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Abstract. We define a quadratically enriched count of rational curves in a given divisor
class passing through a collection of points on a del Pezzo surface S of degree ≥ 3 over a
perfect field k of characteristic ̸= 2, 3.When S is A1-connected, the count takes values in the
Grothendieck-Witt group GW(k) of quadratic forms over k and depends only on the divisor
class and the fields of definition of the points. More generally, the count is a morphism from
the sheaf of connected components of tuples of points on S with given fields of definition
to the Grothendieck-Witt sheaf. We also treat del Pezzo surfaces of degree 2 under certain
conditions. The curve count defined in the present work recovers Gromov-Witten invariants
when k = C and Welschinger invariants when k = R.

To obtain an invariant curve count, we define a quadratically enriched degree for an alge-
braic map f of n-dimensional smooth schemes over a field k under appropriate hypotheses.
For example, f can be proper, generically finite and oriented over the complement of a sub-
scheme of codimension 2. This degree is compatible with F. Morel’s GW(k)-valued degree

of an A1-homotopy class of maps between spheres. For k ⊆ C, this produces an enrichment
of the topological degree of a map between manifolds of the same dimension.
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1. Introduction

1.1. Background. A degree d rational plane curve over C is a map u : P1C → P2C given by
u([s : t]) = [u0(s, t), u1(s, t), u2(s, t)] where the ui are homogeneous polynomials of degree
d. A dimension count shows that one expects to have finitely many degree d rational plane
curves passing through 3d − 1 points. For d = 1, such curves are the lines through two
points. For d = 2, they are the conics through five. Over C, the number of such curves, Nd,
is independent of the generally chosen points, and the first values are given by

N1 = 1, N2 = 1, N3 = 12, N4 = 620, N5 = 87, 304, . . .

The number N4 = 620 was first computed by Zeuthen [Zeu73] in 1873. In the early 1990’s,
building on ideas of Gromov [Gro85] and Witten [Wit88, Wit91], a general approach to curve
counting problems was formulated [KM94, MS94, RT94, RT95], which has come to be known
as Gromov-Witten theory. An early success of Gromov-Witten theory was a simple recursive
formula giving Nd for d ≥ 5. Another road-mark was the virtual enumeration of rational
curves on the quintic threefold in agreement with mirror symmetry [Kon95, Giv96, LLY97].

The power of Gromov-Witten theory stems from the topological interpretation of curve
counts as intersection numbers. So, even if general position cannot be achieved, one can still
make sense of the curve counts. This can be done either through symplectic or algebraic
geometry. Here, we focus on the algebraic approach. Let X be a projective algebraic variety
over C of dimension r and let M̄g,n(X,β) be the space of stable maps u : Σ → X where Σ
is a nodal curve of arithmetic genus g with n marked points p1, . . . , pn, and the degree is
u∗[Σ] = β ∈ H2(X;Z). Let evi : M̄g,n(X,β) → X be the evaluation map at the ith marked
point, given by (u, Σ, p) 7→ u(pi). In general M̄g,n(X,β) is a singular Deligne-Mumford
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stack and the dimension of irreducible components can vary. However, it admits a virtual
fundamental class [M̄g,n(X,β)] of dimension (1 − g)(r − 3) + n +

∫
β
c1(TX). The Gromov-

Witten invariant counting curves of genus g and degree β passing through cycles representing
the Poincaré duals of Ai ∈ Hli(X) is defined by

GWg,β(A1, . . . , An) =

∫
[M̄g,n(X,β)]

ev∗1A1 ∪ · · · ∪ ev∗nAn.

So, in the special case that A1, . . . , An = pt ∈ H2r(X) are the Poincaré dual of the point
class, the Gromov-Witten invariant GWg,β(A1, . . . , An) is the virtual degree of the total
evaluation map

ev = ev1 × · · · × evn : M̄g,n(X,β) → Xn.

If we take X = P2 and ℓ ∈ H2(X;Z) the class of a line, then Nd = GW0,dℓ(pt
⊗n).

Over the real numbersR, it is no longer true that the number of real degree d rational plane
curves passing through 3d− 1 real points is independent of the general choice of points. For
example, there can be 8, 10, or 12 real rational cubics passing through 8 real points [DK00,
p. 55]. However, Degtyarev-Kharlamov [DK00, Lem. 4.7.3] showed that the number of such
cubics with a node where two real branches intersect minus the number with a node where
two complex conjugate branches intersect is always 8. Welschinger showed the invariance of
a signed count of rational plane curves over R of degree d passing through 3d− 1− 2m real
points and 2m pairs of complex conjugate points. The sign with which a curve contributes
to the count is given by the parity of the number of nodes where two complex conjugate
branches intersect. More generally, he showed [Wel05a, Wel05b] the invariance of analogous
counts of real J-holomorphic spheres on real symplectic manifolds of dimensions 4 and 6.
In algebraic geometry, this corresponds to counting real rational curves on real surfaces or
threefolds.

A topological approach to Welschinger’s invariants was developed in the context of open
Gromov-Witten theory [Cho08, Sol06]. The terminology ‘open’ comes from open string
theory [Wit95]. Let X be a symplectic manifold of dimension 2r, let L ⊂ X be a Lagrangian
submanifold and let J be a tame almost complex structure on X. For example, take L to be
a component of the real points of a projective algebraic variety P over R, take X to be the
complex points of the base change to C and take J to be the standard complex structure on
X. In this example, we have an anti-symplectic involution ϕ : X → X given by the action
of Gal(C/R) such that L ⊂ Fix(ϕ). Let M̄D,s,t(X/L, β) denote the space of J-holomorphic
stable maps u : (Σ, ∂Σ) → (X, L) where Σ is a nodal disk with s boundary marked points
z1, . . . , zs and t interior marked points w1, . . . , wt of degree u∗[Σ, ∂Σ] = β ∈ H2(X, L;Z). Let
evbi : M̄D,s,t(X/L, β) → L denote the evaluation map at the ith boundary marked point given
by (u, Σ, z,w) 7→ u(zi). Let evij : M̄D,s,t(X/L, β) → X denote the evaluation map at the jth
interior marked point given by (u, Σ, z,w) 7→ u(wj). In nice cases, the space M̄D,s,t(X/L, β)
is a manifold with corners of dimension µ(β) + r − 3 + s + 2t where µ : H2(X, L;Z) → Z
is the Maslov index. In general, M̄D,s,t(X/L, β) is singular but nonetheless admits a virtual
fundamental class with dimension given by the same formula. Let

evD = evb1 × · · · × evbs × evi1 × · · · × evit : M̄D,s,t(X/L, β) → Ls × Xt

denote the total evaluation map. Recall that a relative orientation for a map of smooth
manifolds f : M → N is an isomorphism det(TM)

∼→ f∗ det(TN). It was shown in [Sol06]
that a Pin structure on L and an orientation if L is orientable determine a virtual relative
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orientation for the map evD when the dimensions of the domain and codomain coincide.
Since M̄D,s,t(X/L, β) is a manifold with corners, the degree of evD is not a priori defined.
However, when dimX = 4, 6, and there is an anti-symplectic involution of X that fixes L, it
is possible to glue together certain boundary components of M̄D,s,t(X/L, β) to obtain a new

manifold with corners M̃D,s,t(X/L, β) with the following two properties.

(1) There is an induced evaluation map ẽvD that is still relatively oriented.

(2) The image of the boundary ẽvD(∂M̃D,s,t(X/L, β)) ⊂ Ls×Xt has codimension at least
2.

These two properties allow the degree of ẽvD to be defined. There is a natural doubling
map ϖ : H2(X, L;Z) → H2(X;Z). The degree of ẽvD coincides up to a factor of 21−t with the
Welschinger invariant counting real J-holomorphic spheres in X representing the class ϖ(β)
and passing through s real points and t complex conjugate pairs of points. Open Gromov-
Witten theory leads to efficient recursive formulas for Welschinger invariants [Che22, CZ21,
HS12, Sol07, ST23] and the enumeration of disks on the quintic threefold in agreement with
mirror symmetry [PSW08]. It also allows the definition of invariants in arbitrary dimension
and for L not necessarily fixed by an anti-symplectic involution [ST21].

Analogous results over the real and complex numbers may indicate the presence of a
common generalization in the A1-homotopy theory of F. Morel and V. Voevodsky [MV99]
valid over more general fields or base rings. We show this to be the case here. A1-homotopy
theory adds homotopy colimits to smooth schemes, allowing one to glue or crush them. For
example, one has spheres Pnk/Pn−1k , where k is a fixed base field. Morel’s A1-Brouwer degree
theorem [Mor12, Theorem 1.23] identifies the A1-stable homotopy classes of maps from the
sphere Pnk/Pn−1k to itself with the Grothendieck–Witt group GW(k) of bilinear forms over
k, recalled below in Section 1.2.3. More generally, the theorem computes the (0, 0)-stable
homotopy sheaf of the sphere spectrum in A1-homotopy theory over k with a sheaf GW ,
described more in Section 1.2.6. Given polynomial equations for a map Pnk/Pn−1k → Pnk/Pn−1k

the degree is computed as a sum of local degrees in [KW19]. Morel’s A1-Brouwer degree for
maps between spheres identifies the target for the A1-degrees that we develop here and apply
to the above evaluation maps. Away from a codimension 1 locus, the degree is the sum over
points of the fiber of the same local degrees present in the degree of a map of spheres.

1.2. Statement of results. The present paper aims to develop certain Gromov–Witten
invariants and rational curve counts over perfect fields k of characteristic not 2 or 3, by
recasting the arguments of [Sol06] in A1-homotopy theory. A relative orientation of a mor-
phism f : M → N of smooth k-schemes is an invertible sheaf L on M together with an
isomorphism ρ : Hom(det TM, det TN) → L⊗2. Let S be a del Pezzo surface over k, in the
sense that S is a geometrically connected, smooth, projective k-scheme of dimension 2 with
ample anticanonical bundle −KS. Let dS = KS · KS denote the degree of S.

Let M̄0,n(S,D) denote the space of genus zero stable maps with n marked points in
the class D ∈ Pic(S) and consider the total evaluation map ev : M̄0,n(S,D) → Sn. Let

σ = (L1, . . . , Lr) be an r-tuple of field extensions k ⊂ Li ⊂ k̄ such that
∑k

i=1[Li : k] = n.
For an L-scheme X, let ResL/k X denote the restriction of scalars to k. We construct a

4



corresponding Galois twist (see Section 5)

evσ : M̄0,n(S,D)σ → (Sn)σ =

r∏
i=1

ResLi/k S.

For the rest of the introduction, we fix n = d− 1 and work under the following hypothesis.

Hypothesis 1. Assume that D is not an m-fold multiple of a −1-curve for m > 1. More-
over, assume that dS ≥ 4, or dS = 3 and d := −KS ·D ̸= 6, or dS = 2 and d ≥ 7.

1.2.1. Characteristic zero. Assume first that k has characteristic zero. In [KLSW23, Theo-
rem 4.5], we identify a closed subset A ⊂ (Sn)σ such that M̄0,n(S,D)goodσ := M̄0,n(S,D)σ \

ev−1(A) has the following two properties analogous to properties (1) and (2) of M̃D,s,t(X/L, β)
above.

(1 ′) The restriction of the total evaluation map evgoodσ : M̄0,n(S,D)goodσ → (Sn)σ is rela-
tively oriented.

(2 ′) The codimension of A ⊂ (Sn)σ is at least 2.

In the case k = R, we can make the relation between M̃D,s,t(X/L, β) and M̄0,n(S,D)goodσ

precise as follows. Take L ⊂ X the Lagrangian submanifold corresponding to S, take s the
number of i such that Li = R and t the number of i such that Li = C. There is a commutative
diagram

int M̃D,s,t(X/L, β)
ẽvD //

��

Ls × Xt

≀
��

M̄0,n(S,D)goodσ (k)
ev

good
σ // (Sn)σ(k)

where the right vertical arrow is a bijection and the left vertical arrow is two-to-one onto a
fundamental domain for an action of the group (Z/2)t.

Properties (1 ′) and (2 ′) allow us to define the degree of evgoodσ . However, the degree is no
longer valued in the integers Z. Rather, we build on F. Morel’s A1-degree [Mor04, KW19]
to define a degree in the Grothendieck–Witt ring GW(k). We recall the definition and basic
properties of GW(k) in Section 1.2.3 below. One of our main results is the following.

Theorem 1. Let S,D, σ satisfy Hypothesis 1 and assume that S is A1-connected. Then
there exists an invariant NS,D,σ in the Grothendieck–Witt ring GW(k) given by the degree of
evgoodσ .

1.2.2. Positive characteristic. We turn to the case when k has positive characteristic. Let
Mbir

0 (S,D) ⊂M0(S,D) be the open subscheme of maps u : P → S from irreducible genus 0
curves such that P → u(P) is birational. Such u is said to be unramified if u∗T ∗S→ T ∗P is
surjective.

Hypothesis 2. In addition to Hypothesis 1, assume k is perfect of characteristic not 2 or 3.
If dS = 2, assume additionally that for every effective D ′ ∈ Pic(S), there is a geometric point
f in each irreducible component of Mbir

0 (S,D ′) with f unramified.
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Let Λ be a complete discrete valuation ring with reside field k and quotient field K of
characteristic 0. In [KLSW23, Section 9] we construct S̃ → SpecΛ a smooth del Pezzo

surface equipped with an effective D̃ ∈ Pic(S̃) with special fibers S̃k ∼= S and D̃k
∼= D. We

construct a Galois twist
ẽvσ : M̄0,n(S̃, D̃)σ → (S̃n)σ

that agrees with evσ on the special fiber. Moreover, we identify a closed subset Ã ⊂ (S̃n)σ
such that M̄0,n(S̃, D̃)goodσ := M̄0,n(S̃, D̃)σ\ev

−1(Ã) has the following two properties analogous

to properties (1) and (2) of M̃D,s,t(X/L, β) above.

(1 ′′) The restriction of the total evaluation map ẽvgoodσ : M̄0,n(S̃, D̃)goodσ → (S̃n)σ is rela-
tively oriented.

(2 ′′) The codimension of Ã ⊂ (S̃n)σ is at least 2.

Properties (1 ′′) and (2 ′′) again allow us to define the degree of ẽvgoodσ in GW(k). See Section
2.4 for the precise condition. Thus we obtain the following result.

Theorem 2. Let S,D, σ satisfy Hypothesis 2 and assume that S is A1-connected. Then,
there exists an invariant NS,D,σ in the Grothendieck–Witt ring GW(k) given by the degree of

ẽvgoodσ . It is independent of the choice of S̃, D̃.

1.2.3. The Grothendieck–Witt ring. In order to explain the enumerative meaning of the
invariants NS,D,σ, we recall the definition and basic properties of the Grothendieck-Witt ring
GW(k). The Grothendieck–Witt ring is defined as the group completion of the semi-ring
of non-degenerate symmetric bilinear forms over k. Since symmetric bilinear forms over a
field are stably diagonalizable, an arbitrary element of this group can be expressed as a sum
of rank 1 bilinear forms. Let ⟨a⟩ denote the element of GW(k) corresponding the rank 1
bilinear form k× k→ k given by (x, y) 7→ axy for a in k∗. Replacing the basis {1} of k by
{b} for b in k∗ gives the equality ⟨a⟩ = ⟨ab2⟩, and in particular for fields such that k∗/(k∗)2

is trivial, GW(k) is isomorphic to Z by the homomorphism taking a bilinear form to its
rank, i.e. the dimension of the underlying vector space. Applying the rank will result in the
classical count of curves over the algebraic closure. For more general fields, GW(k) contains
more information. For example,

GW(R) ∼= Z⊕ Z, GW(Fq) ∼= Z× F∗
q/(F

∗
q)
2, GW( C((z)) ) ∼= Z× C((z))∗/(C((z))∗)2,

GW(Qq) ∼=
GW(Fq)⊕GW(Fq)

(⟨1⟩+ ⟨−1⟩,−(⟨1⟩+ ⟨−1⟩))Z
for 2 ∤ q,

GW(Q) ∼= Z⊕ Z⊕ Z/2Z⊕
⊕

p prime
p̸=2

GW(Fp)

(⟨1⟩+ ⟨−1⟩)Z
.

For finite rank field extensions L ⊆ E, there is an additive transfer map

TrE/L : GW(E) → GW(L),

which has the following simple description when L ⊆ E is separable: for a symmetric, non-
degenerate bilinear form β : V × V → E over E, we can view V as a vector space over L and
consider the composition

V × V β→ E
TrE/L−→ L
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where TrE/L is the sum of the Galois conjugates. Since L ⊆ E is separable, TrE/L ◦ β is a
non-degenerate symmetric bilinear form over L. The value of the transfer map on the class
[β] of the form β is given TrE/L[β] = [TrE/L ◦ β].

