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Abstract.

Let π be a pro-` completion of a free group, and let π = [π]1 ⊃
[π]2 ⊃ [π]3 ⊃ . . . denote the lower central series of π. Let G be a profi-
nite group acting continuously on π. First suppose that the action is
given by a character. Then the boundary maps δn : H1(G,π/[π]n)→
H2(G, [π]n/[π]n+1) are Massey products. When the action is more
general, we partially compute these boundary maps. Via obstructions
of Jordan Ellenberg, this implies that π1 sections of P1

k − {0, 1,∞} sat-
isfy the condition that associated nth order Massey products in Galois
cohomology vanish. For the π1 sections coming from rational points,
these conditions imply that

〈x−1, . . . , x−1, (1− x)−1, x−1, . . . , x−1〉 = 0

where x in H1(Gal(k/k),Z`(χ)) is the image of an element of k∗ under
the Kummer map. For the π1 sections coming from rational tangent
vectors at infinity, these conditions imply that

〈x−1, . . . , x−1, (−x)−1, x−1, . . . , x−1〉 = 0.

§1. Introduction

Grothendieck’s section conjecture predicts that the rational points
of a proper smooth hyperbolic curve X over a number field k are in
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natural bijection with the conjugacy classes of sections of the homotopy
exact sequence for the étale fundamental group
(1)

1 // π1(Xk) // π1(X) // π1(Speck) = Gal(k/k) // 1,

where the conjugacy class of a section s : Gal(k/k) → π1(X) is the
set of those sections g 7→ γs(g)γ−1 where γ is an element of π1(Xk).
The phrase “π1 section” in the title refers to a section s of π1(X) →
π1(Speck). For a non-proper smooth hyperbolic curve, rational points
of the smooth compactification not contained in the curve are called
rational points at infinity. Such a rational point determines a set of
sections of (1) in bijection with H1(Gal(k/k), Ẑ(χ)) – see [Pop10, p.

2], where χ denotes the cyclotomic character, and Ẑ(χn) denotes the
profinite completion of Z with Galois action given by multiplication by
χn. More specifically, let X be a smooth, geometrically integral curve
over k with negative Euler characteristic. Let X denote the smooth
compactification of X. The section conjecture predicts that( ∐

(X−X)(k)

H1(Gal(k/k), Ẑ(χ))

)∐
X(k)

is in bijection with the conjugacy classes of sections of (1) via a non-
abelian Kummer map discussed in 3.4.

Consider the problem of counting the conjugacy classes of sections
of (1). When (1) is split, this is equivalent to computing the pointed set
H1(Gal(k/k), π1(Xk)), which is difficult. In [Ell00], Jordan Ellenberg
suggested studying instead the image of

(2) H1(Gal(k/k), π1(Xk))→ H1(Gal(k/k), π1(Xk)
ab)

by filtering π1(Xk) by its lower central series. More specifically, let π
abbreviate π1(Xk), let πab denote the abelianization of π, and let [π]n
denote the nth subgroup of the lower central series (cf. 2.1). Ellenberg
proposed successively computing the images of

(3) H1(Gal(k/k), π/[π]n)→ H1(Gal(k/k), πab)

via the boundary maps

δn : H1(Gal(k/k), π/[π]n)→ H1(Gal(k/k), [π]n/[π]n+1)

coming from the central extensions

1 // [π]n/[π]n+1 // π/[π]n+1 // π/[π]n // 1 .
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The image of (3) for any n contains the image of (2), and we view the
former for n = 2, 3, . . . as an improving series of approximations to the
latter, although there is no reason to believe that the intersection of
these approximations is close to the image of (2).

This paper makes two group cohomology computations relating δn
to Massey products (Propositions 2.8 and 2.12), and then applies them
to study the π1 sections of P1k − {0, 1,∞} (Corollary 3.12) and Massey

products of elements ofH1(Gal(k/k),ZΣ(χ)), where Σ is the set of primes
not dividing any integer less than the order of the Massey product, and
ZΣ denotes the pro-Σ completion of Z (Corollary 3.17).

More specifically, the content of this paper is as follows: Section 2.6
computes δn : H1(G,π/[π]n) → H2(G, [π]n/[π]n+1) when π is a pro-Σ
completion of a free group with generators {γ1, γ2, . . . , γr}, where Σ is
any set of primes not dividing n!, and G is a profinite group acting on
π by

gγi = γ
χ(g)
i

where χ : G → ZΣ is a character. In this case, δn is determined by
nr order n Massey products – see Proposition 2.8. The case of the
trivial character with G and π replaced by discrete groups is essentially
contained in [Dwy75]. The generalization to non-trivial characters is not
immediate; for instance, it depends on the existence of certain upper
triangular matrices whose Nth powers are given by multiplying the ith

upper diagonal by Ni – see (7) and Lemma 2.7. To obtain these matrices
one must invert n! or work with pro-Σ groups. We do the latter, although
the former works as well. This computation is then used to study δn
where π is as above for r = 2, and G is a group acting on π by

g(γ1) = γ
χ(g)
1

g(γ2) = f(g)−1γ
χ(g)
2 f(g)

where χ is as above, and f : G → [π]2 is a cocycle taking values in the
commutator subgroup of π. In this case, δn pushed forward by certain
Magnus coefficients are Massey products. The Magnus coefficients in
question are those associated to degree n noncommutative monomials
in two variables containing n−1 factors of one variable – see Proposition
2.12. This calculation imposes restrictions on the image of

H1(Gal(k/k), π/[π]n+1)→ H1(Gal(k/k), πab)

for X = P1k − {0, 1,∞} and π = π1(Xk)
Σ. Identifying H1(Gal(k/k), πab)

with H1(Gal(k/k),ZΣ(χ))2, these restrictions are that the image is con-
tained in the subset of elements (x1, x2) such that the Massey products
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〈−xJ(1),−xJ(2), . . . ,−xJ(n)〉 vanish for all J : {1, 2, . . . , n} → {1, 2} which
only assume the value 2 once – see Corollary 3.12. Corollary 3.17 writes
these restrictions for the π1 sections coming from rational points and
tangential points, and concludes that the nth order Massey products

〈x−1, . . . , x−1, (1− x)−1, x−1, . . . , x−1〉 and 〈x, . . . x,−x, x, . . . , x〉

vanish, where x in H1(Gal(k/k), Ẑ(χ)) denotes the image of an element
of k∗ under the Kummer map. Much of this vanishing behavior was
previously shown by Sharifi [Sha07], who calculates Massey products
of the form 〈x, x, . . . , x, y〉 under certain hypotheses and using different
methods – see remarks 3.14 and 3.19. Triple Massey products in Galois
cohomology with restricted ramification are studied by Vogel in [Vog04].

