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Notation. k will denote a subfield of C. A curve over k means a finite type, sepa-
rated, reduced scheme of dimension 1 over k. (So curves are not assumed to be proper or
smooth.) k is the algebraic closure of k in C. Gk = Gal(k/k) denotes the absolute Galois
group of k. Xk = X×Spec k Spec k denotes the base change to k of a scheme X over k. X(k)

denotes the maps Spec k→ X, called ‘k points’ or ‘rational points,’ for such a scheme. π
top
1

and πet
1 denote the topological and étale fundamental groups respectively. For a group G,

G∧ denotes the profinite completion of G.
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1. INTRODUCTION

1.1. Some background and motivation. We study cohomological obstructions of Jordan
Ellenberg to sections of the map on étale fundamental groups induced by the structure
map of a curve defined over a subfield of C. Let σ : X → Spec k denote such a structure
map. We will be most interested in the case where k is a number field. The obstructions
examined here study the role of the lower central series of π1 in blocking sections of π1(σ),
and therefore in blocking rational points. While the interest of understanding rational
points is clear, the motivation for understanding sections of π1(σ) requires some expla-
nation: Grothendieck [Gro97] conjectures the existence of a subcategory of “anabelian”
schemes, including hyperbolic curves over number fields, Spec k for k a number field,
moduli spaces of curves, and total spaces of fibrations with base and fiber anabelian,
which are determined by their étale fundamental groups. (See [Sza00] for a nice descrip-
tion of these conjectures.) These conjectures can be viewed as follows: algebraic maps are
so rigid that homotopies do not deform one into another. From this point of view, a K(π, 1)
in algebraic geometry would be a variety X such that Mor(Y, X) = Hom(π1(Y), π1(X)) (ig-
noring basepoints for now). In other words, “anabelian schemes” can be viewed as alge-
braic geometry’s K(π, 1)’s, and Grothendieck conjectures that some familiar K(π, 1)’s from
topology (not including elliptic curves or abelian varieties!) are also K(π, 1)’s in algebraic
geometry. (See also [NSW08, Ch. XII].) In particular, the rational points on a hyperbolic
curve over a number field are conjectured to be in bijection with the sections of π1 of
the structure map (up to certain inner automorphisms to account for basepoints). This is
Grothendieck’s Section Conjecture.

A topologist could take the point of view that Grothendieck’s anabelian conjectures
identify how to associate a topological space to an anabelian scheme over a number field
k; instead of taking the topological space T underlying the associated complex analytic
space, one should take the classifying space of the étale fundamental group. The short
exact sequence

1→ πet
1 (Xk)→ πet

1 (X)→ Gk → 1

for a (geometrically connected, quasi-compact) scheme X over k [SGAI, Exp. IX Thm. 6.1],
and the isomorphism πet

1 (Xk)
∼= π

top
1 (T)∧ [SGAI, Exp. XII Cor. 5.2] [Méz00, Prop. 2.18]

allow us to view the classifying space B(πet
1 (X)) as the total space of a fibration over B(Gk)

with fiber B(πtop
1 (T)∧). (B(G) denotes the classifying space of G. Since étale fundamen-

tal groups are profinite, care should be taken when defining and considering classifying
spaces and fibrations between these classifying spaces. For our purposes, it turns out we
can sidestep these issues using group cohomology, so we don’t define these notions rig-
orously, but see [Goe95] and [Dav06]. By the heuristic that T should be a K(πtop

1 (T), 1) for
X anabelian, an anabelian scheme X is associated to the total space a topological fibration
over B(Gk) whose fiber B(πtop

1 (T)∧) is some sort of completion of T . The anabelian conjec-
tures then assert that studying these topological spaces up to homotopy is equivalent to
studying the original schemes. A broad goal of this work is to compare algebraic curves
and topological approximations to them.

1.1.1. Two topological pictures of Ellenberg’s obstructions. More specifically, we study
obstructions of Jordan Ellenberg [Ell] which admit the following interpretation (see 1.1.3
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for a precise description of these obstructions): take a hyperbolic curve X over k ⊂ C,
and let π1 denote its étale fundamental group. We place ourselves in some unspecified
category ‘containing’ both schemes and classifying spaces of profinite groups (e.g. pro-
simplicial sets. See [AM86] [Fri82]). Approximate X first by its Jacobian or the classifying
space of the abelianization of π1, and then by a tower of fibrations associated to π1’s
lower central series. Letting π1 > [π1]2 > [π1]3 > . . . denote this lower central series and
B(π1/[π1]n) denote the classifying space of π1/[π1]n, this tower is

(1) ...