The Milnor conjecture, proven by Voevodsky and Orlov–Vishik–Voevodsky, defines a se-
quence of invariants beginning with the rank, discriminant, Hasse–Witt invariant, Arason
invariant, which for many fields (including finite fields, number fields, complete discretely
valued fields, say in residue characteristic not 2 etc.) give a terminating algorithm for deter-
mining if two elements given by sums of rank 1 forms ⟨a⟩ are equal [Mil70] [OVV07] [Voe03a]
[Voe03b]. There are many powerful tools for working with Grothendieck–Witt groups. See
for example [Lam05] [Lam06] [MH73].

1.2.4. Enumerative meaning. To see the enumerative meaning of the degree NS,D,σ, we gen-
eralize the sign associated to a node with two complex conjugate branches over R. Suppose
u : Pk(u) → S is a rational curve on S defined over the field extension k(u) of k. Let p
be a node of u(Pk(u)). The two tangent directions at p define a degree 2 field extension

k(p)[
√
D(p)] of k(p), for a unique element D(p) in k(p)∗/(k(p)∗)2. By [SGA73, Exposé

XV Théoréme 1.2.6], the extension k(u) ⊆ k(p) is separable. Let Nk(p)/k(u) : k(p)
∗ → k(u)∗

denote the norm of the field extension k(u) ⊆ k(p) given by the product of the Galois
conjugates.

Definition 1.1. The mass of p is defined by

(1) mass(p) = ⟨Nk(p)/k(u)D(p)⟩ in GW(k(u)).

This makes sense because multiplying D(p) by a square in k(p) multiplies the norm by a
square in k(u).

The following is valid under the same hypotheses as Theorem 1 for k of characteristic zero
and under the same hypotheses as Theorem 2 for k of positive characteristic.

Theorem 3. If there exist p1, p2, . . . , pr points of S with k(pi) ∼= Li in general position, we
have the equality

NS,D,σ =
∑

u degree D
rational curve

through the points
p1,...,pr

Trk(u)/k
∏

p node of u(P1)

mass(p).

in GW(k). So the weighted count of degree D rational plane curves through the points
p1, p2, . . . , pr given on the right hand side is independent of the general choice of points.
When k is an infinite field and S is rational over k, such a general choice of points exists.

Consequently, for k = C the rank of NS,D,σ coincides with the corresponding Gromov–
Witten invariant. For k = R, the signature of NS,D,σ recovers the signed counts of real
rational curves of Degtyarev-Kharlamov andWelschinger. For k = Fp,Qp,Q etc., one obtains
a new Gromov–Witten invariant. Andrés Jaramillo Puentes and Sabrina Pauli have work
in progress giving an enriched count of rational curves of a fixed degree through rational
points on a toric surface via a tropical correspondence theorem, building on their previous
work [JPP22].
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General position of the points p1, p2, . . . , pr of S with k(pi) ∼= Li means the following.
There is a dense open subset U of

∏r
i=1ResLi/k S such that for any rational point of U, the

theorem holds for the corresponding r-tuple of points p1, p2, . . . , pr of S with k(pi) ∼= Li. The
open subset U may not contain a rational point. Even for S = P2, this may happen over a
finite field. Nonetheless, NS,D,σ is a meaningful invariant. It is the A1-degree of an evaluation
map given in Section 5.2 and an analogue of a Gromov–Witten invariant defined over perfect
fields of characteristic not 2 or 3, including finite fields. Just as Gromov–Witten invariants
make sense of curve counts when general position can not be achieved, these analogues give
meaning to curve counts when rational points do not exist.

This degree also retains concrete enumerative significance: The open subset U will contain
many points over finite extensions of k and our constructions behave well under base change.
Pick a closed point of U with field of definition L. The list σ of field extensions corresponds
to a permutation representation of the Galois group Gal(ks/k) → Sn, where Gal(ks/k)
denotes the Galois group of field isomorphisms of the separable closure ks of k fixing k
and Sn denotes the symmetric group on n letters. This representation may be restricted to
Gal(ks/L) giving rise to σ ′. We have NS⊗L,D⊗L,σ ′ = NS,D,σ⊗L and the equation of Theorem 3
holds in GW(L) for the p ′

1, . . . , p
′
r ′ corresponding to the chosen closed point of U. While base

change to L may result in a loss of information, it frequently results in meaningful equalities.
For example, ⊗L : GW(k) → GW(L) is injective for k a finite field and [L : k] odd, resulting
in infinitely many concrete enumerative equalities in the case of a finite field and S = P2.

1.2.5. Examples.

Example 1.2. A1-connected del Pezzo surfaces include P2, P1 × P1, and BlB P
1, where B

is a set of closed points {p1, . . . , pr} considered as a subscheme defined over k satisfying
|B| =

∑r
i=1[k(pi) : k] ≤ 7. In this case, dS = 9− |B|. In particular, let k be a perfect field of

characteristic not 2 or 3. Then, Theorems 1 and 2 give invariants NP2
k,D,σ

and NP1
k×P1

k,D,σ

in GW(k) for all Picard classes D. Similarly, for |B| ≤ 6 and S = BlB P
2
k, we have NS,D,σ

for all D ∈ Pic(S) that are not m-fold multiples of a −1-curve.

Example 1.3. Smooth, proper, k-rational surfaces are also A1-connected [AM11, Corollary
2.3.7]. So, Theorems 1 and 2 apply to rational del Pezzo surfaces. A smooth cubic surface
over k containing two skew lines over k or two skew lines over a quadratic extension of k
which are conjugate is k-rational [KSC04, 1.33, 1.34]. Cubic surfaces are del Pezzo surfaces
with dS = 3, so Theorems 1 and 2 give invariants NS,D,σ in GW(k) for any D with d =
−KS ·D ̸= 6 and D not an m-fold multiples of a −1-curve. For example, let S0 ⊂ P3 be the
smooth cubic surface given by the zero locus of x2y+ y2z+ z2w+w2x. Then S0 is rational
[KSC04, 1.4] giving invariants NS0,D,σ in GW(k).

Example 1.4. We compute NS,−KS,σ = ⟨−1⟩χA1

(S)+ ⟨1⟩+Trk(σ)/k⟨1⟩, where χA
1
(S) denotes

the A1-Euler characteristic. See Example 9.4. For S0 as in Example 1.3, χA
1
(S0) = ⟨−5⟩ +

4(⟨1⟩+ ⟨−1⟩) [LLS21], which gives NS0,−KS0
,σ = ⟨5⟩+ ⟨1⟩+ 4(⟨1⟩+ ⟨−1⟩) + Trk(σ)/k⟨1⟩.

1.2.6. Without the connectedness hypothesis. Theorems 1, 2 and 3 above are special cases of
more general results that do not require that S be A1-connected.

The Grothendieck–Witt groups GW(E) discussed above for E a finite type field extension
of k, together with certain boundary maps, determine a sheaf of abelian groups on smooth
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k-schemes

GW : Smop → Ab,

which is unramified in the sense of e.g. [Mor12, Definition 2.1]. For X a smooth k-scheme,
GW(X) ⊂ GW(k(X)) is the subset of the Grothendieck–Witt group of its field of rational
functions which is in the kernel of boundary maps indexed by the codimension 1 points of
X. See [Mor12, Definition 2.1, Lemma 3.10, Section 3.2]. For a presheaf X : Smop → Set,
define GW(X) := MapFun(Smop,Set)(X,GW). This will be discussed further in Section 2.3.

To formulate our general result, we use the sheaf of A1-connected components, πA1

0 . This
sheaf arises naturally when considering the degree of a morphism to a scheme that is not A1-
connected, reflecting the classical phenomenon that a map to a disconnected manifold may
have a different degree over different connected components. Unlike in classical topology, it is
not possible to decompose a smooth scheme into A1-connected pieces; the sheaf of connected
components is often a very complicated object. For a smooth scheme X, define πA1

0 (X) to
be the Nisnevich sheaf associated to the presheaf taking a smooth k-scheme U to [U,X]A1 ,
where [U,X]A1 denotes the (unstable) A1-homotopy classes of maps from U to X. A smooth

scheme X is said to be A1-connected when πA1

0 (X) is trivial. This is discussed further in

Section 2.5. As in topology, there is a natural map X → πA1

0 (X). For a k-point x of X and

a section N in GW(πA1

0 (X)), let N(x) ∈ GW(k) denote the pullback of N to x along the

composition Speck
x→ X→ πA1

0 (X).

For k of characteristic zero, we have the following result.

Theorem 4. Let S,D, σ satisfy Hypothesis 1. Then there exists an invariant NS,D,σ in

GW(πA1

0 (
∏r

i=1ResLi/k S)) given by the degree of evgoodσ .

For k of positive characteristic, let S̃, D̃ and ẽvgoodσ be as in Section 1.2.2.

Theorem 5. Let S,D, σ satisfy Hypothesis 2. Then, there exists an invariant NS,D,σ in

GW(πA1

0 (
∏r

i=1ResLi/k S)) given by the degree of ẽvgoodσ . It is independent of the choice of

S̃, D̃.

The following result is valid under the same hypotheses as Theorem 4 for k of characteristic
zero and under the same hypotheses as Theorem 5 for k of positive characteristic.

Theorem 6. If there exist p1, p2, . . . , pr points of S with k(pi) ∼= Li in general position, we
have the equality in GW(k),

NS,D,σ(p∗) =
∑

u rational curve
in class D

through the points
p1,...,pr

Trk(u)/k
∏

p node of u(P1)

mass(p),

where p∗ is the k-point of
∏r

i=1ResLi/k S given by p∗ = (p1, . . . , pr). When k is an infinite
field and S is rational over k, such a general choice of points exists.

We may alternatively package the invariants NS,D,σ into a single invariant as follows.
Let Symn

0 S ⊂ Symn S be the complement of the union of pairwise diagonals in the n-fold
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symmetric product. Let ∆σ ⊂ (Sn)σ =
∏r

i=1ResLi/k S denote the union of pairwise diagonals.
The following result is valid under the same hypotheses as Theorem 4 for k of characteristic
zero and under the same hypotheses as Theorem 5 for k of positive characteristic.

Theorem 7. There exists an invariant NS
S,D in GW(πA1

0 (Symn
0 S)) that pulls back to the

restriction of NS,D,σ for each σ under the natural map
∏r

i=1ResLi/k S \ ∆σ → Symn
0 S.

Example 1.5. Building on Example 1.2, let S be a twist of BlB P
2
k and let k be a perfect

field of characteristic not 2 or 3. Then, Theorems 4 and 5 give us invariants NS,D,σ in

GW(πA1

0 (
∏r

i=1ResLi/k S)) for all D ∈ Pic(S) that are not m-fold multiples of a −1-curve.
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organizers and participants of the special program Homotopy harnessing higher structures
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focused research time.

2. Degree

2.1. Orientations. Define a local complete intersection morphism f : X → Y as in [Sta18,
Tag 068E]. For example, let i be a closed immersion locally determined by a regular sequence
and let π be a smooth map. The composition f = π ◦ i is then a local complete intersection
morphism. A finite type map between regular schemes is also a local complete intersection
morphism [Sta18, Lemma 37.54.11., Tag 068E]. For f : X→ Y a local complete intersection
morphism, the cotangent complex Lf is perfect [Sta18, Proposition 89.13.4, Tag 08SH] and
we may form its determinant, which is a line bundle on X. (We could view a shift of this
line bundle by some integer as the determinant viewed as an element of the derived category,
but we don’t do this.) Define ωf by

ωf := detLf.

Example 2.1. For f = π ◦ i, there is a canonical isomorphism

(2) ωf
∼= i∗ωπ ⊗ωi

[Sta18, Proposition 89.7.4, Tag 08QX]. When we additionally assume that i is a closed
immersion determined by a regular sequence and π is smooth as above, we have canonical
isomorphisms

ωi
∼= det(I/I2)∗,

(3) ωπ
∼= detΩπ,
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where I denotes the ideal sheaf associated to the closed immersion i, and Ωπ denotes the
sheaf of Kähler differentials [Sta18, Lemma 89.13.2 Tag 08SH] [Sta18, Lemma 89.9.1, Tag
08R4].1 A map between smooth k-schemes X and Y is a local complete intersection morphism
[Sta18, Lemma 37.54.11 Tag 068E] and ωf = Hom(det TX, f∗ det TY).

Definition 2.2. An orientation for a complete local intersection (lci) morphism f is the
choice of an invertible sheaf L on X and an isomorphism ρ : ωf → L⊗2.

2.2. Global degree of a finite, flat map. Suppose f : X→ Y is a finite, flat, local complete

intersection morphism with relative orientation ρ : ωf

∼=→ L⊗2. We construct the degree of f.

Example 2.3. If X and Y are smooth n-dimensional schemes over k, and f : X → Y is a

finite map with relative orientation ρ : ωf

∼=→ L⊗2, then f is flat by [Mat89, Theorem 23.1
p.179] and lci [Sta18, Tag 0E9K] and we will be able to construct the degree of f.

Grothendieck–Serre duality produces a canonical isomorphism

ωf
∼= HomOY

(OX,OY),

given by identifying ωf with f!OY (see for example [Har66] or [BW20, Proposition A.1])
and f!OY with HomOY

(OX,OY) [Har66, p. 165 and Section 8]. The associated trace map
Trf : f∗HomOY

(OX,OY) → OY is evaluation at 1, cf. [Har66, Ideal theorem p. 6]. Since f is
flat, it follows that f∗L is locally free.

Definition 2.4. Suppose f : X→ Y is a finite, flat, local complete intersection morphism with

relative orientation ρ : ωf

∼=→ L⊗2. The degree deg f of f is the bilinear form f∗L⊗ f∗L→ OY

given by the composition

f∗L⊗ f∗L→ f∗L
⊗2 f∗(ρ

−1)−→ f∗ωf
Trf−→ OY

When we wish to make the orientation explicit, we also write deg(f, ρ).

Proposition 2.5. deg f is symmetric and non-degenerate.

Proof. The swap map L⊗2 → L⊗2 defined by taking ℓ ⊗ ℓ ′ to ℓ ′ ⊗ ℓ is equal to the identity
map, and it follows that deg f is symmetric.

We now prove deg f is non-degenerate. Since ρ is an isomorphism, so is the induced map
L→ Hom(L,ωf) ∼= Hom(L, f!OY). Therefore the pushforward

f∗L→ f∗Hom(L, f!OY)

is an isomorphism. Since f is proper, coherent duality as in [Har66, p. 8 Ideal Theorem c)]
gives a canonical isomorphism f∗Hom(L, f!OY) ∼= Hom(f∗L,OY) and the composite f∗L →
Hom(f∗L,OY) is the desired isomorphism.

□

Remark 2.6. A finite étale map f : X→ Y admits a canonical relative orientation ωf
∼= O⊗2

X

and the resulting A1-degree is simply the classical trace form.

1The references treat affine schemes, but the isomorphisms globalize.

11



This degree commutes with base change. Let

(4) X ′ g ′
//

f ′

��

X

f
��

Y ′ g // Y

be a pullback diagram with f a finite, flat, local complete intersection morphism oriented
by ρ. If g is flat, then f ′ is automatically a local complete intersection morphism by [Sta18,
Lemma 37.54.6. Tag 068E]. However, in our discussion of basechange, we will not assume g
to be flat, and instead assume that f ′ is a local complete intersection morphism. Since f is
flat, the square (4) and [Sta18, Tag08QL Lemma 90.6.2] define a canonical isomorphism

(5) ωf ′
∼= (g ′)∗ωf.

Therefore (g ′)∗ρ determines an orientation of f ′.

Proposition 2.7. Let (4) be a pullback square such that f is a finite, flat, local complete in-
tersection morphism oriented by ρ. Suppose that f ′ is a local complete intersection morphism.
Then we have the equality in GW(Y ′)

deg(f ′, (g ′)∗ρ) = g∗ deg(f, ρ).