The first subsections of Sections 2 and 3 contain only well-known
material. They are meant to be expository and to fix notation.

Acknowledgments: I wish to thank Romyar Sharifi for useful corre-
spondence.

§2. nth order Massey products and δn

2.1. Notation. For elements g1, g2 of G, let [g1, g2] = g1g2g
−1
1 g

−1
2

denote the commutator. For a profinite group π, let π = [π]1 ⊇ [π]2 ⊇
[π]3 . . . denote the lower central series: [π]n is defined to be the closure
of the subgroup generated by the elements of [π, [π]n−1].

For a (profinite) group G, a profinite abelian group A, and a (contin-
uous) homomorphism χ : G → Aut(A), let A(χ) denote the associated
profinite group with G action. For example, if A is a ring and χ is a
homomorphism G → A∗, then for any integer n, A(χn) is a profinite
group with G-action.

Let Σ denote a set of primes (of Z). For any group G, let GΣ denote
the pro-Σ completion of G, i.e., the inverse limit of all quotients of G
whose order divides a product of powers of primes in Σ.

2.2. Massey Products.
For a profinite group G and a profinite abelian group A with a

continuous action of G, let (C∗(G,A), D) be the complex of inhomoge-
neous cochains of G with coefficients in A as in [NSW08, I.2 p. 14].
For c ∈ Cp(G,A) and d ∈ Cq(G,A), let c ∪ d denote the cup product
c ∪ d ∈ Cp+q(G,A⊗A)

(c ∪ d)(g1, . . . , gp+q) = c(g1, . . . , gp)⊗ ((g1 · · ·gp)d(gp+1, . . . , gp+q)).
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This product induces a well defined map on cohomology. If A is a ring
with G-action given by a homomorphism χ : G→ A∗, the G-equivariant
multiplication map A(χn)⊗A(χm)→ A(χn+m) induces cup products

Cp(G,A(χn))⊗ Cq(G,A(χm))→ Cp+q(G,A(χn+m))

Hp(G,A(χn))⊗Hq(G,A(χm))→ Hp+q(G,A(χn+m)).

For a profinite group Q, no longer assumed to be abelian, the set
of continuous functions G → Q is denoted C1(G,Q). An element s
of C1(G,Q) such that s(g1g2) = s(g1)g1s(g2) is a cocycle or twisted
homomorphism. The pointed set H1(G,Q) is defined as equivalence
classes of cocycles in the usual manner (cf. [Ser79, VII Appendix]).

2.3. Definition. Let t1, . . . , tn be elements of H1(G,A(χ)). The nth

order Massey product of the ordered n-tuple (t1, . . . , tn) is defined if
there exist Tij in C1(G,A(χj−i)) for i, j in {1, 2, . . . , n + 1} such that
i < j and (i, j) 6= (1, n+ 1) satisfying

• Ti,i+1 represents ti,

• DTij =
∑j−1
p=i+1 Tip ∪ Tpj for i+ 1 < j,

where as above, D : C∗(G,A(χj−i)) → C∗+1(G,A(χj−i)) denotes the
differential.

T is called a defining system. The Massey product relative to T is
defined by

〈t1, . . . tn〉T =

n∑
p=2

T1p ∪ Tp,n+1.

2.4. Massey products and unipotent matrices. Let Un+1 denote the
multiplicative group of (n+ 1)× (n+ 1) upper triangular matrices with
coefficients in A whose diagonal entries are 1. (“U” stands for unipotent–
not unitary.) Let aij be the function taking a matrix to its (i, j)-entry.
Un+1 inherits an action of G by aij(gM) = χ(g)j−iaij(M). We have
a G-equivariant inclusion A(χn)→ Un+1 sending a in A to the matrix
with a in the (1, n)-entry, and with all other off diagonal matrix entries
0. This inclusion gives rise to a central extension

(4) 1→ A(χn)→ Un+1 oG→ Un+1 oG→ 1.

where Un+1 is defined as the quotient Un+1/A(χ
n).

The element of H2(Un+1 o G,A(χn)) classifying (4) is an order n
Massey product. (See [Bro94, IV §3] for the definition of the element
of H2 classifying a short exact sequence of groups; to apply the same
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discussion to profinite groups, one needs continuous sections of profinite
quotient maps. For this, see [RZ00, Prop 2.2.2].) Note that ai,j deter-

mines an element of C1(Un+1oG,A(χj−i)). By the definition of matrix
multiplication, the boundary of ai,j for i < j is given

(5) D(ai,j) = −

j−1∑
p=i+1

aip ∪ apj.

It follows that as (i, j) ranges through the set of pairs of elements of
{1, 2, . . . , n + 1} such that i < j and (i, j) 6= (1, n + 1), the cochains
−ai,j form a defining system for 〈−a1,2,−a2,3, . . . ,−an,n+1〉. Note the
minus sign in −ai,j. It rectifies the sign difference between (5) and

Definition 2.3. The element of H2(Un+1 o G,A(χn)) classifying (4) is
〈−a1,2,−a2,3, . . . ,−an,n+1〉, where the Massey product is taken with
respect to the defining system −ai,j.

2.5. Magnus embedding. For later use, we recall some well-known
properties of the Magnus embedding. Let F denote the free group on the
r generators γi, i = 1, . . . , r. For any ring A, let A〈〈z1, . . . , zr〉〉 be the
ring of associative power series in the non-commuting variables z1, . . . , zr
with coefficients in A. Let A〈〈z1, . . . , zr〉〉(1,×) denote the subgroup of
the multiplicative group of units of A〈〈z1, . . . , zr〉〉 consisting of power
series with constant coefficient 1. The Magnus embedding is defined

F→ Z〈〈z1, . . . , zr〉〉(1,×)

by xj 7→ 1+ zj for all j.

