(R[[t1, t2, . . . , tn]]

?)∗,

and to prove the lemma it suffices to see that the C~I are free R-algebra generators of
F(R[[t1, t2, . . . , tn]]

?)∗ when either n = 1 or Q ⊆ R.

We first show that the C~I generate F(R[[t1, t2, . . . , tn]]?)∗ as an R-algebra in both cases:

First assume that n = 1. We show that the Cm = cem1 for m = 1, 2, 3, . . . generate
F(R[[t1]]

?)∗ as an R-algebra. An arbitrary element c of C is of the form ci1,i2,··· ,ik with the
ik not necessarily distinct in Z>0. Define the degree of c to be d =

∑k
j=1 ij. Assume by

induction that any element of C of degree less than d is in the subalgebra generated by
the Cm. Define the length of c to be k. The length of c must be less than or equal to d.
If the length of c equals d, then ci1,i2,··· ,ik = Ck and c is in the subalgebra. So we may
assume by induction that any element of C of degree d and length greater than k is in the
subalgebra. The multiplication on F(R[[t1]]?)∗ is dual to

bi1bi2bi3 · · ·bik 7→ k∏
j=1

(
∑
0≤J≤ij

bJ ⊗ bij−J).

Thus the difference

c− ci1−1,i2−1,··· ,ik−1Ck

is a sum of terms of degree d and length greater than k. It follows by induction that the
Cm = cem1 generate F(R[[t1]]?)∗ as claimed.

Now let n be arbitrary. Consider the map f : R[[t]] → R[[t1, . . . , tn]] defined by

f(t) = t1 + t2 + . . .+ tn.

There is an induced map

f : F(R[[t1, . . . , tn]]
?) ∼= R[b~I :

~I ∈ Zn≥0 − 0] → R[bm : m ∈ Z>0] ∼= F(R[[t]]?)
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which is determined by the following calculation of f(b~I) for~I = (i1, i2, . . . , in).

f(b~I)(t
m) = b~I(f(t

m)) = b~I(t1 + . . .+ tn)
m

= b~I
( ∑
a1,...an≥0

(
m

a1a2 · · ·an

)
ta11 t

a2
2 · · · t

an
n

)
,

where the sum runs over non-negative ai whose sum ism and where(
m

a1a2 · · ·an

)
=

m!

a1!a2! · · ·an!
.

Thus

f(b~I) =

(
d

i1i2 · · · in

)
bd,

where d =
∑n

j=1 ij. There is likewise an induced map

f : F(R[[t]]?)∗ ∼= R[ci1,i2,··· ,ik : ij ∈ Z>0] → R[c~I1~I2···~Ik : ~Ij ∈ Zn≥0 − 0] ∼= F(R[[t1, t2, . . . , tn]]?)∗.
By calculation as above, this map satisfies

f(Cm) =
∑

degree~I=m

C~I

where the sum runs over~I ∈ Zn≥0 of degreem, and

f(cm) =
∑

degree~I=m

(
m
~I

)
c~I,

where (
m
~I

)
c~I =

(
m

i1i2 . . . in

)
when ~I = (i1, i2, . . . , in). By the n = 1 case, f(cm) is in the R-subalgebra generated by
the f(Cm). Since F(R[[t1, t2, . . . , tn]]?)∗ is a Zn-graded Hopf algebra, it follows that the ho-
mogenous pieces of f(cm) are in the R-subalgebra generated by the homogeneous pieces
of f(Cm). Thus

(
m
~I

)
c~I is in the R-subalgebra generated by the C~I. Since

(
m
~I

)
is invertible in

R, it follows that c~I is in this subalgebra.

An arbitrary element c of C is of the form c~I1~I2···~Ik . The multiplication on F(R[[t1, t2, . . . , tn]]?)∗

is dual to

b~I1b~I2b~I3 · · ·b~Ik 7→ k∏
j=1

(
∑
0≤~J≤~Ij

b~J ⊗ b~Ij−~J).

It follows that the difference c − c~I1~I2···~Ik−1
c~Ik is a linear combination of elements of C of

length less than k. Thus c is in the R-subalgebra generated by the C~I by induction on the
length k.

We now show that there are no relations among the C~I, i.e. that the distinct monomials
C~I1
C~I2
· · ·C~Ik

form an R-linearly independent subset of F(R[[t1, t2, . . . , tn]]?)∗:

Fix ~M in Zn≥0 − 0. Let I denote the set of finite sets {~I1,~I2, . . . ,~Ik} with~Ij in Zn≥0 − 0 and∑k
j=1

~Ij = ~M. For S in I with S = {~I1,~I2, . . . ,~Ik}, let CS =
∏k

j=1C~Ij
in F(R[[t1, t2, . . . , tn]]?)∗
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and let cS = c~I1~I2···~Ik in C. Note that for all S in I, CS is in the sub-R-moduleF ~M spanned by
{cS : S ∈ I}. By the above, {CS : S ∈ I} spans F ~M. Since F ~M is isomorphic to RN whereN is
the (finite) cardinality of I, any spanning set of size N is also a basis [AM, Ch 3 Exercise
15]. In particular {CS : S ∈ I} is an R-linearly independent set. Since any monomial in the
C~I is of the form CS for some ~M, it follows that the distinct monomials in the C~I form a
linearly independent set. �

2.5. Remark. The C~I do not generate F(R[[t1, t2, t3]]?)∗ when 2 is not invertible in R as
can be checked by computing that the homogenous degree-(1, 1, 1) component of the R-
subalgebra generated by the C~I is the span of the following five vectors

Ce1Ce2Ce3 = c(1,1,1) + c(1,1,0)(0,0,1) + c(1,0,1)(0,1,0) + c(0,1,1)(1,0,0) + ce1e2e3 ,

C(0,1,1)Ce1 = c(1,1,0)(0,0,1) + c(1,0,1)(0,1,0) + ce1e2e3
C(1,0,1)Ce2 = c(0,1,1)(1,0,0) + c(1,1,0)(0,0,1) + ce1e2e3
C(1,1,0)Ce3 = c(1,0,1)(0,1,0) + c(0,1,1)(1,0,0) + ce1e2e3
C(1,1,1) = ce1e2e3 .

2.6. Lemma. — If R is a Q-algebra or if n = 1, the Cartier dual of the additive group scheme of
WZn

≥0
−0(R) is the formal group associated to the additive group of WZn

≥0
−0(R).

Proof. By Lemma 2.3, the claim is equivalent to showing that the topological Hopf algebra
F(R[[t1, t2, . . . , tn]]

?)? is the ring of functions of the formal group associated to the additive
group of WZn

≥0
−0(R).

The Cartier dual F(R[[t1, t2, . . . , tn]]?)? of the Hopf algebra F(R[[t1, t2, . . . , tn]]?) is the
product

F(R[[t1, t2, . . . , tn]]
?)? ∼=

∞∏
m=0

Grm F(R[[t1, t2, . . . , tn]]
?)∗

overm of themth graded pieces of the graded Hopf algebra dual. By Lemma 2.4,

F(R[[t1, t2, . . . , tn]]
?)∗ ∼= F(R[[t1, t2, . . . , tn]]

?) ∼= R[b~I :
~I ∈ Zn≥0]/〈b~0 − 1〉,

with comultiplication determined by (1). So∞∏
m=0

Grm F(R[[t1, t2, . . . , tn]]
?)∗ ∼= R[[b~I :

~I ∈ Zn≥0]]/〈b~0 − 1〉,

and applying Lemma 2.3 completes the proof.

�
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