Proof. Let L denote the line bundle on X associated to the orientation ρ, i.e., the orientation
of f is the isomorphism ρ : L⊗2 → ωf. The natural map from cohomology and base change
and the isomorphism (5) determine the commutative diagram

g∗f∗L
⊗2 ∼= //

g∗f∗ρ

��

f ′∗(g
′)∗L⊗2

f ′∗(g
′)∗ρ

��

∼= // f ′∗((g
′)∗L)⊗2

f ′∗(g
′)∗ρ

��
g∗f∗ωf

∼= // f ′∗(g
′)∗ωf

∼= // f ′∗ωf ′

,

where the horizontal morphisms are isomorphisms. The claim follows by the commutativity
[Sta18, Lemma 48.7.1 0B6J] of

g∗f∗ωf
//

g∗ Trf
��

f ′∗ωf ′

Trf ′
��

g∗OX

∼= // OX ′

□

2.3. Global degree of an oriented map between smooth, proper n-dimensional
schemes. We use the degree construction in Section 2.2 to construct a degree for a map
f : X→ Y over a field k satisfying either Assumption 2.8 or 2.13.

A map f : X→ Y between integral schemes is said to be generically finite if f is dominant
(meaning its set-theoretic image is dense) and the associated extension of function fields
is finite. For example, if the differential df of a map f between connected, smooth n-
dimensional k-schemes is injective at one point, then f is generically finite. If X and Y have
more than one connected components, which are all integral, say that f is generically finite if
f is dominant, only finitely many components of X map to each component of Y, and for each
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component of X, its function field is a finite extension of the function field of the component
of Y containing its image. We include in the definition of f being generically finite that the
connected components of X and Y are integral.

Assumption 2.8. Let X and Y be proper schemes over a field k of dimension n, and suppose
that Y/k is smooth. Let U ⊆ Y be an open subset such that Y − U has codimension greater
than or equal to 2. Suppose f : X → Y is a generically finite map such that its restriction
f|f−1(U) : f−1(U) → U is a local complete intersection morphism equipped with a relative

orientation ρ : L⊗2
∼=→ ωf|

f−1(U)
.

Example 2.9. Let f : X → Y be a generically finite map between proper, smooth n-
dimensional k-schemes, and let U be an open subset of Y such that Y − U has codimension
at least two. f is proper because X and Y are, whence the basechange f|f−1(U) is as well, so

in particular, it is finite type. The map f|f−1(U) : f−1(U) → U is a local complete inter-
section morphism because it is a finite type map between regular schemes [Sta18, Lemma
37.54.11., Tag 068E], so it makes sense to speak of a relative orientation of f|f−1(U). Indeed,
such a relative orientation is the data of a line bundle L on f|f−1(U) and an isomorphism

L⊗2 ∼= Hom(det TX, f∗ det TY). A relative orientation of f|f1(U) equips f with the data to
satisfy Assumption 2.8.

Moreover, a similar discussion holds if X is only assumed to be a regular, proper k-scheme
of dimension n. Simply replace Hom(det TX, f∗ det TY) by ωf|

f−1(U)
.

Remark 2.10. Suppose that Y is smooth of dimension n and proper over k, and that X is
a geometrically normal, proper scheme over k of dimension n. Let f : X → Y a generically
finite map. The assumption that X is geometrically normal implies that X/k is smooth at
codimension 1 points [Sta18, 33.10 TAG 038L, Lemma 28.12.5. TAG 033P, Lemma 33.12.6.
TAG 038S]. Since the points of X where X → Spec k is smooth is open [Sta18, Definition
29.33.1 01V5], contains the points of codimension 1, and X is regular at any point where
X/k is smooth, there is necessarily an open subset U ⊂ Y such that Y −U has codimension
greater than or equal to 2 and f−1(U) is regular. So that f satisfies Assumption 2.8, we need
an orientation on some such restriction.

Generically finite maps are finite over a large open set under the following hypotheses.
This will be useful to apply Section 2.2 to define the degree of a map satisfying Assumption
2.8.

Proposition 2.11. Let Y be a smooth k scheme, and let f : X→ Y be a proper, generically
finite map. Then there exists a codimension 2 subset Z of Y such that f is finite and flat
over the complement of Z.

Proof. For any point x of X, the map OY,f(x) → OX,x is injective because f is dominant. Let x
be such that y = f(x) is codimension 1 in Y. Since y is codimension 1 and Y is smooth, the
ring OY,y is a discrete valuation ring. Since the components of X are integral (this is part of
the definition of f being generically finite for us), OX,x is torsion free, and it follows that f is
flat at x because OY,y is a principle ideal domain.

Let U be the subset of points y of Y such that f is flat at all the points x in f−1(y). We
claim that U is open. Suppose y0 specializes to y1 in Y and that y1 is in U. Let x0 be a
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point of f−1(y0). Let x0 denote the closure of x0. Since f is proper, f(x0) is closed. f(x0)
contains y0 and therefore y1 by construction. Thus we can choose x1 such that x0 specializes
to x1 and f(x1) = y1. We thus have a flat extension OY,y1 ⊆ OX,x1 and ideals px0 and py0 in
OX,x1 and OY,y1 respectively such that px0 ∩ OY,y1 = py0 . Since localization is flat, it follows
that OY,y0 ⊆ OX,x0 is flat and U is open as claimed.

By the above, U contains all the points of codimension 1, whence its complement Z is
closed of codimension at least 2. Let f0 denote the restriction of f to f−1(U). Since proper
maps are stable under base change, f0 is proper. f0 is flat by construction. Thus the fibers
are equidimensional [Mat89, Theorem 15.1] and [Sta18, Lemma 29.17.4. 02J7]. Since f is
generically finite, the fibers of f0 are dimension 0 and therefore finite. Thus f0 is a proper
map with finite fibers and therefore finite [Sta18, Lemma 30.21.1. 02OG]. □

The degree in this section will be valued in the sections GW(Y) of the Grothendieck–
Witt sheaf GW at Y, so we introduce the definition of GW here. The Grothendieck–Witt
sheaf is a sheaf on smooth k-schemes with the Nisnevich topology which can be defined
as the sheafification of the functor sending Y to the group completion of the semi-ring of
isomorphism classes of locally free sheaves V on Y equipped with a non-degenerate symmetric
bilinear form V × V → OY. It has a construction given in [Mor12, Chapter 3] and in an
unramified sheaf by a result of Panin and Ojanguren [OP99]. In particular, suppose U ⊆ Y
is an open subset of Y with complement of codimension at least 2. Then a locally free sheaf
on U equipped with a symmetric, non-degenerate bilinear form determines an element of
GW(Y). (A complete definition of an unramified sheaf is in [Mor12, Chapter 2, Def 2.1,
Remark 2.4].)

Let f : X→ Y, and ρ be as in Assumption 2.8, so in particular, f : X→ Y is a generically
finite map equipped with a subset U of Y with complement of codimension at least 2 and
a relative orientation ρ of f|f−1(U) : f−1(U) → U. By Proposition 2.11, there is an open
subset U ′ of Y with complement of codimension at least 2 such that f|f−1(U ′) is finite and
flat. Then f|f−1(U∩U ′) is a finite, flat, oriented, locally complete intersection morphism, and
Definition 2.4 constructs a bilinear form deg f|f−1(U∩U ′) on a locally free sheaf on U∩U ′. The
associated section of GW(Y) is defined to be deg f, and is independent of the choice of U ′

because GW is unramified.

Definition 2.12. Let f : X → Y, and ρ be as in Assumption 2.8. deg f in GW(Y) is the
section determined by the bilinear form deg f|f−1(U∩U ′). If we wish to make the choice of
relative orientation explicit, we write deg(f, ρ) for deg f.

We now relax the hypothesis that X and Y are proper schemes.

Assumption 2.13. Let Y be a smooth k-scheme. Let U ⊆ Y be an open subset such that Y−U
has codimension greater than or equal to 2 and f−1(U) has integral connected components.
Suppose f : X→ Y is a generically étale map such that its restriction f|f−1(U) : f

−1(U) → U is

a proper, local complete intersection morphism equipped with a relative orientation ρ : L⊗2
∼=→

ωf|
f−1(U)

.
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Since f is generically étale, the restriction f|f−1(U) : f−1(U) → U is a generically finite
map. By Proposition 2.11, we can find a codimension 2 subset Z of U such that f|f−1(U−Z) :

f−1(U− Z) → (U− Z) is finite and flat.

Definition 2.14. Let f : X → Y, and ρ be as in Assumption 2.13. deg f in GW(Y) is the

section determined by GW(Y)
∼=→ GW(U−Z) and the bilinear form deg f|f−1(U−Z) of Definition

2.4. If we wish to make the choice of relative orientation explicit, we write deg(f, ρ) for deg f.

Definition 2.15. The degree deg(f, ρ)(y) of f at a point y of Y is defined to be the pullback of
deg f along y : Spec k(y) → Y, so deg(f, ρ)(y) in GW(k(y)). When the relative orientation
is clear from context, we also write deg f(y).

2.4. Global degree of a map oriented away from codimension 1 equipped with
lifting data. Let k be a field of characteristic p > 0, p ̸= 2, and let f : X → Y be a map
to a smooth k-scheme Y. Let U ⊆ Y be a dense open subset. Suppose that the restriction
f|f−1(U) : f−1(U) → U is a proper, generically finite, local complete intersection morphism

equipped with a relative orientation ρ : L⊗2
∼=→ ωf|

f−1(U)
. Then deg f|f−1(U) determines a

section of GW(U) by Proposition 2.11, Definition 2.4, and the ability to extend sections of
GW over the complements of codimension 2 closed subschemes of smooth schemes. Since
GW is unramified, the restriction map GW(U) → GW(Y) is injective. We give a condition
on f ensuring that deg f|f−1(U) extends to a (necessarily unique) section of GW(Y), which we

will define to be the A1-degree.

Assumption 2.16. Let Y be a smooth k-scheme. Let U ⊆ Y be a dense open subset.
Suppose f : X → Y is a generically étale map such that its restriction f|f−1(U) : f

−1(U) → U

is a proper, local complete intersection morphism. Let ρ : L⊗2
∼=→ ωf|

f−1(U)
be an orientation

of f|f−1(U) : f
−1(U) → U. Suppose that there exists the following data: a discrete valuation

ring Λ and a lifting of f : X → Y to a generically étale map f : X → Y of Λ schemes
with Y → SpecΛ smooth of finite type. Suppose there is an open subset U ⊂ Y such that
U ∩ Y is dense in U, the intersection of the complement Y − U with the generic fiber is
codimension ≥ 2, and the intersection of f−1(U) with the generic fiber is integral. Suppose
that f|f−1(U) : f

−1(U) → U is a proper, local complete intersection morphism of schemes and

there is a lift of L to a line bundle L on f−1(U) ⊂ X and a lift of ρ to an isomorphism
L⊗2 ∼= ωf|

f−1(U)
.

For A a commutative ring, we let W(A) = GW(A)/M denote the Witt group, defined to
be the group completion of the isomorphisms of non-degenerate symmetric bilinear forms over
A, modulo the ideal of metabolic forms. See for example [MH73]. In place of constructing
an unramified sheaf GW over a more general base, we use the following results on the Witt
and Grothendieck Witt groups to extend the section of GW(U) mentioned above.

Definition 2.17. Let O be a regular local ring with quotient field K. Let SpecO(1) be the set
of height one prime ideals of O. For P ∈ SpecO(1), let OP ⊂ K denote the localization of O
at P. For A ⊂ K a subring, let W̄(A) be the image of W(A) in W(K). We say that purity
holds for W(O) if

W̄(O) = ∩P∈SpecO(1)W̄(OP)
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Theorem 2.18 (Colliot-Thélène and Sansuc [CTS79, Corollaire 2.5]). Let O be a regular
local ring of dimension ≤ 2 containing 1/2. Then purity holds for W(O).

Theorem 2.19 (Knebusch [Kne70, Satz 11.1.1]). Let O be a Dedekind domain with 1/2 ∈
O. Let K be the quotient field of O. Then purity holds for W(O). Moreover the map
W(O) →W(K) is injective.

Remark 2.20. For a ring containing 1/2, the metabolic forms are the same as the ideal
generated by the hyperbolic form ⟨1⟩ + ⟨−1⟩. Since the ideal in GW(O) generated by the
hyperbolic form is the same as the subgroup generated by the hyperbolic form, the two purity
results Theorems 2.18 and 2.19 extend in the evident manner to purity statements about
GW(O).

Proposition 2.21. Let Λ be a discrete valuation ring with residue field k of characteristic
̸= 2. Let π : Y → SpecΛ be a smooth morphism of finite type, and let U ⊂ Y be an open
subscheme satisfying the properties that

• the intersection Uk with the closed fiber Yk is dense in Yk,
• and the intersection of the complement Y − U with the general fiber is codimension
≥ 2.

Let q : E×E → OU be a symmetric nondegenerate bilinear form over U . Then the restriction
of q to GW(Uk) extends uniquely to a section in GW(Yk).

Proof. Let x be a codimension one point of Yk, which we consider as a codimension two point
of Y , and let O = OY,x. Let η̄ be a generic point of Uk in the connected component containing
x. Let L be the field of rational functions on Y , and let K be the ring of rational functions
on Yk. Since Uk is dense in Yk, K is also the ring of rational functions on Uk. Since O is a
regular ring of dimension two, it follows from Theorem 2.18 and Remark 2.20 that q is in
the image of GW(O) in GW(L). Moreover, by Theorem 2.19, the map GW(OY,η̄) → GW(L)
is injective, so the restriction of q to GW(OY,η̄) is in the image of GW(O) → GW(OY,η̄).
Restricting to the fiber over Spec k, this implies that the image q̄ of q in GW(K) is in the
image of GW(OYk,x). Since x was an arbitrary codimension one point of Yk, it follows that q̄
extends uniquely to a section of GW over Yk because GW is unramified. (Here GW denotes
the unramified sheaf on smooth k-schemes.) □

Suppose f : X→ Y as in Assumption 2.16. In particular, f|f−1(U) : f
−1(U) → U is generically

étale, and proper. We may thus find an open subset V ′ ⊂ f−1(U) on which f is étale. As
f|f−1(U) is proper, the image of f−1(U)\V ′ under f is closed in U , whence has open complement

U ′ in U . Thus U ′ is also open in Y . By construction, f|f−1(U ′) : f
−1(U ′) → U ′ is étale and

proper, whence finite and flat [Sta18, 03WS, 01TH, 02GS]. We may thus apply Definition 2.4
and obtain deg(f|f−1(U ′) : f

−1(U ′) → U ′) in GW(U ′).

Moreover, the data and hypotheses given in Assumption 2.16 imply that the restriction
of f|f−1(U) to the generic fiber satisfies Assumption 2.13. Let η denote the generic point of
Λ and let fη denote this restriction. We may thus apply Definition 2.14 to fη and obtain
deg(fη) in Yη.
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deg(fη) and deg(f|f−1(U ′) : f−1(U ′) → U ′) have the same restriction to GW(U ′ ∩ Yη) by
construction and thus determine a section of GW(U ′ ∪ Yη) whose restriction to GW(U) is
deg(f, ρ). By Proposition 2.21, it follows that deg(f, ρ) in GW(U) extends to a unique section
of GW(Y).

Definition 2.22. For f : X→ Y as in Assumption 2.16, the A1-degree, deg(f, ρ) in GW(U)
extends to a unique section of GW(Y) as above, which we define the A1-degree.

2.5. GW(πA1

0 (Y))-valued global degree and GW(k)-valued global degree. The degree
of a mapM→ N between smooth, oriented, compact n-dimensional manifolds is an integer
when N is connected. Without assuming that N is connected, the degree can be viewed as
an integer valued function on the connected components π0(N) of N. We show the analogous
results in our algebraic setting. For example, the GW(Y)-valued degree of Definition 2.14 (or
that of Definition 2.4 or 2.12) is pulled back from a unique element of the Grothendieck–Witt
group GW(k) of k when Y is appropriately connected in an algebraic sense, for example,

when Y is A1-connected. More generally, this degree is a section of GW(πA1

0 (Y)), where

πA1

0 (Y) denotes the sheaf of A1-connected components. We recall the needed definitions and
notations.

For smooth k-schemes, or more generally, for simplicial presheaves on smooth k-schemes,
X and Y, let [X, Y]A1 denote the set of A1-homotopy classes of maps from X to Y [MV99].

Let πA1

0 (X) denote the Nisnevich-sheafification of the presheaf taking a smooth k-scheme U
to [U,X]A1 . There is a canonical map

ϕX : X→ πA1

0 (X).

For example, ϕk : Speck→ πA1

0 (Speck) is an isomorphism [AM11, Definition 2.1.4].

Definition 2.23. X is A1-connected if the canonical map πA1

0 (X) → πA1

0 (Spec k)
ϕk
∼= Spec k

is an isomorphism.

Example 2.24. [AM11, Lemma 2.2.11, Lemma 2.2.5] If X is a smooth k-variety that is
covered by finitely many affine spaces An

k , whose pairwise intersections all contain a k-point,
then X is A1-connected.