B(π1/[π1]n)

��
...

B(π1/[π1]3)

��
B(π1) //

44iiiiiiiiiiiiiiiiiiii

>>}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
B(π1/[π1]2)

X //

OO

Jac(X)

88qqqqqqqqqqq

and this tower lies over Spec k or B(Gk). Maps to X are studied by lifting maps through
this tower. Ellenberg’s obstruction δn is the obstruction to lifting a homotopy section of
B(π1/[π1]n) → B(Gk) through the fibration B(π1/[π1]n+1) → B(π1/[π1]n). By ‘homotopy
section’ we mean that we assume our category has some notion of homotopy and such a
homotopy section is a homotopy class of maps B(Gk)→ B(π1/[π1]n), so that the compos-
ite B(Gk) → B(Gk) is the homotopy class of the identity. (Rigorous definitions of δn and
homotopy sections for use in this paper are given in 1.1.3. )

The δn give a series of obstructions to a homotopy section of B(π1/[π1]2) to be the image
of a homotopy section of B(π1), and therefore the δn also give a recursive procedure for
eliminating k points of the Jacobian which are not k points of the curve. For the later, a
k point of X or its Jacobian determines a homotopy section of B(π) or B(π1/[π1]2) respec-
tively. (This is described precisely in 1.1.3.) Starting with a k point of the Jacobian, take
the corresponding homotopy section. Then apply δ2. If δ2 vanishes, we can lift to a homo-
topy section of B(π1/[π1]3). Apply δ3 to all such lifts. For the lifts such that δ3 vanishes,
we obtain another set of lifts to B(π1/[π1]4). Apply δ4 to all these lifts etc.

Alternatively, we have the viewpoint that we approximate Xk Gk-equivariantly by the
tower (1) with X, Jac(X), and π1 replaced by Xk, Jac(Xk), and πet

1 (Xk) respectively. As-
suming our category admits some notion of homotopy fixed point set and π0, we ap-
ply the homotopy fixed point functor and then π0 to the tower. (The definition of the
homotopy fixed point set of a group acting on a topological space is given in Example
1.1.2. See Daniel Davis’s work, e.g. [Dav06], for a more sophisticated understanding
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of homotopy fixed points.) Ellenberg’s obstruction δn is the obstruction to lifting a con-
nected component of the homotopy fixed point set of B(π1/[π1]n) through the fibration
B(π1/[π1]n+1)→ B(π1/[π1]n). (Here π1 denotes πet

1 (Xk).)

1.1.2. Example. We compute the second approximating tower and the obstructions δn for
X = P1

R − {0, 1,∞}. We work in the category of topological spaces. Since the topologi-
cal fundamental group admits an action of GR and since the étale fundamental group is
GR equivariantly the profinite completion of the topological fundamental group, we use
π

top
1 instead of πet

1 . (This allows us to draw pictures of the spaces in the tower, and the
difference between π

top
1 and πet

1 turns out to be unimportant here- see Proposition 3.1.19.
Similarly, drawing the second tower is easier than the first. To form the first from the
second, apply − ×B(GR) E(GR) ∼= − ×RP∞ S∞.) Let the base point of X be the tangential
base point at 0 pointing along the real line towards 1. Let π1 denote π

top
1 (Xk, b). π1 is the

free group on the two generators α1, α2 shown below. Let τ denote complex conjugation,
so GR = 〈τ〉 ∼= Z/2. The action of GR on π1 is given by ταi = α−1

i for i = 1, 2.

Homotopy fixed point sets: for a group G acting on a topological space T , the homotopy
fixed point set will mean F(EG, T)G, where EG denotes a contractible space with a free
action of G, F(EG, T) denotes the space of functions f : EG → T equipped with the G

action gf = gfg−1, and F(EG, T)G denotes the fixed points. The G equivariant map from
EG to the one point space with trivial G action induces a map TG → F(EG, T)G.

For the GR spaces in this example, TG → F(EG, T)G is a bijection on π0 (see Corollary
3.1.5 and the specific models for B(π1/[π1]n) constructed below), so the obstruction δn

is the obstruction to lifting a connected component of the fixed point set B(π1/[π1]n)GR

through the fibration B(π1/[π1]n+1)→ B(π1/[π1]n).

The topological spaces in the tower are as follows: XR = P1
C − {0, 1,∞} is a model for

B(π1). The fixed point set P1
C − {0, 1,∞}GR is P1

R − {0, 1,∞}. Both are shown in Figure 1.