Since ZΣ〈〈z1, . . . , zr〉〉(1,×) is pro-Σ, F → Z〈〈z1, . . . , zr〉〉(1,×) gives
rise to a commutative diagram

FΣ // ZΣ〈〈z1, . . . , zr〉〉(1,×)

F

OO

// Z〈〈z1, . . . , zr〉〉(1,×)

OO
.

Let J : {1, . . . , n} → {1, . . . , r} be any function. The degree n mono-
mial zJ(1) · · · zJ(n) determines the Magnus coefficient µJ : FΣ → ZΣ
(or µJ : F → Z) given by taking an element of FΣ to the coefficient
of zJ(1) · · · zJ(n) in its image under the Magnus embedding. It is well
known that µJ(γ) = 0 for γ ∈ [F]m and m > n ≥ 1 (see [MKS04,
§5.5, Cor. 5.7]), and it follows by continuity that µJ(γ) = 0 for γ in
[FΣ]m and m > n ≥ 1.
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The Lie elements of Z〈〈z1, . . . , zr〉〉 are the elements in the image
of the Lie algebra map ζi 7→ zi from the free Lie algebra over Z on
r generators ζi to Z〈〈z1, . . . , zr〉〉, where Z〈〈z1, . . . , zr〉〉 is considered
as a Lie algebra with bracket [z, z ′] = zz ′ − z ′z. It is well known
that the Magnus embedding induces an isomorphism from [F]n/[F]n+1
to the homogeneous degree n Lie elements of Z〈〈z1, . . . , zr〉〉 [MKS04,
§5.7, Cor. 5.12(i)]. The Lie basis theorem [MKS04, §5.6, Thm. 5.8(ii)]
implies that the inclusion of the Lie elements of degree n into all the
degree n elements of Z〈〈z1, . . . , zr〉〉 is a direct summand. It follows that

[F]n/[F]n+1
⊕JµJ // ⊕JZ

is the inclusion of a (free) direct summand, where the direct sum is taken
over all functions J : {1, . . . , n}→ {1, . . . , r}. By definition of µJ, we have
the commutative diagram

(6) [FΣ]n/[F
Σ]n+1

⊕JµJ // ⊕JZΣ

[F]n/[F]n+1

OO

⊕JµJ // ⊕JZ

OO

We claim that the top horizontal morphism in (6) is the inclusion of
a direct summand of the form ⊕ZΣ, and that the left vertical morphism
is the pro-Σ completion. To see this: note that since [F]n/[F]n+1 is a
free Z submodule of ⊕JZ, we have a commutative diagram

([F]n/[F]n+1)
Σ // ⊕JZΣ

[F]n/[F]n+1

OO

⊕JµJ // ⊕JZ

OO

where the bottom horizontal morphism is the inclusion of a direct sum-
mand which is a free Z-module, the top horizontal morphism is the
inclusion of a direct summand which is a free ZΣ-module, and both ver-
tical maps are pro-Σ completions. The map ([F]n/[F]n+1)

Σ → ⊕JZΣ
factors through [FΣ]n/[F

Σ]n+1 by the universal property of pro-Σ com-
pletion, and it follows that ([F]n/[F]n+1)

Σ → [FΣ]n/[F
Σ]n+1 is injective.

Since [F]n has dense image in [FΣ]n, and since the image of a com-
pact set under a continuous map to a Hausdorff topological space is
closed, we have that ([F]n/[F]n+1)

Σ → [FΣ]n/[F
Σ]n+1 is surjective. Thus

([F]n/[F]n+1)
Σ → [FΣ]n/[F

Σ]n+1 is an isomorphism of profinite groups
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(because a continuous bijection between compact Hausdorff topological
spaces is a homeomorphism). From this it also follows that the top hor-
izontal morphism in (6) is the inclusion of a direct summand of the form
⊕ZΣ.

2.6. δn for the free pro-Σ group with action via a character.
Let n be a positive integer, and let Σ be the set of primes not dividing
n!. Let π be the pro-Σ completion of the free group on the generators
{γ1, γ2, . . . , γr}. Let G be any profinite group and let χ : G→ (ZΣ)∗ be

a (continuous) character of G. Let G act on π via gγi = γ
χ(g)
i . Then

the map
δn : H1(G,π/[π]n)→ H2(G, [π]n/[π]n+1)

is given by nth order Massey products in the following manner:
Recall that Un+1 denotes the group of (n + 1) × (n + 1) upper

triangular matrices with diagonal entries equal to 1, that ai,j : Un+1 →
ZΣ denotes the (i, j)th matrix entry, and that Un+1 inherits a G-action
defined by ai,j(g(M)) = χ(g)j−iai,j(M) for all M in Un+1 (see 2.2).

For each J : {1, 2, . . . , n} → {1, 2, . . . , r}, let ϕJ : π → Un+1 be the
homomorphism defined
(7)

ai,jϕJ(γk) =


1
l! j = i+ l, l > 0 and k = J(v) for all i ≤ v < i+ l
1 j=i

0 otherwise

It is a straightforward consequence of the following lemma that ϕJ
is G-equivariant:

2.7. Lemma. — Let Al be the matrix in Ul+1 defined by ai,i+jAl =
1
j!

for j > 0. Then for all positive integers N, ai,i+j(A
N
l ) = N

jai,i+j(Al).
Proof. By induction on l. For l = 1, the lemma is clear. By induction
and symmetry, it is sufficient to check that a1,l+1(A

N
l ) = N

la1,l+1(Al).

Now induct on N, so in particular, a1,1+j(A
N−1
l ) = (N − 1)j 1

j! for j =

0, . . . , l. Thus

a1,l+1(A
N
l ) =

l∑
j=0

a1,1+j(A
N−1
l )

1

(l− j)!
=

l∑
j=0

(N− 1)j
1

j!