Remark 2.25. [AM11, Example 2.1.6] If X is a smooth A1-connected k-scheme, then X has
a rational point. For example, SpecL is not an A1-connected k-scheme for k ⊂ L a finite
separable extension.

A Nisnevich sheaf F of sets is said to be A1-homotopy invariant if the projection U×A1 →
U induces bijection F(U) → F(U×A1) for all smooth schemes U. For a smooth k-scheme
X, the map ϕX induces the map

ϕ∗
X : Hom(πA1

0 (X),F) → Hom(X,F),

where, in this expression, Hom denotes the set of maps of presheaves on smooth k-schemes.
The following proposition is known to experts, but we include a proof for completeness.

Proposition 2.26. Let F be an A1-homotopy invariant Nisnevich sheaf of sets and let X be
a smooth k-scheme. Then
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(1) ϕ∗
X is a bijection.

(2) If in addition X is A1-connected, then the canonical map F(k) → F(X) is an isomor-
phism.

Proof. The canonical commutative triangle

X
ϕX //

!!

πA1

0 (X)

zz
Speck

gives rise to the commutative triangle

F(X) Hom(πA1

0 (X),F)
ϕ∗
X

oo

F(Spec k)

66ee

Since X is A1-connected, πA1

0 (X) → Speck is an isomorphism (of sheaves of sets). Thus we
have that (1) implies (2).

For (1), it follows from [MV99, Corollary 3.22] that the map ϕX is an epimorphism of
Nisnevich sheaves of sets. (To use [MV99, Corollary 3.22], let I = A1,X = X, and X ′ be the
A1-localization of X.) Thus ϕ∗

X is injective.

For α : X→ F , the natural transformations ϕ and πA1

0 give the commutative diagram

X

ϕX
��

α // F
ϕF
��

πA1

0 (X)
πA

1

0 (α)

// πA1

0 (F)

Since F is an A1-homotopy invariant sheaf of sets, ϕF : F → πA1

0 (F) is an isomorphism of

Nisnevich sheaves of sets (Lemma 2.27).Then α = ϕ∗
X(ϕ

−1
F ◦ πA1

0 (α)). Thus ϕ∗
X is surjective.

□

Lemma 2.27. Let F be an A1-homotopy invariant Nisnevich sheaf of sets. Then ϕF : F →
πA1

0 (F) is an isomorphism of Nisnevich sheaves of sets.

Proof. The category of simplicial presheaves on smooth k-schemes can be given the structure
of a simplicial model category with the global injective model structure, the injective local
model structure with the Nisnevich topology, and the A1-model structure. Let LNis and
LA1 denote fibrant replacement functors for the injective local model structure with the
Nisnevich topology and the A1-model structure, respectively. (See for example, [AWW17a,
2.2] [DHI04].)

All sheaves, thought of as discrete simplicial sheaves, are globally fibrant [Jar07, pg 10
3)]. Thus F is globally fibrant. Since a local weak equivalence of globally fibrant sheaves is
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a global weak equivalence, we have that the map

(6) F(U) → LNisF(U)

is a weak equivalence of simplicial sets for all smooth k-schemes U [Jar07, pg 10 4)]. By
[MV99, Proposition 3.19], it follows that LNisF is A1-local (and thus fibrant in the A1-model
structure). By [AWW17a, Proposition 2.2.1], the map F → LNisF factors F → LA1F →
LNisF . The map LA1F → LNisF is an A1-weak equivalence by 2-out-of-3 and LA1F and LNisF
are both fibrant in the injective local model structure. Thus the map LA1F → LNisF is a
local whence global weak equivalence.The sheaf πA1

0 (F) is the Nisnevich sheaf associated to
the presheaf U 7→ π0|LA1F(U)|. Since LA1F(U) ≃ LNisF(U) ≃ F(U) and F(U) is a set (i.e.,
discrete topological space), we have that the natural map F(U) → π0|LA1F(U)| is a bijection.

Since F is a sheaf, it follows that the natural map ϕF : F → πA1

0 (F) is an isomorphism.

□

GW is A1-homotopy invariant by [Mor12, Ch 2 and 3]. Applying Proposition 2.26, elements

of GW(Y), such as our A1-degrees, are pulled back from a unique element of GW(πA1

0 (Y))

for Y a smooth k-scheme. Thus we can refine our definition of degree to lie in GW(πA1

0 (Y)).

Definition 2.28. Let f : X → Y and ρ be as in Assumption 2.8 (respectively Assump-

tion 2.13, Assumption 2.16). Define deg(f, ρ) in GW(πA1

0 (Y)) to be the unique preimage
of the degree of Definition 2.12 (respectively Definition 2.14, Definition 2.22) under the

canonical bijection GW(πA1

0 (Y)) → GW(Y) of Proposition 2.26. When there is no danger of
confusion, we will simply write deg f.

In particular, when Y in A1-connected, the degree lies in GW(k).

Corollary 2.29. Suppose X is an A1-connected smooth scheme over k. Then the canonical
map GW(k) → GW(X) is an isomorphism.

Proof. This follows from Proposition 2.26 and the A1-homtopy invariance of GW [Mor12,
Ch 2 and 3 e.g. Theorem 3.37]. □

Definition 2.30. Let f : X → Y and ρ be as in Assumption 2.8 and suppose that Y is A1-
connected. Define deg(f, ρ) in GW(k) to be the unique preimage of the degree of Definition
2.12 under the canonical bijection GW(k) → GW(Y).

There are alternate connectivity conditions in A1-homotopy theory which also give rise to
a GW(k)-valued degree.

The notion of A1-chain connected varieties was defined in [AM11, Definition 2.2.2] as
follows. Let L be a finitely generated separable extension of k, which is defined to mean that
there exists a subextension k ⊆ E ⊆ L such that E is purely transcendental over k and L is
separable and algebraic over E. Let y and y ′ be L-points of Y.

Definition 2.31. [AM11, Definition 2.2.2] An elementary A1-equivalence between y and y ′

is a map f : A1
L → YL such that f(t) = y and f(t ′) = y ′ for some t, t ′ in A1(L).
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Elementary A1-equivalence generates an equivalence relation ∼ on Y(L). Denote the quo-

tient Y(L)/ ∼ by πA1,ch
0 (Y)(L).

Definition 2.32. Y is A1-chain connected if for every finitely generated separable field ex-
tension L/k, the set of equivalence classes πA1,ch

0 (Y)(L) = Y(L)/ ∼ consists of exactly 1
element.

For Y a smooth, proper variety over a field k, it is a Theorem of A. Asok and F. Morel
that A1-chain connected and A1-connectedness are equivalent [AM11, Theorem 2]. More

generally, there is an evident map ψY,L : πA1,ch
0 (Y)(L) → πA1

0 (Y)(L) sending the class of

y ∈ Y(L) in πA1,ch
0 (Y)(L) to the class [y] ∈ πA1

0 (Y)(L). Asok and Morel show that if Y is
finite type and proper over k, then ψY,L is an isomorphism for all finitely generated separable
extensions L of k [AM11, Theorem 2.4.3].

Since the pullback along field extensions of finite odd degree induces an injection on
Grothendieck–Witt groups and we are interested in a GW(k)-valued degree, we weaken the
notion of A1-chain connectedness as follows.

Definition 2.33. Y is A1-odd extended chain connected if for every finitely generated sepa-
rable field extension L/k, and every pair y, y ′ in Y(L), there exists a finite extension L ⊆ L ′

of odd degree such that y ∼ y ′ in Y(L ′).

We remark that an n-dimensional smooth k-scheme Y has many closed points with sep-
arable residue field: for each y in Y there is an open neighborhood U and an étale map
ϕ : U → An

k [sga03, Défénition II.1.1]. The points of An
k with separable residue field are

dense. The image ϕ(U) is open [Sta18, Tag 01U2 Lemma 29.24.10], and therefore contains
points with separable residue field. For all u of U such that ϕ(u) has separable residue field,
k ⊆ k(u) is separable.
Lemma 2.34. Let Y be a smooth proper k-scheme which is A1-odd extended chain connected
and assume that Y(k) ̸= ∅. Then for any section β of GW(Y), there is a unique b in GW(k),
such that for every point y : Speck(y) → Y as in the commutative diagram

Speck(y)
p

&&

y // Y

||
Spec k

and such that k ⊆ k(y) is separable, we have

y∗β = p∗b.

Proof. Choose y0 in Y(k). We must let b = y∗0β, showing uniqueness. Let y : Spec k(y) → Y
be a closed point. By Corollary 2.29 and Example 2.24, if i : k(y) ⊆ L ′ is an extension of
fields, y ′ in Y(L ′) and y ′ ∼ (y ◦ i), then

i∗y∗β = (y ′)∗β.

We may view y0 ◦ p as an element of Y(k(y)). Since Y is A1-odd extended chain connected,
there is an extension i : k(y) ⊆ L ′ of odd degree such that y ◦ i ∼ y0 ◦ p ◦ i in Y(L ′). Thus

i∗y∗β = i∗p ∗ b
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in GW(L ′). An odd degree field extension induces an injection on GW [Lam05, Chapter VII,
Corollary 2.6]2, therefore y∗β = p∗b as claimed. □

Definition 2.35. Let f : X→ Y and ρ be as in Assumption 2.8. If Y is additionally A1-odd
extended chain connected and Y(k) ̸= ∅, then define the degree of f, denoted deg(f, ρ) or
deg f, to be the b associated by Lemma 2.34 to the section of GW(Y) given by the degree of
f defined in Definition 2.12.

2.6. Connectivity and restriction of scalars. We will have use of the degrees of maps
whose targets are restrictions of scalars. Since the A1-degree lands in GW(πA1

0 (−)) applied
to the target, we give a result on the connectivity of a restriction of scalars in this section.

We extend the notation of A1-chain connected components πA1,ch
0 (Y)(L) of a finite type

k-scheme Y over a field L (see Definition 2.32) to products of fields by defining

πA1,ch
0 (Y)(

r∏
i=1

Li) :=

r∏
i=1

πA1,ch
0 (Y)(Li).

Define ψY,∏i Li
: πA1,ch

0 (Y)(
∏

i Li) → πA1

0 (Y)(
∏

i Li) by sending the class of an r-tuple of

points
∏r

i=1 yi ∈ Y(
∏r

i=1 L) to the class [
∏r

i=1 yi] in π
A1

0 (Y)(
∏

i Li) as above. Clearly (Y, L) 7→
πA1,ch
0 (Y)(L) is (covariantly) functorial in Y and L and ψY,L is natural in (Y, L).

For a field F, let SchF denote the category of finite type separated F-schemes.

Let k ⊂ L be a finite separable field extension. We have the Weil restriction functor
ResL/k : SchL → Schk, which is right adjoint to the extension of scalars functor X 7→ XL :=
X×Spec k SpecL; passing to the limit over suitable open subschemes, this induces the natural
isomorphism X(L ⊗k F) ∼= ResL/k(X)(F) for all finitely generated extensions F of k. The
isomorphisms X(L ⊗k F) ∼= ResL/k(X)(F) and X(A1

L⊗kF
) ∼= ResL/k(X)(A

1
F) are natural with

respect with the 0- and 1-sections i0, i1 : Spec(−) → A1
(−), and thus induce an isomorphism,

natural in F and X

(7) ρL,X,F : π
A1,ch
0 (X)(L⊗k F)

∼=→ πA1,ch
0 (ResL/k(X)(F))

Lemma 2.36. Let k ⊂ L be a finite separable field extension. For X a finite type, proper
L-scheme and F a finitely generated separable extension of k, the isomorphism (7) induces
an isomorphism

πA1

0 (ψX)(L⊗k F) : π
A1

0 (X)(L⊗k F)
∼=→ πA1

0 (ResL/k(X))(F),

natural in F and X.

Proof. If F is a finitely generated separable extension of k, then L⊗k F is a finite product of
finitely generated separable extensions of k; if X is a proper L-scheme, then ResL/k(X) is a
proper k-scheme. We apply [AM11, Theorem 2.4.3], which together with the isomorphism

2The reference shows the claim on Witt groups, from which the injection on GW follows from the isomor-
phism GW ∼= W ×Z/2 Z.
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(7) gives us the sequence of isomorphisms

πA1

0 (X)(L⊗k F)
ψ−1

X,L⊗kF−−−−→ πA1,ch
0 (X)(L⊗k F)

ρk,L,X,F−−−−→ πA1,ch
0 (ResL/k(X))(F)

ψResL/k(X),F

−−−−−−−→ πA1

0 (ResL/k(X))(F),

natural in F and X. □

Proposition 2.37. Let k ⊂ L be a finite separable field extension. Let X be a smooth proper
L-scheme. If X is A1-connected, then so is ResL/k(X).

Proof. By Lemma 2.36 and (7), ResL/k(X) is A1-chain connected. (See Definition 2.32).
Since X is a smooth, proper L-scheme, ResL/k(X) is a smooth proper k-scheme. By [AM11,
Theorem 2], it follows that ResL/k(X) is A

1 connected. □

We record the following well-known fact.

Proposition 2.38. Let X and Y be smooth k-schemes which are A1-connected. Then X×k Y
is A1-connected.

Proof. πA1

0 (X×k Y) is the sheaf associated to the presheaf sending a smooth k-scheme U to
π0(LA1(X ×k Y)(U)). The functor LA1 commutes with finite products (see e.g. [AWW17b,
2.2.1(iii)]). It follows that

π0(LA1(X×k Y)(U)) ∼= π0((LA1(X)× LA1(Y))(U)) ∼=

π0(LA1(X)(U)× LA1(Y)(U)) ∼= π0LA1X(U)× π0LA1X(U).

Since sheafification preserves finite limits, it follows that πA1

0 (X×kY) ∼= πA1

0 (X)×πA1

0 (Y). □

3. Local degree

Now suppose that f : X→ Y is a map of smooth n-dimensional schemes over k or a map
satisfying one of Assumptions 2.8 2.13 or 2.16. Let x be a point of X with image y = f(x).
Suppose there are Zariski open neighborhoods W and U of x and y, respectively, such that

f(W) ⊂ U and the restriction f|W : W → U is finite and oriented by ρ : L⊗2
∼=→ ωf|W . By

Proposition 2.11 it is possible to find many x and y which admit such a U,W and ρ. We will
define the local degree degx(f, ρ) in GW(k(y)) under such circumstances in this section. We
also use the notation degx f for degx(f, ρ) when there is no danger of confusion. The degree
defined in Section 2 will be shown to be a sum of local degrees in Proposition 3.2, and we
will give a formula to compute degx f with the Jacobian in Proposition 3.8.

3.1. Definition and properties. To simplify notation, we let g denote the restriction
g = f|W : W → U, where f,W, and U are as in the beginning of the section. Let g × y :
U ×y Speck(y) → Speck(y) denote the pullback of g along y : Spec k(y) → U as in the
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pullback diagram

U×y Spec k(y) //

g×y
��

W

g=f|W
��

Spec k(y)
y // U.

The fiber g−1(y) ∼= U×y Speck(y) is the coproduct

U×y Speck(y) ∼=
∐

z∈W:f(z)=y

Og−1(y),z.

For every z inW mapping to y, let gz denote the composition of the inclusion SpecOf−1(y),z →
g−1(y) with g× y.

SpecOf−1(y),z

gz

��

//W

g

��
Spec k(y)

y // U.

Denote the fiber of the sheaf g∗L at y by g∗L(y). Since g is finite, the canonical map
g∗L(y) → (g× y)∗L is an isomorphism. By a slight abuse of notation, we also let L denote
its pull back to SpecOf−1(y),z. We have a canonical isomorphism

(8) g∗L(y) ∼= ⊕z∈W:f(z)=y(gz)∗L.

Recall that the pullback of the pairing deg(g, ρ) of Definition 2.4 to Speck(y) is denoted
deg(g, ρ)(y), as in Definition 2.15. Each of the direct summands of the isomorphism (8) are
perpendicular under deg(g, ρ)(y).

Definition 3.1. Let degx(f, ρ) in GW(k(y)) be the restriction of deg(g, ρ)(y) to (gz)∗L.
When the relative orientation is clear from context, we also write degx f.

For f satisfying Assumption 2.8, there is an open subset U ⊂ Y such that f|f−1(U) is finite

and oriented by Proposition 2.11. For any x in f−1(U), we may take W = f−1(U) and we
have just shown that the global degree is the sum of local degrees.

Proposition 3.2. For all y in U, there is an equality deg f(y) =
∑

x∈f−1(y) degx f in GW(k(y)).