1

(l− j)!
= ((N− 1) + 1)l

1

l!
,

completing the proof. Q.E.D.
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Since [Un+1]n+1 = 1 and [Un+1]n = 1, ϕJ descends toG-equivariant
homomorphisms

π/[π]n+1 → Un+1,

π/[π]n → Un+1,

[π]n/[π]n+1 → ZΣ(χn)

which we also denote by ϕJ.
The basis {γ1, γ2, . . . , γr} determines an isomorphism

π/[π]2 ∼= ZΣ(χ)r,

and therefore an isomorphism H1(G,πab) ∼= H1(G,ZΣ(χ))r. An element
x of H1(G,π/[π]n) maps to an element of H1(G,πab). Let x1⊕ . . .⊕ xr
in H1(G,ZΣ(χ))r denote the image of x.

Note that applying ai,i+1ϕJ to a cocycle x : G → π/[π]n produces
a cocycle representing xJ(i). Furthermore,

{−ai,jϕJx : i < j, (i, j) 6= (1, n+ 1)}

is a defining system for the Massey product 〈−xJ(1),−xJ(2), . . . ,−xJ(n)〉.

2.8. Proposition. — For any cocycle x : G→ π/[π]n, let [x] denote the
corresponding element of H1(G,π/[π]n). Then δn([x]) = 0 if and only if
〈−xJ(1),−xJ(2), . . . ,−xJ(n)〉 = 0 for every J : {1, 2, . . . , n}→ {1, 2, . . . , r},
where the Massey product is taken with respect to the defining system
{−ai,jϕJx : i < j, (i, j) 6= (1, n+ 1)}.
Proof. Choose J : {1, 2, . . . , n}→ {1, 2, . . . , r}. ϕJ induces a commutative
diagram
(8)

1 // ZΣ(χn) // Un+1 oG // Un+1 oG // 1

1 // [π]n/[π]n+1 //

OO

π/[π]n+1 oG //

OO

π/[π]n oG

OO

// 1

All the vertical morphisms in (8) will be denoted by ϕJ. Let κ denote the
element of H2(π/[π]noG, [π]n/[π]n+1) classifying the bottom horizontal
row, and let κ ′ denote the element of H2(Un+1oG,ZΣ(χn)) classifying
the top horizontal row (c.f. 2.4). The morphism of short exact sequences
(8) gives the equality (ϕJ)∗κ = ϕ∗Jκ

′ in H2(π/[π]n oG,ZΣ(χn)).
Choose a cocycle x : G→ π/[π]n. Let xoid : G→ π/[π]noG denote

the homomorphism g 7→ x(g)og induced by the twisted homomorphism
x. Then, δn([x]) = (x o id)∗κ. Since (ϕJ)∗κ = ϕ∗Jκ

′, we have that
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(ϕJ)∗δn([x]) = (ϕJ ◦(xo id))∗κ ′. By 2.4, (ϕJ ◦(xo id))∗κ ′ is the Massey
product 〈−xJ(1),−xJ(2), . . . ,−xJ(n)〉 computed with the defining system
{−ai,jϕJx : i < j, (i, j) 6= (1, n+ 1)}.

It is therefore sufficient to see that

⊕J(ϕJ)∗ : H2(G, [π]n/[π]n+1)→ H2(G,⊕JZΣ(χn))

is injective. This follows from a result of Dwyer: let µJ denote the
Magnus coefficient as in 2.5. By [Dwy75, Lem 4.2], µJ(γ) = ϕJ(γ) for
any element γ in the free group generated by the γi, and the equality
µJ = ϕJ for any element of π follows by continuity. Thus the map
⊕JϕJ : [π]n/[π]n+1 → ⊕JZΣ(χn) is the split injection ⊕JµJ induced by
the homogeneous degree n piece of the Magnus embedding – see (6) in
2.5. Note that G acts on both the domain and codomain of ⊕JϕJ by
multiplication by χn, so ⊕JϕJ is a direct summand in the category of
G-modules. Q.E.D.

Thus, if the element x1 ⊕ x2 ⊕ . . .⊕ xr of H1(G,πab) lifts to x in

H1(G,π/[π]n+1),

all the order n Massey products

〈−xJ(1),−xJ(2), . . . ,−xJ(n)〉 = (ϕJ)∗δn(x)

vanish. Furthermore, if the vanishing of the order n Massey products
occurs with respect to defining systems which are compatible in the sense
of Proposition 2.8, the converse holds as well.

2.9. Partial computation of δn for the free pro-Σ group with
action determined by a character and conjugation by a cocyle
valued in the commutator subgroup. Choose a positive integer n,
and let Σ denote the set of primes not dividing n!. Let π be the pro-Σ
completion of the free group on two generators {γ1, γ2}. Let χ : G →
(ZΣ)∗ be a (continuous) character of a profinite group G. Let G act on
π via

g(γ1) = γ
χ(g)
1(9)

g(γ2) = f(g)−1γ
χ(g)
2 f(g),

where f : G→ [π]2 is a cocyle. For instance, the Galois action on the pro-
Σ étale fundamental group of P1k − {0, 1,∞} has this form with respect
to an appropriate base point. See, for instance, [Iha94]. This situation
will be considered in section 3.
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Then there are obstructions to δn = 0 given by order n Massey
products:

Choose i0 in {1, 2, . . . , n} and let J : {1, 2, . . . , n} → {1, 2} be the
function J(i0) = 2, J(j) = 1 for j 6= i0. Let ϕJ : π → Un+1 be the
homomorphism given by equation (7) in 2.6. The next two lemmas are
used to show that ϕJ is G-equivariant.

2.10. Lemma. — Let

Ui0,j0 = {M ∈ Un+1 : aij(M) = 0 for i 6= j unless i ≤ i0 and j ≥ j0}

Then Ui0,j0 is a normal subgroup of U which is commutative for i0 < j0.
Proof. It is straightforward to see that Ui0,j0 is a subgroup. (Indeed, it
suffices to note that for M1,M2 in Ui0,j0 , we have aij((M1 − 1)(M2 −
1)) = 0 for i > i0 or j < j0; for instance, this implies that Ui0,j0 is closed
under inverses because M−1 = 1+

∑
k≥1(−1)

k(M− 1)k.)
To see that Ui0,j0 is normal, choose Z in Un+1 and M in Ui0,j0 .

Note that

aij(Z(M− 1)Z−1) =
∑
k,k ′

aik(Zik)akk ′(M− 1)ak ′j(Z
−1)

which is only non-zero if there exist k and k such that i ≤ k ≤ k ′ ≤ j,
k ≤ i0, and k ′ ≥ j0. This can only occur for i ≤ i0 and j ≥ j0. So,
Ui0,j0 is normal.

Suppose that i0 < j0, and let M1, M2 be in Ui0,j0 . To see that
Ui0,j0 is commutative, it suffices to see that (M1−1)(M2−1) = 0. To see
this equality, note that for all i, j, k, we have aik(M1−1)akj(M2−1) = 0,
because if k < j0, then aik(M1 − 1) = 0, and if k ≥ j0, then k > i0,
whence akj(M2 − 1) = 0. Q.E.D.

2.11. Lemma. — ϕJ(γ2) commutes with any element of ϕJ([π]2).
Proof. Let X = ϕJ(γ1), Y = ϕJ(γ2), and $ be the closure of the
subgroup generated by X and Y. By Lemma 2.10, it is sufficient to show
that [$]2 is contained in Ui0,i0+1.

[$]2 is topologically generated by elements of the form

[· · · [[X, Y], Z1], Z2, . . .], Zk]

where Zi is either X or Y and k = 0, 1, . . .. By Lemma 2.10, if W is in
Ui0,i0+1, so is [W,Z] for any Z in $. Since Y is in Ui0,i0+1, it follows
that [· · · [[X, Y], Z1], Z2, . . .], Zk] is as well. Q.E.D.

In particular, ϕJ(g(γ2)) = ϕJ(γ2)
χ(g), so ϕJ is G-equivariant by

2.6.
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Since ϕJ is G-equivariant, we have the commutative diagram (8).
Choose a cocycle x : G → π/[π]n. (ϕJ)∗δn([x]) is the Massey prod-
uct 〈−a1,2ϕJx,−a2,3ϕJx, . . . ,−an,n+1ϕJx〉 computed with the defin-
ing system {−ai,jϕJx : i < j, (i, j) 6= (1, n + 1)} by 2.2 (see the proof of
Proposition 2.8).

Note that {γ1, γ2} is a ZΣ(χ) basis for π/[π]2, giving an isomorphism
H1(G,πab) ∼= H1(G,ZΣ(χ))2. As above, an element x of H1(G,π/[π]n)
maps to an element of H1(G,πab). Let x1⊕x2 in H1(G,ZΣ(χ))2 denote
the image of x under this map. Note that −aj,j+1ϕJx = xJ(j). We have
therefore shown:

2.12. Proposition. — Let x : G → π/[π]n be a cocycle, and let
[x] denote the corresponding cohomology class. If δn([x]) = 0, then
〈−xJ(1),−xJ(2), . . . ,−xJ(n)〉 = 0 where this Massey product is taken with
respect to the defining system {−ai,jϕJx : i < j, (i, j) 6= (1, n+1)} defined
above.

2.13. Remark. As in 2.6, the Massey product in Proposition 2.12 is
µJδn, where µJ is the Magnus coefficient defined in 2.5. In other words,
Proposition 2.12 computes µJδn for all functions J which only assume
the value 2 once.

§3. Application to π1 sections of punctured P1 and Massey
products in Galois cohomology

3.1. Notation. Let k be a field of characteristic 0 and let k be an
algebraic closure of k. Let Gk = Gal(k/k) denote the absolute Galois
group of k.

3.2. Review of the étale fundamental group. A geometric point
b of a scheme X (i.e., a map b : SpecΩ → X where Ω is an alge-
braically closed field) determines a functor from the finite étale covers
of X to the category of sets, called a fiber functor. Given two geomet-
ric points b1, b2, define Path(b1, b2) to be the natural transformations
from the fiber functor associated to b1 to the fiber functor associated
to b2. Path(b1, b2) naturally has the structure of a profinite set. Path
composition will be in “functional order,” so given ℘1 in Path(b1, b2)
and ℘2 in Path(b2, b3), we have ℘2℘1 in Path(b1, b3). The étale fun-
damental group π1(X, b) is the profinite group Path(b, b) (see [SGAI]
[Méz00]).

Suppose that X is defined over a field k. Let k denote a fixed alge-
braic closure of k, and let Xk = X×Speck Speck denote the base change
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of X to k. For each g in Gk, there is a functor − ⊗g k from the finite
étale covers of Xk to itself given by pullback along

g : Speck→ Speck.

A rational point x : Speck → X gives rise to a geometric point xk :

Speck→ Xk of Xk, and the commutative diagram

Speck
g //

��

Speck

��
Xk

g // Xk

determines a natural isomorphism from the pullback of the fiber functor
of xk by −⊗g k to the fiber functor of xk. This defines a Gk-action on
the profinite set of paths between two such geometric points.

Now suppose that X is a smooth, geometrically connected curve over
k. Let X denote its smooth compactification, and let x : Speck→ X be
a rational point. The completed local ring of X at the image of x is
isomorphic to k[[ε]] and the choice of such an isomorphism gives a map
from the function field of X into k((ε)), where k((ε)) denotes the field
of Laurent power series. This produces a map Speck((ε)) → X, which
factors through the generic point of X. Such a map will be called a
rational tangential point. To a rational tangential point, we can nat-
urally associate a map Speck((ε)) → Xk. Since k is characteristic 0,

the field of Puiseux series ∪n∈Z>0
k((ε1/n)) is algebraically closed. Em-

bedding k((ε)) in ∪n∈Z>0
k((ε1/n)) in the obvious manner allows us to

associate to a rational tangential point a corresponding geometric point
Spec∪n∈Z>0

k((ε1/n))→ Xk and fiber functor. There is a a natural iso-

morphism from the pullback of such a fiber functor by −⊗gk to the fiber
functor given by the previous commutative diagram with the spectrum
of the field of Puiseux series replacing Spec k, and where g in Gk is taken
to act on the field of Puiseux series via the action on the k coefficients,
producing Gk-actions on sets of paths. Tangential points are discussed
in greater generality and more detail in [Del89, §15] and [Nak99].

3.3. Example. Let U be an open subset of A1k = Speck[z]. A tangent
vector of A1k

Speck[ε]/〈ε2〉→ A1k

a+ vε← [ z
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where a in k, v in k∗, gives a rational tangential point Speck((ε)) →
Speck(z)→ U of U, where the first map is defined by z 7→ a + vε, and
the second is the map Spec k(z)→ U from the generic point of U to U.