Given a field extension k(y) ⊆ E, let fE|UE
: WE → UE denote f|W ⊗k E. We have the

commutative diagram

W

f|W
��

WE
π ′
oo

fE|WE
��

U UEπ
oo

There is a canonical point x̃ ofWE mapping to x under π ′, and fE(x̃) = ỹ, the canonical point
ỹ of UE mapping to y under π. The pullback of ρ determines an orientation (π ′)∗ρ of fE|WE

because there is a canonical isomorphism (π ′)∗ωf|W
∼= ωfE|WE

[Sta18, Lemma 29.31.10 Tag

01UM]. Let degx(f, ρ)⊗GW(E) denote the image of degx(f, ρ) under the map GW(k(y)) →
GW(E).

Proposition 3.3. degx̃(fE, (π
′)∗ρ) = degx(f, ρ)⊗GW(E) in GW(E).
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Proof. Let L denote the line bundle on W of the orientation ρ. By the proof of Proposi-
tion 2.7, there is an isomorphism (fE|WE

)∗(π
′)∗L ∼= (π∗f|W)∗L identifying the forms defin-

ing π∗ deg(f, ρ) and deg(fE, (π
′)∗ρ). Under this isomorphism the subspaces ((fE)x̃)∗L and

π∗(fx)∗L are identified, proving the claim. □

By Proposition 3.3, the computation of degx(f, ρ) reduces to the case where y = f(x) is
a rational, because it may be computed after basechange to k(y), and in particular we may
assume that y is a closed point. We now give such a method of computation for degx f for
x a closed point with k ⊆ k(x) separable.

As above, let W and U be smooth k-schemes of dimension n, let x be a point of X, and
let f|W : W → U be finite and oriented by ρ. Suppose that y = f(x) is a closed point
with k ⊆ k(x) separable. Then f|−1W (y) ↪→ W is a closed immersion. Consider the pullback
diagram

(9) f|−1W (y)

f ′|W
��

y ′
//W

f|W

��
Spec k(y)

y // U

Lemma 3.4. The map f ′|W is a finite, flat, local complete intersection morphism.

Proof. f ′|W is a finite and flat because these properties are stable under pullback. Since
Spec k(y) and U are regular schemes, the finite type map y : Speck(y) → U is a local
complete intersection morphism [Sta18, 0E9K]. Since f|W is finite and W and U are smooth
and dimension n, f|W is flat [Mat89, Theorem 23.1 p.179]. Thus the pullback y ′ is a local
complete intersection morphism [Sta18, 069I]. SinceW and U are smooth k-schemes, f|W is a
local complete intersection morphism. Thus the composition f|W ◦y ′ = y ◦ f ′|W is lci as well.
Since U→ Speck is smooth, it follows that the structure map for f|−1W (y) over Speck is lci.
Since Spec k(y) → Spec k is smooth, it follows that f ′|W is lci as claimed [Sta18, 069M] □

Since f ′|W is flat, the square (9) and [Sta18, Tag08QL Lemma 89.6.1.] define a canonical
isomorphism

(10) ωf ′|W
∼= (y ′)∗ωf|W .

Since f|W is finite, x determines a closed and open subscheme SpecOf−1(y),x ↪→ f|−1W (y) of

f|−1W (y). By [Sta18, Tag 0638, Lemma 31.21.5. and Lemma 31.21.3.], the inclusion of a
closed and open component in a locally Noetherian scheme is a local complete intersection
morphism, because Koszul-regular immersions are lci. Define fx : SpecOf−1(y),x → Spec k(y)

to be the composition of SpecOf−1(y),x ↪→ f|−1W (y) and f ′|W, so in particular fx is finite, flat,
lci and fits into the commutative diagram

SpecOf−1(y),x

fx
��

if,x //W

f|W
��

Spec k(y)
y // U

.
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The isomorphism (10) defines an isomorphism ωfx
∼= i∗f,xωf|W , whence i

∗
f,xρ defines a relative

orientation of fx.

Proposition 3.5. Let W and U be smooth k-schemes of dimension n, let x be a point of X,
and let f :W → U be finite and oriented by ρ. Suppose that y = f(x) is a closed point with
k(y) ⊆ k(x) separable. Then

degx(f, ρ) = deg(fx, i
∗
f,xρ).

Proof. f is flat by [Mat89, Theorem 23.1 p.179]. Both degx(f, ρ) and deg(fx, i
∗
f,xρ) are bilinear

forms on the k(y)-vector space (fx)∗i
∗
f,xL. deg(fx, i

∗
f,xρ) is obtained by composing

((fx)∗i
∗
f,xL)

⊗2 → (fx)∗i
∗
f,x(L

⊗2)
i∗f,xρ→ (fx)∗ωfx → k(y),

and degx(f, ρ) is the composition

((fx)∗i
∗
f,xL)

⊗2 → ((f|W)∗L(y))
⊗2 → (f|W)∗(L

⊗2)(y)
ρ→ (f|W)∗ωf|W(y) → k(y).

By the commutative diagram

((f|W)∗L)
⊗2 // y∗(f|W)∗(L

⊗2)
ρ // y∗(f|W)∗ωf|W

((fx)∗i
∗
f,xL)

⊗2 //

OO

(fx)∗i
∗
f,x(L

⊗2)

OO

i∗f,xρ // (fx)∗ωfx

OO

it suffices to check that the trace maps (fx)∗ωfx → k and (f|W)∗ωf|W(y) → k are compatible
in the sense that the outermost rectangle in the diagram

(f|W)∗ωf|W(y) // k(y)

(fy)∗ωfy
//

OO

k(y)

id

OO

(fx)∗ωfx
//

OO

k(y)

id

OO

is commutative. To see this, let fy : f
−1(y) = SpecOf−1(y),x → Spec k(y)×UW → Speck(y)

be the pullback of f|W along y. The associated trace map (fy)∗ωf(y) → Spec k(y) fits in
the commutative diagram above, so we may check the commutivity of the upper and lower
squares. The commutativity of the lower follows from [Con00, Lemma 3.4.3 TRA1] applied
to the composition SpecOf−1(y),x → Spec k(y)×UW → Spec k(y). For the upper square, the
trace map for finite flat maps commutes with base change as can be seen by the description
“evaluate at 1” of [Con00, (3.4.7) p147]. In more detail, let A ⊂ B be ring map corresponding
to a finite flat map f : SpecB → SpecA and let y be a point of SpecA. View HomA(B,A)
as a coherent sheaf on SpecA. Then there is a canonical isomorphism f∗ωf

∼= Hom(B,A)
and the trace map TrB/A : HomA(B,A) → A is evaluation at 1. The pull back of TrB/A by
Spec k(y) → SpecA is the evaluation at 1 map Homk(y)(By, k(y)) as claimed. □
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3.2. Computation with the Jacobian. Let f : X→ Y be a oriented map between smooth,
connected schemes of dimension n. So we have a line bundle L on X, and an isomorphism

ρ : Hom(∧nTX, f∗ ∧n TY) → L⊗2.

Then f induces a map Tf on tangent bundles and a global section

det Tf ∈ Hom(∧nTX, f∗ ∧n TY).

Taking the image under the ρ gives a global section ρ(det Tf) of L⊗2.

Construction 3.6. A section of the square of a line bundle determines a canonical element
of OX/(O∗

X)
2. Namely, suppose σ is a section of L⊗2. Around any point x, choose a local triv-

ialization of L, identifying σ with an element of OX,x. Any two choices of local trivialization
will change this element by the square of a unit in OX,x.

Definition 3.7. The Jacobian Jf of f is the section of O/(O∗)2 corresponding to ρ(det Tf)
by Construction 3.6:

Jf = ρ(det Tf) ∈ O/(O∗)2.

Let Jfx (respectively Jf(x)) be the image of Jf in OX,x/(O∗
X,x)

2 (respectively k(x)/(k(x))∗).

Proposition 3.8. If f is étale at x, then degx f = Trk(x)/k(y)⟨Jf(x)⟩.

Proof. Since f is étale at x, the canonical map Of−1(y),x → k(x) is an isomorphism and
k(y) ⊆ k(x) is a separable extension. The form deg(f, ρ)(y) on f∗Lf−1(y) is defined

f∗Lf−1(y) × f∗Lf−1(y) → f∗L
⊗2
f−1(y)

ρ
∼= f∗(ωf)f−1(y)

Tr→ OY(y) ∼= k(y)

where the first map is the canonical map associated to the tensor product. The local degree
degx f is then the restriction of deg(f, ρ)(y) to f∗Lf−1(y),x. Choosing any local trivialization
of L around x, we obtain an isomorphism Lf−1(y),x

∼= Of−1(y),x
∼= k(x). The canonical map

associated to the tensor product becomes multiplication on k(x). Since f is finite when
restricted to a neighborhood of x, there is a canonical isomorphism

(11) (ωf)x ∼= HomOY,y
(OX,x,OY,y)

from the adjunction f∗ ⊣ f!. Under this identification Tr : (fx)∗(ωf)x → OY,y is evaluation at
1.

Since f is étale at x, the isomorphism (11) sends the section det Tf of (ωf)x to Tr : OX,x →
OY,y [SS75, (4.2)Satz], where here Tr : OX,x → OY,y denotes the trace associated to the finite
étale algebra OY,y ⊆ OX,x. Thus for any a in k(x) ∼= Of−1(y),x, the composition

(fx)∗L
⊗2
f−1(y),x

ρ
∼= (fx)∗(ωf)f−1(y),x

Tr→ OY(y) ∼= k(y)

sends aρ(det Tf(x)) to Trk(x)/k(y) a, where Trk(x)/k(y) : k(x) → k(y) denotes the trace of the
finite étale algebra k(y) ⊆ k(x). Remembering the chosen local trivialization of L around x,
the bilinear form
(12)

k(x)×k(x) ∼= (fx)∗Lf−1(y),x×(fx)∗Lf−1(y),x → (fx)∗L
⊗2
f−1(y),x

ρ
∼= (fx)∗(ωf)f−1(y),x

Tr→ OY(y) ∼= k(y)
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represents the local degree degx f. Since we have fixed a local trivialization of L around x,
we have ρ(det Tf(x)) ∈ k(x). From the above, it follows that for any a, b in k(x), the form
(12) sends (a, b) in k(x)× k(x) to

Trk(x)/k(y)(
ab

ρ(det Tf(x))
).

Thus degx f = Trk(x)/k(y)⟨ 1
Jf(x)

⟩ = Trk(x)/k(y)⟨Jf(x)⟩ as claimed.

□

Taking x to be the generic point of X, this shows the Jacobian can be used to compute
deg f.

Corollary 3.9. Let f : X → Y be a separable map between smooth, proper connected k-
schemes of dimension n. Suppose there exists a closed subset Z of Y of codimension at least
2 such that the restriction of f to f−1(Y−Z) is oriented. Let η denote the generic point of X.
Then Trk(X)/k(Y)⟨Jf(η)⟩ is in the image of GW(Y) ⊆ GW(k(Y)) and the degree of f is given
by

deg f = Trk(X)/k(Y)⟨Jf(η)⟩.
Moreover, if Y is either A1-connected or Y has a k-point and is A1-odd extended chain
connected, then Trk(X)/k(Y)⟨Jf(η)⟩ is in the image of the pull-back GW(k) → GW(k(Y)).

Proof. f is étale at η because f is a separable morphism, so we may apply Proposition 3.8
to x = η. The first statement then follows from Proposition 3.3 and the fact that GW is
an unramified sheaf. The second assertion follows from Corollary 2.29 in the first case and
Lemma 2.34 in the second case. □

Combining Proposition 3.8 with Proposition 3.2 implies:

Corollary 3.10. Let y be a regular value of f. Then deg f =
∑

x∈f−1yTrk(x)/k(y)⟨J(f)⟩ in
GW(k(y)).

4. Counts of Rational Curves

In the remaining sections, we give quadratically enriched counts of rational curves on del
Pezzo surfaces passing through the appropriate number of points by taking the A1-degree of
maps from moduli spaces of such curves.

4.1. Kontsevich moduli space of rational curves on del Pezzo surfaces. We set up
notation for the needed moduli spaces and maps, consistent with that of [KLSW23], to which
we refer the reader for further information and references. Let k be a perfect field.

Definition 4.1. A del Pezzo surface over k is a smooth and projective k-scheme S such
that the anti-canonical sheaf −KS is ample. The degree dS of a del Pezzo surface S is the

self-intersection K
(2)
S .

27



Let S be a del Pezzo surface over k of degree dS. Fix an effective Cartier divisor D on S
and let d := deg(−D · KS) > 0 denote its degree with respect to −KS.

Let M0,n(S,D) denote the moduli stack of n-pointed stable maps u : P1 → S in curve
class D equipped with n points of P1 (meaning sections from the base). Let M̄0,n(S,D)
denote the compactified moduli stack of n-pointed, stable maps of a genus zero curve to S,
in the curve class D. By definition this means that for an algebraically closed extension F
of k, an F-point of M̄0,n(S,D) corresponds to the data (u : PF → SF, p1, . . . , pn) where PF is
a semistable genus 0 curve over F, u is a stable map, pi : Spec F → PF are disjoint sections
landing in the smooth locus and u∗[PF] ∈ D. See [AO01, Theorem 2.8, p. 90] and [dJHS11,
Section 4] as well as [KLSW23] for more information.

Our counts of rational curves will be the A1-degrees of appropriate modifications of the
following evaluation map.

Definition 4.2. Define the evaluation map ev : M̄0,n(S,D) → Sn by

(u : P → S, (p1, . . . , pn)) 7→ (u(p1), . . . , u(pn))

For a point q∗ = (q1, . . . , qn) of S
n, note that the fiber ev−1(q∗) of ev over q∗ consists of

stable maps u : P → S with u(pi) = qi for i = 1, . . . , n. Thus ev−1(q∗) consists of the ra-
tional curves passing through (q1, . . . , qn) together with a chosen point pi of u

−1(qi) (which
usually is no choice at all, as u−1(qi) will be a single point for generally chosen qi). Since
the A1-degree of a map is a sum over the fiber ev−1(q∗) of a local degree (Proposition 3.2),
our quadratically enriched counts of rational curves will be A1-degrees of appropriate modi-
fications of the map ev.

Consider a geometric point (u : P1F → SF, p1, . . . , pn) of M0,n(S,D). Except in a few
special cases (d = −1, or d = 1, 2 and dS ≥ 3 etc.), the image curve u(P1) is not smooth. In
[KLSW23], we study the geometry of M̄0,n(S,D) using the singularities of the image curve.
An ordinary double point of u(P1) is a point q of u(P1) such that there exist distinct points
p1 ̸= p2 of P1 such that u(p1) = q = u(p2) and TqS is spanned by the images of Tp1P

1

and Tp2P
1. There is an open subscheme of the moduli stack M̄0,n(S,D) whose geometric

points (u : P1 → f(P1), ((p1, . . . , pn)) are unramified in the sense that the induced map on
cotangent spaces du : u∗T ∗S → T ∗P1 is surjective and such that any singularities of u(P1)

are ordinary double points. It is well-known that Modp
0,n (S,D) is either empty or a smooth

scheme of dimension n + d − 1. See for example [KLSW23, Lemma 2.17]. Assume that
char F ̸= 2, 3. We say that u has an ordinary cusp at p ∈ P1 if Tpu : Tp(P) → Tf(p)S is the
zero map, u−1(u(p)) = {p}, and we may choose parameters x, y for O∧

S,q and t for O∧
P1,p

so

that f∗(x) = t2, f∗(y) = vt3 where v is a unit in O∧
P1,p

. We say u has an ordinary tacnode

at distinct smooth points p1, p2 ∈ P if u(p1) = u(p2) and Tp1u(Tp1P) = Tp2u(Tp2P), and
we may choose parameters x, y for O∧

S,q and ti for O∧
P1,pi

with i = 1, 2 so that ti := u∗
pi
(x),

u∗
p1
(y) = 0 and u∗

p2
(y) = t22. We say that u has an ordinary triple point at distinct smooth

points p1, p2, p3 ∈ P if u(p1) = u(p2) = u(p3) = q and the images of Tpiu : TpiP → TqS are
pairwise linearly independent subspaces.

Lemma 4.3. ([KLSW23, Lemma 2.27]) Let k be a perfect field, S a del Pezzo surface over

k and D an effective Cartier divisor on S. Let n = d − 1. Then ev : Modp
0,n (S,D) → Sn is

étale.
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We introduce a list of assumptions, which will be convenient for future reference, but
which are not running assumptions throughout the remainder of the paper.