By a rational base point, we will mean either a rational point or a
rational tangential point, and by a slight abuse of notation, rational base
point will also refer to the geometric points given above and their fiber
functors.

3.4. Construction: non-abelian Kummer map. Let X be a smooth curve
over a field k. Let Xbp(k) denote the set of rational base points of X,
and assume that Xbp(k) 6= ∅. Fix b in Xbp(k). There is a “non-abelian
Kummer map” based at b

κb : Xbp(k)→ H1(Gk, π1(Xk, b))

defined as follows: for x in Xbp(k), choose ℘ in Path(b, x) and define a
1-cocycle κ(b,℘)(x) : Gk → π1(Xk, b) by

(10) κ(b,℘)(x)(g) = ℘
−1(g℘).

The cohomology class of this cocycle is independent of the choice of ℘,
and κb(x) is defined to be this cohomology class. When the base point
is clear, κb will also be denoted by κ.

Note that associated to a rational tangential point of X, there is a
tangent vector

Speck[ε]/〈ε2〉→ X

of the smooth compactification (see the above definition of a rational
tangential point; the tangent vector is induced by the chosen isomor-
phism of k[[ε]] with the completed local ring of X). It is not difficult to
check that the images under κb of two rational tangential points with
the same tangent vector are equal (see [Wic10, p 6]).

3.5. Kummer map in Galois cohomology. Let k be a field of character-
istic 0, and choose an isomorphism of the roots of unity in k with Ẑ(χ),
where χ denotes the cyclotomic character. The short exact sequence

1 // Z/m(χ) //
k
∗ x7→xm //

k
∗ // 1

of Gk-modules gives a boundary map k∗ → H1(Gk,Z/m(χ)). Letting
m vary gives the Kummer map

k∗ → H1(Gk,ZΣ(χ))
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We will adopt the notational convention that an element of k∗ will also
denote the corresponding class in H1(Gk,ZΣ(χ)).

3.6. Lemma. — For Gm based at the rational point 1, κ(x) = x and
κ(0+ vε) = v for all x, v in k∗.

We sketch of a proof of this well-known fact.
Proof. The connected finite étale covers of Gm,k = Speck[z, 1

z
] are

Gm,k
z7→zn // Gm,k for n in Z>0. Let F(0+vε, n) denote the fiber

of z 7→ zn over (the geometric point associated to) 0+vε, where 0+vε de-
notes the tangent vector k[ε]/〈ε2〉→ Speck[z] given by z 7→ vε (cf. 3.3).
Note that the nth roots of v are in bijection with F(0+ vε, n); namely,

an nth root n
√
v of v gives a map k[z1/n, 1

z
]→ ∪n ′∈Z>0

k((ε1/n
′
)) which

is tautologically a point of this fiber. Define F(1, n) similarly, and note
that there is an identification of F(1, n) with the nth roots of unity in
k. A choice { n

√
v : n ∈ Z} of compatible nth roots of unity of v gives rise

to ℘ in Path(1, 0 + vε); ℘ is the natural transformation such that the
induced map F(1, n)→ F(0 + vε, n) takes 1 to n

√
v. It follows that g℘

takes g1 to g n
√
v, from which we see that κ(0 + vε) = v. The equality

κ(x) = x is shown similarly. Q.E.D.

3.7. Remark. For a topological space X with a G-action and fixed
points b, x let Path(b, x) denote the space of paths from b to x. Note
that Path(b, x) has a G-action. We can therefore define a map κ from
the fixed points of X to H1(G,π1(X, b)) by (10) given above. For a
K(π, 1) with G-action, κ is π0 applied to the canonical map from fixed
points to homotopy fixed points.

3.8. Observation. — Let X be a scheme over k, and let b1, b2 be rational
base points. A choice of path ℘ in Path(b1, b2) gives an isomorphism of
profinite groups θ : π1(Xk, b2)→ π1(Xk, b1), defined

θ(γ) = ℘−1γ℘.

Note that θ is not Gk-equivariant. Rather, for any g in Gk,

gθ(γ) = κ(b1,℘)(b2)
−1θ(gγ)κ(b1,℘)(b2)

(cf. 3.4 for the definition of κ(b1,℘)(b2)).

3.9. Observation. — Let X be a smooth curve over k, and let X be its
smooth compactification. Suppose that x is a rational point of X − X.
Choose a rational tangential base point b at x. Let γ in π1(Xk, b) be
the path determined by a small loop around the puncture at x. Then γ
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generates the inertia group at x ([SGAI, XIII 2.12]), and it follows that

for any g in Gk, gγ = γm(g) for some m(g) in Ẑ, where Ẑ denotes the

profinite completion of Z. Furthermore, gγ = γχ(g) where χ : Gk → Ẑ∗
is the cyclotomic character. One way to see this last assertion is to note
that it is sufficient to assume that X∪x is non-proper and show that the
kernel of π1(Xk, b)

ab → π1((X ∪ x)k, b)ab is Ẑ(χ). Denote this kernel

by M. As a profinite group, M ∼= Ẑ. Furthermore, Hom(π1(Xk, b)
ab, Ẑ)

is the étale cohomology group H1(Xk, Ẑ) and the analogous statement
holds with (X ∪ x)k replacing Xk. By the long exact sequence in coho-
mology of the pair ((X ∪ x)k, Xk) and the purity isomorphism

H∗((X ∪ x)k, Xk, Ẑ) ∼= H∗−2(xk, Ẑ(χ
−1)) =

{
Ẑ(χ−1) if ∗ = 2
0 otherwise,

we have a short exact sequence

1→ Hom(π1((X ∪ x)k, b)
ab, Ẑ)→ Hom(π1(Xk, b)

ab, Ẑ)→ Ẑ(χ−1)→ 1

It follows that M ∼= Ẑ(χ) as Gk-modules, as desired.