Assumptions 4.4. (1) chark = 0.
(2) D is not an m-fold multiple of a −1-curve for m > 1.
(3) One the the following holds.

• dS ≥ 4
• dS = 3 and d ̸= 6
• dS = 2 and d ≥ 7

We remind the reader that Mbir
0 (S,D) ⊆ M0(S,D) represents the locus of stable maps

with irreducible domain curve which are birational onto their images.

Theorem 4.5. ([KLSW23, Theorem 4.5].) Suppose Basic Assumptions 4.4(1)(2)(3) hold
for k, S,D. Then there is a closed subset A ⊂ Sn with codim A ≥ 2 such that the inverse
image M̄0,n(S,D)good := M̄0,n(S,D) \ ev−1(A) satisfies the following.

(1) M̄0,n(S,D)good = ∅ if and only if Mbir
0 (S,D) = ∅. If Mbir

0 (S,D) ̸= ∅, then the moduli
space M̄0,n(S,D)good is a geometrically irreducible smooth finite-type k-scheme, and
the restriction of ev to ev : M̄0,n(S,D)good → Sn \ A is a finite, flat, dominant
morphism.

(2) The evaluation map ev is étale in a neighborhood of each f ∈ M̄0,n(S,D)good with f
unramified.

(3) M̄0,n(S,D)good contains a dense open subset of Modp
0,n (S;D).

(4) Geometric points f of M̄0,n(S,D)good correspond to birational maps.

(5) Let f be a geometric point of M̄0,n(S,D)good \Modp
0,n (S;D), which we consider as a

morphism f : P → S for some genus 0 semi-stable curve P. Then f satisfies:
(i) If P = P1 is irreducible, then the image curve C := f(P1) has one singular point

q that is not an ordinary double point, and C has either an ordinary cusp, an
ordinary tacnode or an ordinary triple point at q. Moreover, the marked points
do not map to q and f is free.

(ii) If P is not irreducible, then P = P1 ∪ P2, with Pi ∼= P1. The image curve
C := f(P) has only ordinary double points as singularities. Moreover, if ni of
the n marked points of P are in Pi, and Ci := f(Pi) has degree di := −KS · Ci,
then di − 1 ≤ ni ≤ di for i = 1, 2.

Definition 4.6. Define Dcusp ⊂ M̄0,n(S,D)good \Modp
0,n (S;D) (respectively Dtac) to be the

closure of the locus of those u in M̄0,n(S,D)good such that C has an ordinary cusp (respectively
tacnode). Dcusp and Dtac are divisors by [KLSW23, Theorem 6.1].

In [KLSW23, Section 5], we define the double point locus π : Dodp →Modp
0,n (S,D) based on

[Ful98, Chapter 9.3]. For k, S,D satisfying Basic Assumptions 4.4(1)(2)(3), we furthermore
define the double point locus π : Dgood → M̄0,n(S,D)good. See [KLSW23, Definition 5.3]. The
loci Dodp and Dgood are smooth k-schemes, constructed as a closure of a locus of geometric
points (u : P → S, (p1, . . . , pn), (pn+1, pn+2)) where (u : P → S, (p1, . . . , pn)) is a geometric

point of Modp
0,n (S,D) or M̄0,n(S,D)good respectively, and pn+1 ̸= pn+2 are smooth points of

P such that u(pn+1) = u(pn+2). These double point loci are certain closed subschemes
in the fiber product of universal curves. They contain an open subscheme of stable maps
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u : P1 → S together with a pair of distinct points of P1 mapping to the same point q of
S, and n additional marked points of P1. Note that q is a double point of u(P1), and the
double point loci are introduced to have a useful moduli space of such double points.

Proposition 4.7. Let S be a smooth del Pezzo surface over a perfect field k equipped with
an effective Cartier divisor D. Then π : Dodp → M0,n(S,D)odp is finite étale of degree
δ = 1

2
D · (KS +D) + 1.

Proof. π is proper by construction and is shown to be étale in [KLSW23, Lemma 5.4]. The
arithmetic genus of u(P1) is δ = 1

2
D · (KS + D) + 1. See for example [Har77, V 1. Prop

1.5]. Thus points of Modp
0,n (S,D) correspond to maps where u(P1) has δ ordinary double

points. □

Remark 4.8. Let f : Y → Z be a finite, flat morphism of smooth k-schemes that is étale
over each generic point of Z. Then f∗OY is a locally free OZ-module. The multiplication
map on OY gives the morphism of OZ-modules m : f∗OY ⊗OZ

f∗OY → f∗OY. Since f∗OY is
a finite locally free OZ-module, we have the trace map Trf : f∗OY → OZ defined by sending
s ∈ f∗OY(U) to the trace of the multiplication map ×s : f∗OY(U) → f∗OY(U). The trace
form

f∗OY ⊗ f∗OY → OZ

(b, b ′) 7→ Tr(bb ′)

defines a map τ : f∗OY → f∗O−1
Y . The determinant

det τ : det f∗OY → det f∗O−1
Y

determines a section disc(f) of det f∗O−2
Y and a canonical isomorphism

(13) O(D(disc(f))) ∼= (det f∗OY)
⊗2.

Since Trf is a surjection if f is étale, we see that the divisor of disc(f) is supported on
the branch locus of f. The associated element of OZ/(O∗

Z)
2 (see Construction 3.6) has the

property that at every closed point z of Z,

disc(f) = det(Tr(bibj)i,j)

where bi runs over a basis of f∗OY as an OZ-module.

The map π : Dgood → M̄0,n(S,D)good is finite, flat and étale over the generic points of
M̄0,n(S,D)good by [KLSW23, Corollary 5.14]. Thus π∗ODgood is locally free and we have a
discriminant map

discπ : OM̄0,n(S,D)good → det(π∗ODgood)⊗−2.

Theorem 4.9. ([KLSW23, Theorem 6.2].) Suppose Basic Assumptions 4.4(1)(2)(3) hold

for k, S,D. Let n = d− 1. Let L be the invertible sheaf on M̄good
0,n (S,D) given by

L = (detπ∗OD(−Dtac))
−1

Then the composition detd ev ◦ disc−1π : L⊗2 → ωev is an isomorphism on M̄good
0,n (S,D).

Suppose Basic Assumptions 4.4(1)(2)(3) hold for k, S,D. Then the isomorphism of The-

orem 4.9 is an orientation on ev : M̄good
0,n (S,D) → Sn. It follows from Theorem 4.5 that
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this map satisfies Assumption 2.13, where U ⊆ Y (in the notation of Assumption 2.13) is
Sn \A ⊆ Sn. We therefore have

deg(ev : M̄good
0,n (S,D) → Sn) ∈ GW(Sn)

as in Definition 2.14.

4.2. Positive characteristic. Let k be a field of characteristic p > 3 and let S be a smooth
del Pezzo surface over k with an effective Cartier divisor D.

Assumption 4.10. For every effective Cartier divisor D ′ on S, there is a geometric point
f in each irreducible component of Mbir

0 (S,D ′) with f unramified.

Remark 4.11. Assumption 4.10 is automatically satisfied in characteristic 0 [KLSW23,
Lemma 2.31] and in characteristic p > 3 when dS ≥ 3 [KLSW23, Theorem A.1].

Suppose (k, S,D) satisfies Basic Assumptions 4.4(2)(3) and Assumption 4.10. Let d =
−KS · D and n = d − 1. If M0,n(S,D)odp is empty, we consider the degree of evk :
M0,n(S,D)odp → Sn to be zero. Suppose M0,n(S,D)odp is not empty. In this section, we
construct the data of Assumption 2.16 for evk :M0,n(S,D)odp → Sn.

Remark 4.12. The ordinary double point locus M0,n(S,D)odp is an open subcheme of
M̄0,n(S,D) (see e.g. [KLSW23, Lemma 2.14]). By [KLSW23, Proposition 2.32],M0,n(S,D)odp

is empty if and only if there are no u : P1F → SF in curve class D with P1F → u(P1F) birational
(where F is some algebraically closed extension of k). For S a twisted form of a smooth toric
del Pezzo, it is possible to give a complete list of (S,D) for which M0,n(S,D)odp is empty,
although we do not include this result here.

The evaluation map M̄0,n(S,D) → Sn being proper, evk(M̄0,n(S,D) \M0,n(S,D)odp) is
closed in Sn. By [KLSW23, Corollary 3.15], evk(M̄0,n(S,D) \M0,n(S,D)odp) this closed set
has positive codimension in Sn. Letting U ⊂ Sn denote its complement, we have evk :
ev−1k (U) → U a proper map between smooth k-schemes, which is furthermore étale by
Lemma 4.3. By Remark 2.6, evk : ev−1k (U) → U has a canonical relative orientation. This
constructs the data of Assumption 2.16 over the special fiber.

It remains to construct the data of Assumption 2.16 over a lift to characteristic 0. Let Λ
be a complete discrete valuation ring with reside field k and quotient field K of characteristic
0. In [KLSW23, Lemma 9.3] we construct S̃→ SpecΛ a smooth del Pezzo surface equipped

with an effective Cartier divisor D̃ with special fiber S̃k ∼= S and D̃k
∼= D. The general

fiber of (S̃, D̃, Λ) gives rise to (S̃K, D̃K, K) satisfying Basic Assumptions 4.4(1)(2)(3). See

[KLSW23, Lemma 9.4]. Set Y = S̃n in the notation of Assumption 2.16.

There is a compactified moduli stack M̄0,n(S̃, D̃) of n-pointed, stable maps of a genus zero

curve to S̃, in the curve class D̃ by [AO01, Theorem 2.8, and p.90]. There is more discussion

in [KLSW23, Section 2]. As before, the moduli M̄0,n(S̃, D̃) admits the evaluation map

ev : M̄0,n(S̃, D̃) → S̃n

In [KLSW23, Construction 9.6], we construct a closed subset Ã ⊂ S̃n such that
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(1) the special fiber Ãk contains evk(M̄0,n(S,D) \M̄0,n(S,D)odp) and is codimension ≥ 1
in Sn.

(2) Ã is codimension 2 in S̃n.

(3) ev−1K (S̃nK \ ÃK) can be taken to be M̄0,n(S̃K, D̃K)
good in Theorem 4.5

(4) M̄0,n(S̃, D̃)good := ev−1(S̃n \ Ã) is a smooth Λ-scheme (see in particular [KLSW23,
Proposition 9.9])

In the notation of Assumption 2.16, set Y = S̃n \ Ã and let X = M̄0,n(S̃, D̃)good. In

[KLSW23, Theorem 9.13] we construct an orientation on the proper map M̄0,n(S̃, D̃)good → U
restricting to the constructed orientation on evk : ev

−1
k (U) → U. We therefore have the data

of Assumption 2.16 on the map evk :M0,n(S,D)odp → Sn and may define

deg(evk :M0,n(S,D)odp → Sn) ∈ GW(Sn)

to be the degree of Definition 2.22.

5. Twists of ev

Let S be a smooth del Pezzo over a field k equipped with a relative Cartier divisor D. Let
d = −KS ·D. Let k ⊆ ks denote a separable closure of k. Let

σ = (L1, . . . , Lr)

be an r-tuple of subfields Li ⊂ k containing k for i = 1, . . . , r subject to the requirement
that

∑k
i=1[Li : k] = n. We think of σ as the fields of definition of a list of points of S that

our curves will be required to pass through.

The list σ is used to define twists evσ of the evaluation map in the following manner.
The Galois group Gal(ks/k) acts on the ks-points of k-schemes. Thus σ gives rise to a
canonical homomorphism Gal(σ) : Gal(ks/k) → SP(σ), where P(σ) denotes the ks-points

of
∐r

i=1 SpecLi and SP(σ)
∼= Sn denotes the symmetric group. For convenience, we fix an

identification P(σ) = {1, 2, . . . , n} and thus a canonical isomorphism SP(σ) = Sn.

Permuting the factors of S defines an inclusion of Sn into Aut(Sn). We include Sn into
Aut(M0,n(S,D)) by permutation of the marked points, and acting trivially on the underlying
curve and the morphism to S: for τ in Sn, set

τ(u : C→ S, p1, . . . , pn) = (u : C→ S, pτ−1(1), . . . , pτ−1(n)).

The 1-cocycle

(14) g 7→ Gal(σ)(g)× g

Gal(ks/k) → Aut(Xnks)

for X = Sn, X = M0,n(S,D), X = Modp

0,n (S,D), or X = Dodp determines twists Xσ. Since evks
and πks are Galois equivariant for the twisted action, they descends to a k-maps

evσ : M0,n(S, d)σ → (Sn)σ

πσ : Dodp
σ → Modp

0,n (S, d)σ
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Lemma 5.1. There is a natural isomorphism

(15) ϕσ : (S
n)σ ∼=

r∏
i=1

ResLi/k S

Proof. We may assume that each Li is a subextension of k in k̄. Fix a Galois subextension
M of k in k̄ containing each of the Li. Let G denote the Galois group of M over k.

Using the universal property of the restriction of scalars, it suffices to define for each
finitely generated k-algebra A, an isomorphism

ϕA : (Sn)σ(A) → r∏
i=1

S(Li ⊗k A),

natural in A.

For this, it follows from the theory of descent that (Sn)σ(A) is naturally in bijection with

the G-invariant subset of Sn(M ⊗k A) = S(M ⊗k A)
P(σ), where g ∈ G acts on M ⊗k A

through its action on M and on S(M⊗k A)
P(σ) by

g · (ι 7→ xι ∈ S(M⊗k A)) := (ι 7→ xg
g−1·ι ∈ S(M⊗k A)).

Let x∗ := (xι ∈ S(M⊗kA))ι∈P(σ) be a G-invariant element. Let ιi : Li → k̄ be the inclusion

as a subextension of k, and take g ∈ G with g · ιi = ιi. Note that Gal(M/Li) is exactly the
isotropy group of ιi under the G-action on P(σ) and that

(M⊗k A)
Gal(M/Li) = Li ⊗k A

since A is flat over k. Looking at the ιi component of x∗, we see that xιi is invariant under
Gal(M/Li), so xιi is in Li ⊗k A. Thus we have a well-defined map

ϕA : (S(M⊗k A))
G → r∏

i=1

S(Li ⊗k A)

sending x∗ to (xι1 , . . . , xιr). To map in the other direction, start with (x1, . . . , xr) ∈
∏r

i=1 S(Li⊗k

A) and take an arbitrary ι ∈ P(σ), corresponding to an embedding ι : Li ↪→M ⊂ k̄ over k
for a unique i. Then there is an element g ∈ G, unique modulo Gal(M/Li), with ι = g · ιi.
We then take xι ∈ S(M ⊗k A) to be xgi . It follows directly that x∗ := (xι ∈ S(M ⊗k A))ι is
G-invariant and that ϕA(x∗) = (x1, . . . , xr). Thus ϕA is a split surjection. The injectivity of
ϕA follows from the identity xι = x

g
ιi
if ι = g · ιi and x∗ = (xι ∈ S(M⊗k A))ι is G-invariant.

The naturality of ϕA in A is clear, which completes the proof.

□

We may thus view evσ as a map with codomain
∏r

i=1ResLi/k S. Similarly to the fibers of
ev, the fibers of evσ consist of rational curves passing through chosen points. For simplicity
of notation, consider a k-point q∗ of (Sn)σ. By (15), q∗ is given by an r-tuple (q1, . . . , qr)
where qi is an Li point of S. In particular, q∗ gives rise to a canonical geometric point of Sn

(use the above identification of P(σ) with {1, . . . , n}) which we will also denote by q∗. The
geometric points of the fibers of evσ and ev over q∗ are canonically identified.
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5.1. Characteristic 0. Let n = d− 1. Let k be a perfect field, S a del Pezzo surface over k
and D an effective Cartier divisor on S satisfying Assumptions 4.4(1)(2)(3). We then have
ev : M̄0,n(S,D)good → Sn and π : Dgood → M̄0,n(S,D)good by Theorem 4.5 and [KLSW23,
Definition 5.3] (recalled in Section 4.1) respectively. The cocyle (14) defines twists

evσ : M̄0,n(S,D)goodσ → Snσ

π : Dgood
σ → M̄0,n(S,D)goodσ

In [KLSW23, Theorem 8.1], it is shown that evσ is a map between smooth k-schemes and
setting Lσ := [det(πσ)∗ODσ(−Dtac)]

−1, we have the isomorphism

detd evσ ◦ disc−1πσ : (Lσ)⊗2 → ωevσ .

Note that evσ is generically étale because its base change to ks is by Theorem 4.5 This gives
the data of Assumption 2.13. Let

deg evσ ∈ GW(Snσ)

denote the degree of Definition 2.14.