3.10. Galois action on π1(P1k − {∞, a1, a2, . . . , an}). Let ai be in k

for i = 1, . . . , n, and consider the curve X = P1k − {∞, a1, a2, . . . , an}
defined over k. Let bi be a rational tangential base point of X at ai.
Let ℘i in Path(b1, bi) be a path from b1 to bi for i = 2, 3, . . . , n, and
for notational convenience, let ℘1 be the trivial path from b1 to itself.
Let `i in Path(bi, bi) be the path determined by a small loop around
the puncture at ai. The loops based at b1 defined by

γi = ℘
−1
i `i℘i

are free topological generators for π1(Xk, b1), and it follows from 3.8
and 3.9 that the Gk-action on π1(Xk, b1) has the form

gγi = fi(g)
−1γ

χ(g)
i fi(g)

where fi = κ(b1,℘i)(bi) and g is any element of Gk.
Let π abbreviate π1(Xk, b1). Choose vi in k∗ for i = 1, . . . , n,

and suppose that bi is a rational tangential point associated to the
tangent vector ai + viε (see 3.3 for this notation). The image of fi in
H1(Gk, π

ab) can be expressed in terms of the Kummer map: the basis

{γ1, γ2, . . . , γn} of πab as a free Ẑ-module determines an isomorphism

H1(Gk, π
ab)→ H1(Gk, Ẑ(χ))n. Let (fi)

ab
j denote the image of fi in the

jth factor of H1(Gk, Ẑ(χ)) in H1(Gk, Ẑ(χ))n.
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Since the étale fundamental group of A1
k
− {aj} is abelian, there are

canonical Gk-equivariant isomorphisms between the fundamental groups
of this scheme taken with respect to different base points. In particular,
γj determines an isomorphism of this fundamental group with Ẑ(χ).
By the functoriality of the maps κ defined in 3.4, the cohomology class
(fi)

ab
j is also the image of bi under the map κb1

for A1 − {aj} based at
b1.

Let κj : (A1 − {aj})
bp(k) → H1(Gk, Ẑ(χ)) denote the map defined

in 3.4 for A1 − {aj} based at aj + 1. Since the cohomology class (fi)
ab
j

could be computed by choosing a path from b1 to bi passing through
aj + 1,

(fi)
ab
j = κj(ai + viε)/κj(a1 + v1ε).

By functoriality of κ and Lemma 3.6,

κj(a+ vε) =

{
a− aj if a 6= aj
v if a = aj

Thus

(11) (fi)
ab
j =


vi/(a1 − ai) if j = i

(ai − a1)/v1 if j = 1

(ai − aj)/(a1 − aj) if j 6= 1, i

In particular, it follows that if v1 = ai−a1 = −vi, then the quotient
of πΣ by 〈γj : j 6= 1, i〉 is a pro-Σ group with Gk-action of the form con-
sidered in 2.9. (Here, 〈γj : j 6= 1, i〉 denotes the closed normal subgroup
generated by the γj for j 6= 1, i.)

Much more interesting information is known about the fi due to con-
tributions of Anderson, Coleman, Deligne, Ihara, Kaneko, and Yukinari
– see for instance, [Iha91, 6.3 Thm p.115].

3.11. Restriction on π1 sections of punctured P1. Let X = P1k −
{0, 1,∞}, and base X at 0+ 1ε, where 0+ 1ε denotes the tangent vector
k[ε]/〈ε2〉 → Speck[z] given by z 7→ ε (cf. 3.3). Fix a positive integer
n ≥ 2 and let π = π1(Xk)

Σ, where Σ denotes the set of primes not
dividing n!. By (11), the presentation of π1(Xk) given in 3.10 with its
Gk-action is of the form (9). Thus, the calculation of µJδn given in 2.9
places restrictions on the sections of π1(X)→ Gk.

The ZΣ basis {γ1, γ2} of πab determines an isomorphism

H1(Gk, π
ab) ∼= H1(Gk,ZΣ(χ))2.
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The quotient map π/[π]n+1 → πab therefore defines a map

H1(Gk, π/[π]n+1)→ H1(Gk,ZΣ(χ))2.

Note that the sections of π1(X) → Gk are in natural bijection with
H1(Gk, π). These sections map to H1(Gk,ZΣ(χ))2 and the image is
restricted by the following corollary of Proposition 2.12.

3.12. Corollary. — The image of H1(Gk, π/[π]n+1)→ H1(Gk,ZΣ(χ))2
lies in the subset of elements x1 × x2 such that

〈−xJ(1),−xJ(2), . . . ,−xJ(n)〉 = 0

for all J : {1, 2, . . . , n}→ {1, 2} which only assume the value 2 once.
Proof. An element of H1(Gk, π/[π]n+1) determines an element sn of
H1(Gk, π/[π]n) satisfying δn(sn) = 0. Applying Proposition 2.12 to sn
shows the claim. Q.E.D.

For n = 2, 3 these restrictions are studied in [Wic10].

3.13. Remark. Note that in the presentation of

π1(P1k − {∞, a1, a2, . . . , am})

given in 3.10, it is only possible to arrange that one of the fi for i > 1
has image contained in the commutator subgroup, so the restrictions on
π1 sections for P1

k
− {∞, a1, a2, . . . , am} placed by Proposition 2.12 will

be pulled back from a map to P1k − {0, 1,∞}.

3.14. Remark. Sharifi [Sha07, Thm 4.3] shows the vanishing of the nth

order Massey products 〈x, x, . . . , x, y〉 in H2(Gk,Z/pm) for x, y in k∗

such that y is in the image of the norm k( pM√
x)→ k, assuming k con-

tains the (pM)th roots of unity and m ≤M−rn, where rn is the largest
integer such that prn ≤ n. Furthermore, Sharifi’s methods should pro-
duce similar results under weaker hypotheses and with larger coefficient
rings, although this has not been written down in detail. Sharifi’s result
also implies the vanishing of the Massey product 〈y, x, x, . . . , x〉 by for-
mal properties of Massey products; namely, if 〈x1, x2, . . . , xn〉 is defined,
then 〈xn, xn−1, . . . , x1〉 is defined and

〈x1, x2, . . . , xn〉 = ±〈xn, xn−1, . . . , x1〉

(c.f. [Kra66, Thm 8]). This suggests redundancy among the restrictions
placed by Corollary 3.12 for n = 2 and higher n.
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3.15. Massey products in the cohomology of Gk. Since rational
base points produce sections of π1(X)→ Gk, applying Corollary 3.12 to
these sections produces Massey products of elements of H1(Gk,ZΣ(χ))
which vanish.