5.2. Positive characteristic. Place ourselves in the situation of Section 4.2, which is to say
k is a field of characteristic p > 3. S is a smooth del Pezzo surface over k with an effective
Cartier divisor D. Suppose (k, S,D) satisfies Basic Assumptions 4.4(3) and Assumption 4.10
and thatM0,n(S,D)odp ̸= ∅. (Note Remark 4.12 on the conditionM0,n(S,D)odp ̸= ∅. As the
conditionM0,n(S,D)odp ̸= ∅ is equivalent toM0,n(S,D)bir ̸= ∅, the condition Basic Assump-
tions 4.4(2) is also satisfied.) In this section, we construct the data of Assumption 2.16 for
evσ :M0,n(S,D)odpσ → Snσ, thereby defining

deg evσ ∈ GW(Sn).

(If M0,n(S,D)odp = ∅, we consider the degree of evσ to be 0 as above.)

Let U ⊂ Snσ be the complement evσ(M̄0,n(S,D)σ \M0,n(S,D)odpσ ). As in Section 4.2, U is
a dense open subset of Snσ; ev

−1
σ (U) → U is a proper, étale, map between smooth k-schemes,

and therefore has a canonical relative orientation.

Take (Λ, S̃, D̃) as in Section 4.2. Enlarging the closed subset Ã ⊂ S̃n to be Sn invari-
ant, we construct in [KLSW23, Theorem 9.15] a map between smooth Λ-schemes evσ :

M̄0,n(S̃, D̃)goodσ → S̃nσ, a line bundle Lσ := [det(π̃σ)∗OD̃σ
(−Dtac)]

−1, and an isomorphism

detd evσ ◦ disc−1πσ : (Lσ)⊗2 → ωevσ .

on M̄0,n(S̃, D̃)goodσ restricting to the canonical relative orientation on the special fiber. This
constructs the data of Assumption 2.16 for evσ :M0,n(S,D)odpσ → Snσ and the degree deg evσ
in GW(Snσ).

6. The symmetrized moduli space

Let S be a smooth del Pezzo surface over a field k equipped with an effective Cartier
divisor D with deg−KS · D ≥ 1. The symmetric group Sn acts on Sn by permuting the
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factors, and acts freely M̄0,n(S,D) by permuting the marked points and acting trivially on
the underlying curve and morphism to S. We obtain a Sn-equivariant diagram

M̄0,n+1(S,D) → M̄0,n(S,D)
ev→ Sn

projecting from the universal curve to the moduli stack, followed by the evaluation map.
Passing to quotients gives rise to a symmetrized evaluation map

evS : M̄0,n(S,D)S → Symn S.

Because symmetric powers of surfaces are not necessarily smooth, it will be useful to let
Symn S0 ⊂ Symn S be the open subscheme formed as the quotient of Sn \ {diagonals} by Sn.
Rational points of Symn S0 correspond to {p1, . . . , pr} where pi is a closed point of S and∑r

i=1[Li : k] = n, where Li = k(pi). Fibers of evS correspond to rational curves passing
through the pi. So by symmetrizing, we are allowing for curve counts through non-rational
points. The choice of the field extensions Li is not fixed. This will assemble the degrees of
Section 5 into a section of GW(Symn S0).

6.1. Characteristic 0. Suppose (k, S,D) satisfies Assumptions 4.4(1)(2)(3). Let d = −KS ·
D ≥ 1 and n = d−1. We then have ev : M̄0,n(S,D)good → Sn and π : Dgood → M̄0,n(S,D)good

by Theorem 4.5 and [KLSW23, Definition 5.3] (recalled in Section 4.1) respectively. By en-
larging A ⊂ Sn of Theorem 4.5, we may assume that M̄0,n(S,D)good and Dgood inherit the
action ofSn from M̄0,n(S,D) and M̄0,n+1(S,D)×M̄0,n(S,D)M̄0,n+1(S,D), respectively. By The-
orem 4.5(4), there are no contracted components in the stable maps corresponding to geomet-
ric points of M̄0,n(S,D)good, whence Sn \A ⊂ Sn \ {diagonals}. Furthermore, M̄0,n(S,D)good,
Dgood, Sn \ {diagonals} and Sn \A are all quasi-projective because S is projective over k and
ev : M̄0,n(S,D)good → Sn \ A is finite (Theorem 4.5(1)), and π : Dgood → M̄0,n(S,D)good is
finite by [KLSW23, Corollary 5.14]. We may thus take their quotients in the category of
quasi-projective k-schemes by the action of Sn. Since the actions are free, the quotients,
denoted M̄0,n(S,D)goodSn

, Dgood
Sn

, Symn
0 S, U = (Sn \ A)/Sn respectively, are smooth quasi-

projective k-schemes. We have maps

Dgood
Sn

πSn−→ M̄0,n(S,D)goodSn

evgoodSn−→ U ⊆ Symn
0 S

The composition of evgoodSn
with the inclusion is denoted

evSn : M̄0,n(S,D)goodSn
→ Symn

0 S

We will construct the data of Assumption 2.13 on evSn . By [KLSW23, Theorem 7.1],

we have a line bundle LSn := [detπSn∗ODgood
Sn

(−Dtac)]
−1 on M̄0,n(S,D)goodSn

together with an

isomorphism

detd evgoodSn
◦ disc−1πSn

: (LSn)
⊗2 → ωevgoodSn

.

This constructs the data of Assumption 2.13, defining

deg evSn ∈ GW(Symn
0 S)

by Definition 2.14.

Remark 6.1. Symn S is not smooth by purity of the branch locus [Sta18, 0BMB] [Zar58]
applied to the quotient map Sn → Symn S. So even though the complement of Symn S0 ⊂
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Symn S is codimension 2, purity results on Witt groups do not give that the associated re-
striction map of GW is an isomorphism. In fact, the sections deg evS of GW(Symn S0) do
not extend in general: for d = 3 and S = P2 the value at for example 8 real points has a
different weighted count than the value at 6 real points and one complex conjugate pair.

6.2. Positive characteristic. As in Sections 4.2, 5.2, let S be a smooth del Pezzo surface
over a field k of characteristic p > 3. Let D be an effective Cartier divisor on S. Suppose
(k, S,D) satisfies Basic Assumptions 4.4(2)(3) and Assumption 4.10. Noting Remark 4.12,
we will assume M0,n(S,D)odp ̸= ∅. (This also implies Basic Assumptions 4.4(2).)

Let d = −KS · D and n = d − 1. Note that M0,n(S,D)odp is stable under the free
action of S. As in Section 6.1, we will take a the quotient in quasi-projective schemes by
S of an evaluation map. It is convenient to pass to a dense open subset of M0,n(S,D)odp

first. By [KLSW23, Theorem 3.15], the closed set Ak := ev(M̄0,n(S,D) \M0,n(S,D)odp) has
positive codimension. (Ak is closed becasue ev is proper and M0,n(S,D)odp is open.) Let
M0,n(S,D)odp,good := ev−1(Sn \Ak). By [KLSW23, Lemma 2.27], ev :M0,n(S,D)odp → Sn is
étale, whence locally quasi-finite. Since M0,n(S,D)odp,good is proper over Sn \ A, it follows

that M0,n(S,D)odp,good is quasi-projective. Let M0,n(S,D)odp,goodSn
:= M0,n(S,D)odp,good/Sn

denote the quotient in quasi-projective schemes, which is smooth becauseM0,n(S,D)odp,good

is and the action is free. We thus have a map between smooth quasi-projective k-schemes

evodp,goodSn
:M0,n(S,D)odp,goodSn

→ Symn
0 S

where as before Symn
0 S denotes the the quotient of Sn minus the diagonals by Sn. In this

section, we construct the data of Assumption 2.16 for evodp,goodSn
.

Since evodp,goodSn
is a proper, local complete intersection morphism, which is étale, evodp,goodSn

has a canonical orientation (Remark 2.6), so it remains to construct the data of Assump-
tion 2.16 over a discrete valuation ring Λ.

Take (Λ, S̃, D̃) as in Section 4.2. We enlarge Ã ⊂ S̃n to be Sn invariant and obtain the

smooth Λ-scheme M̄0,n(S̃, D̃)good := ev−1(S̃n \ Ã) as in Section 4.2. Taking quotients by Sn,
we construct in [KLSW23, Theorem 9.14] a map

evSn : M̄0,n(S̃, D̃)goodSn
→ Symn

0 S̃

between smooth Λ-schemes, a line bundle LSn := [det π̃Sn,∗ODSn
(−Dtac)]

−1, and an isomor-
phism

detd evSn ◦ disc−1p̃iSn

: (LSn)
⊗2 → ωevSn

.

This constructs the data of Assumption 2.16 for evodp,goodSn
defining

deg evodp,goodSn
∈ GW(Symn

0 S).

by Definition 2.22.

7. Local degree of ev

In Sections 5.1 5.2 6.1 6.2, respectively, we have constructed A1-degrees

deg(evσ : M̄0,n(S,D)goodσ → Snσ) ∈ GW(Snσ)
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deg(evσ :M0,n(S,D)odpσ → Snσ) ∈ GW(Snσ)

deg(evSn : M̄0,n(S,D)goodSn
→ Symn

0 S) ∈ GW(Symn
0 S)

deg evodp,goodSn
(M0,n(S,D)odp,goodSn

→ Symn
0 S) ∈ GW(Symn

0 S)

under appropriate hypotheses. In this section, we compute the local degrees of these
maps at a point of the locus of parametrized curves with only ordinary double points, e.g.
M0,n(S,D)odp in the untwisted, unsymmetrized version.

We first compare the twisted and symmetrized degrees and local degrees. There are
pullback diagrams [KLSW23, (8.3)]

(16) M̄0,n(S,D)odpσ ⊂ M̄0,n(S,D)goodσ

evσ

��

S // M̄0,n(S,D)goodSn

evSn

��
Snσ SS

// Symn S

M̄0,n(S,D)odpσ

evσ

��

S // M̄0,n(S,D)odp,goodSn

evSn

��
Snσ SS

// Symn S

,

where the latter is the characteristic p > 0 version of the former. Let Snσ,0 denote the inverse
image under SS of the open subset Symn

0 S of Symn S, and let

iSn,0 : S
n
σ,0 → Sn

denote the inclusion. Pulling back (16) by Symn
0 S→ Symn S produces the diagrams

(17) M̄0,n(S,D)odpσ ⊂ M̄0,n(S,D)goodσ

evσ

��

S // M̄0,n(S,D)goodSn

evSn

��
Snσ,0 SS,0

// Symn
0 S

M̄0,n(S,D)odpσ

evσ

��

S // M̄0,n(S,D)odp,goodSn

evSn

��
Snσ,0 SS,0

// Symn
0 S

,

Proposition 7.1. We have equalities of (global) degrees

S∗
S,0 deg(evSn : M̄0,n(S,D)goodSn

→ Symn
0 S) = i

∗
Sn,0 deg(evσ : M̄0,n(S,D)goodσ → Snσ)

S∗
S,0 deg ev

odp,good
Sn

(M0,n(S,D)odp,goodSn
→ Symn

0 S) = i
∗
Sn,0 deg(evσ :M0,n(S,D)odpσ → Snσ) ∈ GW(Snσ,0)

in GW(Snσ,0)

Proof. Follows from (17) and Proposition 2.7. □
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Consider a point (u : P → Sk(u), p1, . . . , pn) in the twisted locus of parametrized curves

with only ordinary double points M̄0,n(S,D)odpσ . LetS(u) denote the image of u in M̄0,n(S,D)goodSn

or M̄0,n(S,D)odp,goodSn
depending on if the characteristic of k is 0 or positive respectively. Let

k(S(u)) ⊆ k(u) be the associated field extension. By Propositions 3.3 and 3.5, the local
degree degS(u) evSn of evSn and the local degree of evσ at u are related by

degS(u) evSn ⊗k(S(u))k(u) = degu evσ .

Note that this holds both in characteristic p and in characteristic 0.

For any closed point u ′ of the symmetrized locus of parametrized curves with only ordinary
double points, there is an associated ks point of M̄0,n(S,D)goodSn,ks

such that the action of
Gal(ks/k(u ′)) acts by permuting the marked points. This defines a map Gal(ks/k(u ′)) → Sn

which determines a list σ = (L1, . . . , Lr) of intermediate fields k(u ′) ⊆ Li ⊆ ks by the Galois
correspondence. (So, L1 is the fixed field of the stabilizer of 1, L2 is the fixed field of the
stabilizer of the smallest integer not in the orbit of 1, etc.) We obtain

S : M̄0,n(S,D)odpσ → M̄0,n(S,D)odp,goodSn,k(u ′)

The ks point corresponding to u ′ determines a point u of M̄0,n(S,D)odpσ such that S(u) = u ′

and the induced extension of residue fields k(u ′) ⊆ k(u) is an isomorphism. Basechange to
k(u ′) does not affect degu ′ evSn . We have therefore reduced the calculation of the local
degree of evSn at a closed point to the calculation of the local degree of evσ.

Remark 7.2. It follows similarly that for any closed point y ′ of Symn
0 S, we can compute

the fiber of
deg(evSn : M̄0,n(S,D)goodSn

→ Symn
0 S)

in characteristic 0 (or deg evodp,goodSn
(M0,n(S,D)odp,goodSn

→ Symn
0 S) in characteristic p) at y ′

by choosing an appropriate σ and y in Snσ and computing the fiber of

deg(evσ : M̄0,n(S,D)goodσ → Snσ)

at y (respectively the fiber of deg(evσ :M0,n(S,D)odpσ → Snσ) at y).

As above, let πσ : Dodp →M0,n(S,D)odp denote the finite étale map from the twisted dou-
ble point locus. (See Proposition 4.7.) Let ⟨discπσ⟩ in GW(k(u)) denote the corresponding
discriminant. See Remark 4.8.

Proposition 7.3. Let u be in M0,n(S,D)odp. Then the local degree of evσ at u is computed
degu ev = Trk(u)/k(ev(u))⟨discπσ⟩.

Proof. On Modp
0,n (S,D)σ, the composition

(18) ωevσ

∼=→ O(Dcusp) → O(Dcusp + 2Dtac) = O(div disc(πσ))
∼=→ (detπσ,∗ODodp)⊗2

constructed in Sections 4 and 5 defines the orientation of evσ. Let D evσ denote the section
of Hom(ev∗σ T

∗Sn, T ∗Modp
0,n (S,D)) given by the differential of evσ, and let detD evσ be its

determinant, so detD evσ is a section of ωevσ . By construction, the first isomorphism of (18)
takes detD evσ to the section 1 of O(Dcusp), and the last isomorphism takes 1 to disc(πσ).
Since the map O(Dcusp) → O(Dcusp + 2Dtac) takes the function 1 to the function 1, we
have that detD evσ 7→ disc(πσ). Therefore degu evσ = Trk(u)/k(ev(u))⟨discπσ⟩ by Proposition
3.8. □
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The discriminant ⟨discπσ⟩ of Proposition 7.3 has a concrete geometric description. The
point u corresponds to a map u : P → Sk(u) from a smooth genus 1 curve over k(u) together
with points p1, . . . , pn of Pks permuted appropriately under the Galois action. Over ks,
the image curve uks(Pks) has δ = 1

2
D · (KS + D) + 1 nodes permuted under the action of

Gal(ks/k(u)). Over k(u) these nodes p consist of points of S with various residue fields
k(p). At each node, there are exactly two tangent directions of u(P) defining a degree

2 field extension k(p) ⊆ k(p)[
√
m(p)] where m(p) is called the mass of the node. See

Definition 1.1.

Proposition 7.4. Suppose u is a point in Modp
0,n (S,D)σ, and let u : P → Sk(u) be the

corresponding map. Let Nodes denote the set of nodes of u(P). For p ∈ Nodes, let m(p)
denote the mass of the node p. Then

degu evσ = Trk(u)/k(evσ(u))
∏

p∈Nodes

m(p)

Proof. We show discπσ(u) =
∏

p∈Nodesm(p) in k(u)∗/(k(u)∗)2, which is sufficient by Propo-

sition 7.3. The double point locus Dodp ↪→ X ×
M

odp
0,n (S,D) X, where X = Modp

0,n+1(S,D) is the

universal curve, inherits an action of Z/2 from the involution on X×M0,n
X. Let N denote

the quotient, which will be called the universal node. We obtain a factorization of πσ

Dodp
σ → N → M0,n(S,D)σ.