We identify the elements of H1(Gk,ZΣ(χ))2 corresponding to the
rational base points to identify these Massey products. Let κ denote the
map of 3.4 for X = P1k − {0, 1,∞} based at 0 + 1ε (cf. 3.3), and let κab

denote the composition of κ with the map H1(Gk, π)→ H1(Gk,ZΣ(χ))2
induced by the quotient π → πab. For an element x of k∗, let x also
denote the image in H1(Gk,ZΣ(χ)) of x under the Kummer map.

3.16. Lemma. —

• For x in P1k − {0, 1,∞}(k) = k− {0, 1}, κab(x) = (x, 1− x).
• For v in k∗, κab(1+ vε) = (1,−v) and κab(0+ vε) = (v, 1).
• For v in k∗, κab(ι(0 + vε)) = (1/v,−1/v), where ι : P1k −

{0, 1,∞} = Speck[z, 1
z
, 1
z−1 ]→ P1k−{0, 1,∞} is given by z 7→ 1

z
.

Proof. Lemma 3.16 follows directly from 3.10. To be specific, choose x
in P1k − {0, 1,∞}(k). Let a1 + v1ε = 0 + 1ε, a2 = 1, and ai = x, where
we suppose that i > 2. Applying (11) in the case where j = 1 shows that
the first coordinate of κab(x) is x/1. Applying (11) in the case where
j = 2 shows that the second coordinate of κab(x) is (x−1)/(0−1). Thus
κab(x) = (x, 1− x).

Now choose v ∈ k∗, and let ai+viε = 1+vε. As above, let a1+v1ε =
0 + 1ε and a2 = 1. In the setting of 3.10, we have i = 2, because the
punctures ∞, a1, . . . , an are assumed to be distinct. Applying (11) in
the case j = 1 shows that the first coordinate of κab(1+vε) is (1−0)/1.
Applying (11) in the case j = 2, which in (11) is written “j = i,” shows
that the second coordinate of κab(1+vε) is v/(0−1). Thus κab(1+vε) =
(1,−v) and one shows similarly that κab(0+ vε) = (v, 1).

Note that ι extends to an automorphism of Gm which fixes 1 and
induces multiplication by −1 on π1(Gm,k, 1). Let K denote the map of
3.4 for Gm based at 1. By functoriality of the maps defined in 3.4, it
follows that K(ι(0 + vε)) is the inverse of K(0 + vε) in H1(Gk,ZΣ(χ)),
which we will write multiplicatively as above. (Recall that there is a
canonical Gk-equivariant identification of ZΣ(χ) with the pro-Σ comple-
tion of the fundamental group of Gm at any base point, because this
group is abelian.)

Let K ′ denote the map of 3.4 for Gm based at 0+1ε, so in particular,
the first coordinate of κab(ι(0+ vε)) is K ′(ι(0+ vε)). Since a path from
0+1ε to some other rational base point b can be chosen to pass through
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1, it follows from the definition 3.4 that

K ′(b) = K(b)K ′(1) = K(b)/K(0+ 1ε)

in H1(Gk,ZΣ(χ)). Combining this equation with the previous paragraph
and Lemma 3.6, gives that

K ′(ι(0+ vε)) = K(ι(0+ vε))/K(0+ 1ε) = 1/K(0+ vε) = 1/v.

Let K ′1 denote the map of 3.4 for A1
k
−{1} based at 0, so in particular,

the second coordinate of κab(ι(0+ vε)) is K ′1(ι(0+ vε)).
Let ι1(z) = z/(z−1) be the automorphism of P1 fixing 0 and switch-

ing 1 and ∞. Note that ι1 induces multiplication by −1 on the funda-
mental group π1(A1k − {1}, 0). By functoriality of the maps defined in

3.4, it follows that K ′1(ι(0+vε)) = 1/K
′
1(ι1ι(0+vε)). Note that ι1ι(z) =

1/(1−z), and thus the tangent vector 0+vε is taken to 1/(1−vε) = 1+vε
under ι1ι. Thus K ′1(ι(0 + vε)) = 1/K ′1(1 + vε). By functoriality of the
maps defined in 3.4, we have that K ′1(1+ vε) = K

′′(vε), where K ′′ is the
map of 3.4 for Gm based at −1. Note that K ′′(vε) = K(vε)/K(−1) = −v.

Thus κab(ι(0+ vε)) = (1/v,−1/v).
Q.E.D.

3.17. Corollary. — Let (X, Y) in H1(Gk,ZΣ(χ))2 be (x−1, (1 − x)−1)
for x in k∗ − {1}, or (x,−x) for x in k∗. Then the nth order Massey
products

〈X, . . . , X, Y, X, . . . , X〉

vanish in H2(Gk,ZΣ(χ2)). Here, the Massey products have (n− 1) fac-
tors of X and one factor of Y. The Y can occur in any position.
Proof. By Lemma 3.16, −(X, Y) is in the image of

H1(Gk, π)→ H1(Gk,ZΣ(χ))2.

(Note that −(X, Y) = (x, 1 − x) or (x−1, (−x)−1).) Applying Corollary
3.12 gives the result. Q.E.D.

The vanishing of these Massey products occurs with the defining
systems determined by Proposition 2.12 and κ applied to x ∈ P1k −
{0, 1,∞}(k) or ι(0+ xε) for x in k∗.

3.18. Remark. Corollary 3.17 is also true for (X, Y) = (x, 1) or (1, x)
with x ∈ k∗ by the same proof, but this result is a formal consequence
of the linearity of the Massey product [Fen83, Lemma 6.2.4], since 1
vanishes under the Kummer map.
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3.19. Remark. The result of Sharifi discussed in Remark 3.14 gives a
different proof of the vanishing of 〈X,X, . . . , X, Y〉 and 〈Y, X, . . . , X, X〉
reduced mod pm when k contains the (pM)th roots of unity for M ≥
m + rn, and his methods should produce more general results as well.
They also show vanishing mod pm for more general (X, Y) under his
hypotheses– see 3.14.
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