Pulling back over Spec k(u) → Modp
0,n (S,D), the universal node splits as the disjoint union

of the nodes p of u(P) as u is in the ordinary double point locus, giving N ⊗ k(u) ∼=∏
p nodes Spec k(p). The pullback of double point locus Dodp over Speck(p) is a degree

2 extension Dk(p) → Speck(p) , whence of the form Speck(p)[
√
D(p)] → Spec k(p) or

Spec k(p)
∐

Spec k(p) → Spec k(p) (a split node) because the characteristic of k is not 2.
Since the discriminant is multiplicative over products of rings, it follows that

discπσ(u) =
∏

p nodes

disc(Dk(p) → k(u))

By Lemma 7.5,

disc(Dk(p) → k(u)) = disc(k(p)/k(u))2Nk(p)/k(u) disc(Dk(p) → Spec k(p))

= Nk(p)/k(u)D(p),

where we set D(p) = 1 in the case of a split node. □

We include the following well-known lemma for completeness.

Lemma 7.5. Let K ⊂ L ⊂M be a tower of finite degree field extensions. Then,

disc(M/K) = disc(L/K)[M:L]NL/K(disc(M/L)).

Proof. Let {xi}i∈S be a basis for L over K and let {yj}j∈T be a basis for M over L. Define
matrices A,B, by

Aji := TrL/K(xixj), Bji := TrM/L(yiyj).

Observe that {xiyj}i∈S,j∈T is a basis for M over K. Define a matrix C by

Cklij := TrM/K(xiyjxkyl), i, k ∈ S, j, l ∈ T.
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So, we have

disc(M/K) = [det(C)] ∈ K×/(K×)2, disc(M/L) = [det(B)] ∈ L×/(L×)2,
disc(L/K) = [det(A)] ∈ K×/(K×)2.

Calculate
Cklij = TrL/K(xixkTrM/L(yjyl)) = TrL/K(xixkB

l
j).

Write Bljxi =
∑

m∈SD
ml
ij xm for Dml

ij ∈ K. Then

TrL/K(xixkB
l
j) =

∑
m∈S

Dml
ij TrL/K(xmxk) =

∑
m∈S

Dml
ij A

k
m.

Writing the result of the preceding calculation in terms of matrix multiplication, we have

C = D ◦ (Id[M:L] ⊗A).
Taking determinants, we obtain

det(C) = det(A)[M:L] det(D) = det(A)[M:L]NL/K(det(B)).

A reference for the last equality is [KSW99]. The lemma follows. □

8. Enumerative theorems

Theorem 8.1. Let k be a perfect field of characteristic not 2 or 3. Let S be a del Pezzo surface
with an effective Cartier divisor D, satisfying Hypothesis 1. If k is of positive characteristic,
assume additionally that Hypothesis 2 is satisfied. Fix a list σ = (L1, L2, . . . , Lr) of field
extensions k ⊆ Li ⊆ k such that

∑r
i=1[Li : k] = n := deg(−D ·KS) − 1. Then, there is NS,D,σ

in GW(πA1

0 (
∏r

i=1ResLi/k S)) such that for any generally chosen points pi of S, i = 1, . . . , r ,
with k(pi) ∼= Li, we have the equality in GW(k)

NS,D,σ(p∗) =
∑

u rational curve
on S

in class D
through the points

p1,...,pr

Trk(u)/k
∏

p node of u(P1)

mass(p)

where p∗ is the k-point of
∏r

i=1ResLi/k S given by p∗ = (p1, . . . , pr).

Proof. In Sections 5.1 and 5.2 we constructed

deg(evσ : M̄0,n(S,D)goodσ → Snσ) ∈ GW(Snσ)

deg(evσ :M0,n(S,D)odpσ → Snσ) ∈ GW(Snσ)

in the case of characteristic 0 and positive characteristic, respectively. By (15), Snσ
∼=∏r

i=1ResLi/k S. In particular, the k-points p∗ of
∏r

i=1ResLi/k S correspond to points pi of P
2,

i = 1, . . . , r , with k(pi) ∼= Li. We may therefore define NS,D,σ in GW(πA1

0 (
∏r

i=1ResLi/k S))

to be degA
1

evσ as in Definition 2.28. By Proposition 3.2, for any generally chosen k-point
p∗ of

∏r
i=1ResLi/k S, we have NS,D,σ(p∗) =

∑
u∈ev−1

σ (p∗)
degu evσ. By construction, ev−1σ (p∗)

is the set of rational curves on S in class D passing through the points p∗ = (p1, . . . , pr). By
[KLSW23, Corollay], for a generally chosen p∗, the rational curves u on S in class D passing
through(p1, . . . , pr) determine points in M0,n(S,D)odpσ . By Proposition 7.4, the local degree
degu evσ is given by degu evσ =

∏
p node of u(P1) mass(p), completing the proof.
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□

Corollary 8.2. In the notation of Theorem 8.1, suppose that S is additionally A1-connected.
There is NS,D,σ in GW(k) such that for any generally chosen points pi of S, i = 1, . . . , r ,
with k(pi) ∼= Li, we have the equality in GW(k)

NS,D,σ =
∑

u rational curve
on S

in class D
through the points

p1,...,pr

Trk(u)/k
∏

p node of u(P1)

mass(p)

Proof. When S is A1-connected, the twisted product
∏r

i=1ResLi/k S is as well by Proposi-
tion 2.37. By Corollary 2.29, the section NS,D,σ of Theorem 8.1 is pulled back from a unique
element NS,D,σ in GW(k), which has the claimed property by Theorem 8.1.

□

Remark 8.3. By construction, the invariants deg(evσ) in GW(k) only depend on the list of
field extensions {L1, . . . , Lr}. Thus the multi-set {k(pi) : i = 1, . . . , r} of the fields of definition
the pi counted with multiplicity determines the count of the degree D rational curves through
points with the same multi-set of field extensions is independent of the chosen points. This
strengthens [Lev18, Example 3.9] where this statement is proven for [Li : k] ≤ 2.

9. Examples

Let S be an A1-connected del Pezzo surface over a field k and D a Cartier divisor on
S. Let σ = (L1, L2, . . . , Lr) be a list of separable field extensions k ⊆ Li ⊆ k such that∑r

i=1[Li : k] = n := deg(−D · KS) − 1. Let

k(σ) :=

r∏
i=1

Li.

So Trk(σ)/k⟨1⟩ =
∑r

i=1TrLi/k⟨1⟩ is the sum of the trace forms of the field extensions k ⊆ Li.

For example, for k of characteristic not dividing 2d, d ∈ k, and σ = (k, k, . . . , k, k
√
d), we

have
Trk(σ)/k⟨1⟩ = (n− 2)⟨1⟩+ ⟨2⟩+ ⟨2d⟩.

Table 1 computes some values of NS,D,σ. Justifications follow below. (Note in particular that
for appropriate σ and S, many of the NS,D,σ in Table 1 are not only sums of ⟨±1⟩’s; a lot more
is happening here than over R and C.) For S a hypersurface, for example an A1-connected
cubic surface, the A1-Euler characteristic can be computed explicitly using [LLS21].

9.1. A1-connected del Pezzo surfaces. The following is a theorem of Asok and Morel
[AM11, Corollary 2.3.7].

Theorem 9.1. A smooth proper surface over k which is rational over k is A1-connected.

Example 9.2. [KSC04, Example 1.33, 1.35] A smooth cubic surface is rational over k if
it contains two skew lines over k or two conjugate skew lines defined over k(

√
a) for some

degree 2 extension k ⊂ k(
√
a). It then follows [KSC04, Exercise 1.34, Example 1.35] that
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Table 1. GW(k)-enriched counts of rational curves

S D σ NS,D,σ = count of rational curves

P2 O(1) all σ ⟨1⟩
P2 O(2) all σ ⟨1⟩
P2 O(3) all σ 2(⟨1⟩+ ⟨−1⟩) + Trk(σ)/k⟨1⟩
P1 × P1 O(1)⊠O(d) all σ ⟨1⟩
P1 × P1 O(2)⊠O(2) all σ 2(⟨1⟩+ ⟨−1⟩) + ⟨1⟩+ Trk(σ)/k⟨1⟩
Fermat Cubic Surface OP3(1) all σ ⟨−3⟩+ 4(⟨1⟩+ ⟨−1⟩) + ⟨1⟩+ Trk(σ)/k⟨1⟩
x3 + y3 + z3 +w3 = 0
the cubic surface OP3(1) all σ ⟨5⟩+ 4(⟨1⟩+ ⟨−1⟩) + ⟨1⟩+ Trk(σ)/k⟨1⟩
xy2 + y2z+ z2w+w2x = 0

S −KS all σ ⟨−1⟩χA1

(S) + ⟨1⟩+ Trk(σ)/k⟨1⟩
. . . . . . . . . . . .

x2y+ y2z+ z2w+w2x = 0 and x3 + y3 + z3 +w3 = 0 determine A1-connected smooth cubic
surfaces over fields of characteristic not 2 or 3.

9.2. NS,−KS,σ for dS ≥ 3. For D = −KS, we have n = dS− 1. Since dS ≥ 3, a choice of basis

for H0(S,−KS) determines an embedding S ↪→ PdSk . For a general choice of points (p1, . . . , pr)

of S such that k(pi) ∼= Li, the
∑r

i=1[k(p) : k] = n linear conditions on H0(PdSk ,O(1))
corresponding to vanishing on pi for i = 1, . . . , r are independent. (As before, the meaning
of the phrase “a general choice of points (p1, . . . , pr) of S such that k(pi) ∼= Li” is that there
is a nonempty open set U of

∏r
i=1ResLi/k S such that the claim holds for rational points

of U. Moreover, this U is stable under base change, so there will be rational points after
some finite extension of k, giving rise to potentially different Galois representation and list
σ = (L1, . . . , Lr ′) for which the result holds.) Thus

{f ∈ H0(PdSk ,O(1)) : f(pi) = 0 for i = 1, . . . r}

is a 2-dimensional vector space over k. Choose a basis {f, g} and let

X = {[s, t]× x : tf(x) + sg(x) = 0} ⊂ P1 × S
be the corresponding pencil. The baselocus B = {f = g = 0} ↪→ S of the pencil has degree dS
by Bézout’s theorem. By construction, the points pi lie in B, whence B = {p1, . . . , pi} ∪ {p0}
where p0 is a k-rational point of S.

Let π : X → P1k denote the projection. By construction, the fibers of π are precisely the
curves in class −KS passing through {p1, . . . , pi}. (These all then also pass through p0.)

Let C ↪→ S be a general fiber of π. By adjunction, C has canonical class KC = KS⊗O(C).
Since C is in class −KS, we have O(C) ∼= −KS, whence KC = O and C has arithmetic genus
1. It follows that the fibers of π are either smooth or rational with a single node. Thus

NS,D,σ =
∑

u rational curve
on S

in class −KS
through the points

p1,...,pr

Trk(u)/kmass(p(u)),
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where p(u) denotes the note of u(P1). We will compute the right hand side directly using
the A1-Euler characteristic.

The projection X→ S realizes X as the blow-up

X ∼= BlB S.

It follows from [Lev20, Prop 1.4] that the A1-Euler characteristic χA
1

(X) is computed

χA
1

(X) = χA
1

(S) + (χA
1

(P1) − ⟨1⟩)χA1

(B)

= χA
1

(S) + ⟨−1⟩χA1

({p0, . . . , pi})

= χA
1

(S) + ⟨−1⟩+ ⟨−1⟩χA1

({p1, . . . , pi})

= χA
1

(S) + ⟨−1⟩+
i∑
i=1

⟨−1⟩Trk(pi)/k⟨1⟩,

whence

(19) χA
1

(X) = χA
1

(S) + ⟨−1⟩+ ⟨−1⟩Trk(σ)/k⟨1⟩.

We have a second calculation of χA
1

(X) using π and the work of the second named au-
thor M. Levine [Lev20, Section 10]. Comparing the two will compute NS,−KS,σ. Here is
the second calculation. An isomorphism TP1 ∼= O(1)⊗2 defines a relative orientation of
Hom(π∗T ∗P1, T ∗X), where T ∗X denotes the cotangent bundle, or Kähler differentials. We
may thus let n(Hom(π∗T ∗P1, T ∗X)) be the Euler number. The morphism π determines a
section dπ of the bundle Hom(π∗T ∗P1, T ∗X) and the Euler number can be computed as a
sum

n(Hom(π∗T ∗P1, T ∗X)) =
∑

x:dπ(x)=0

indx dπ.

See [Lev20, Section 1] or [KW17, Section 4] and [BW20] for compatibility checks. In the
Witt group W(k) := GW(k)/Z(⟨1⟩+ ⟨−1⟩), we have equalities

χA
1

(X) = n(T ∗X) = n(Hom(π∗T ∗P1, T ∗X)) =
∑

x:dπ(x)=0

indx dπ,(20)

where the first equality is [Lev20, Theorem 3.1, Theorem 7.1] and and the second is [Lev20,
Theorem 9.1]. Comparison with the classical computation (where χ is multiplicative and the
general fiber has Euler characteristic 0), shows (20) is also valid in GW(k).

Lemma 9.3. For general (p1, . . . , pi), the zeros of dπ are the nodes in the fibers of π, and
for a node p, the local index indp dπ is computed indp dπ = Trk(p)/k⟨−1⟩m(p).

Proof. Let U ⊂ X denote the open subset of the pencil given by U = {s ̸= 0} ∼= A1 × S and
let t be the coordinate on A1. Choose (t, p) in U, and local analytic coordinates (x, y) on S
for the completion of OS at p. In these coordinates, U is given by

{t× (x, y) : tF(x, y) +G(x, y) = 0}.

The point (t, p) is a zero of dπ if and only if π∗dt(t, p) = 0. Since tF(x, y) + G(x, y) = 0,
we have that

(21) dtF+ t∂xFdx+ t∂yFdy+ ∂xGdx+ ∂yGdy = 0
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at p. Since we assume the pencil is smooth, we can not have F = t∂xF+∂xG = t∂yF+∂yG = 0.
It follows that π∗dt(t, p) = 0 if and only if

(t∂xF+ ∂xG)dx+ (t∂yF+ ∂yG)dy = 0,

which occurs if and only if t∂xF+∂xG = t∂yF+∂yG = 0. This latter condition occurs if and
only if p is a node of tF + G = 0. Thus the zeros of dπ are the nodes in the fibers of π as
claimed. Note that we have also shown that if p is a node in the fiber at t, then F(p) ̸= 0.

dπ is a section of the vector bundle Hom(π∗T ∗P1, T ∗X). Without loss of generality, we
may assume that a zero of π is in U, i.e. the zero is of the form (t, p). Consider the
local trivialization of Hom(π∗T ∗P1, T ∗X) corresponding to the basis {dt 7→ dx, dt 7→ dy}.
This local trivialization is compatible with the local coordinates and the canonical relative
orientation of Hom(π∗T ∗P1, T ∗X) (coming from the orientability of P1). Using these local
coordinates and local trivialization, the section dπ corresponds to(t∂xF+ ∂xG

F
,
t∂yF+ ∂yG

F

)
because dπ(dt) = (t∂xF+ ∂xG)/Fdx+ (t∂yF+ ∂yG)/Fdy by (21). Since t = −G/F, this dπ
likewise corresponds to the function(−G∂xF+ F∂xG

F2
,
−G∂yF+ F∂yG

F2

)
= (∂x

G

F
, ∂y

G

F
).

The Hessian Hess(G/F) as a function of x and y equals the Hessian Hess(t +G/F) because
t is a fixed scalar. Moreover, since t+G/F and its partials vanish at p, there is an equality
of Hess(tF + G) and Hess(t + G/F) evaluated at p by the chain rule. By genericity, the
fibers {(x, y) : tF + G = 0} of π have only nodes. The A1-Milnor number of {tF + G = 0}
at p is ⟨Hess(tF + G)(p)⟩ and Hess(tF + G)(p) ̸= 0. Thus Hess(G/F)(p) ̸= 0. Since p is
a node k ⊆ k(p) is a separable extension [SGA73, Exposé XV, Théorème 1.2.6] and we we
have that indp dπ = Trk(p)/k⟨Hess(G/F)(p)⟩ by [KW17, Proposition 34], whence indp dπ =
Trk(p)/k⟨Hess(tF+G)(p)⟩, proving the claim. □

Combining (19), (20) and Lemma 9.3 we have:

Example 9.4. NS,−KS,σ = ⟨−1⟩χA1

(S) + ⟨1⟩+ Trk(σ)/k⟨1⟩

Note that it is not necessary to assume that S is A1-connected for this computation to be
valid.
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ics, Vol. 340. Springer-Verlag, Berlin, 1973. Séminaire de Géométrie Algébrique du Bois-Marie
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