α1

∞

0
1

b

α2

FIGURE 1. P1
C − {0, 1,∞}

We now build models for B(π1/[π1]n) from free actions of π1/[π1]n on R2n−2+1. The
model for B(π1/[π1]n) is a quotient of the 2n−2 + 1 dimensional ‘cube’

[0, 1]2
n−2+1
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Start with the case n = 2. Any element of π1/[π1]2 can be written uniquely in the
form αx

1α
y
2 for x, y ∈ Z, so we have a bijection from π1/[π1]2 to the set Z2. (This bijection

is of course also a group isomorphism, but that is not important.) The free action of
π1/[π1]2 on itself by left multiplication induces a free action of π1/[π1]2 on the set Z2 via
this bijection, and it is easy to see that this action extends to a free action of π1/[π1]2 on
R2, giving the usual torus model R2/Z2 for B(π1/[π1]2). GR acts on the model R2/Z2 by
τ(x, y) = (−x,−y).

The case n = 3 follows the same pattern. Any element of π1/[π1]3 can be written
uniquely in the form αx

1α
y
2 [α1, α2]

z for x, y, z ∈ Z, giving a bijection π1/[π1]3 → Z3. The
free action of π1/[π1]3 on itself by left multiplication gives a free action of π1/[π1]3 on R3.
Explicitly, α1,α2, and [α1, α2] act on (x, y, z) ∈ R3 by

(1) α1(x, y, z) = (x + 1, y, z)
(2) α2(x, y, z) = (x, y + 1, z − x)
(3) [α1, α2](x, y, z) = (x, y, z + 1)

Quotienting R3 by π1/[π1]3 gives a model for B(π1/[π1]3) which can be obtained from
[0, 1]3 by first gluing the front to the back by translation, then gluing the top to the bot-
tom by translation, and gluing the last two sides together by a ‘shear.’ GR acts on the
model R3/(π1/[π1]3) by τ(x, y, z) = (−x,−y, z). Both B(π1/[π1]3) and the fixed point set
B(π1/[π1]3)

GR are shown in Figure 2. The fixed point set is composed of three vertical
lines: the vertical axis, and the two shown translates: one in the middle of the back side,
and the other in the middle of the left side.

α1

[α1, α2]

α2

FIGURE 2. B(π1/[π1]3)

For arbitrary n, we obtain a similar model for B(π1/[π1]n) by choosing bases for [π1]k/[π1]k+1

and an ordering of the elements in these bases for k = 1, . . . n − 1, and then following the
same procedure. Since [π1]k/[π1]k+1

∼= Z2k−2 for k ≥ 2, the resulting model is a quotient of
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[0, 1]N, where N = 2 +
∑n−1

k=2 2k−2 = 2n−2 + 1. The action of GR is determined by τ’s action
on an ordered product of basis elements raised to powers in Ẑ considered as an element
of π1/[π1]n.

The GR equivariant tower approximating P1
C − {0, 1,∞} (as in 1.1.1) is shown in Figure

3. The maps B(π1/[π1]n+1)→ B(π1/[π1]n) are induced from projection maps

[0, 1]2
n−1+1 → [0, 1]2

n−2+1

(More specifically, the map B(π1/[π1]n+1) → B(π1/[π1]n) is induced from the projection
map projecting onto the factors of [0, 1] corresponding to elements of the chosen bases of
[π1]k/[π1]k+1 for k = 1, . . . , n − 1.) The GR fixed points of the approximating spaces are
also shown. Jac(P1

C − {0, 1,∞}) = Gm,C × Gm,C is redundant in the sense that it gives
another model for B(π1/[π1]2), and it is omitted.

We can now see the obstructions δn: there are three elements of π0(X(R)) which inject
into the four elements of π0(Jac(X(R))) = π0(B(π1/[π1]2)

GR). δ2 eliminates the one extra
element. (And so the higher δn don’t eliminate any further elements of π0(Jac(X(R))).)
This behavior turns out to be typical over R; see Sections 3.1-3.2, and Proposition 3.2.1.

1.1.3. Ellenberg’s obstructions as boundary maps in group cohomology. Let k be a
subfield of C and let σ : X→ Spec k be a geometrically connected curve, equipped with a
rational point or rational tangential point b, to be used as a base point. (See [Del89, §15]
for a discussion of rational tangential base points. For a smooth k point p on X, a rational
point of the tangent space to X at p is an example of a rational tangential point of X− {p}.)
Let π1 denote the étale fundamental group of Xk based at b. Let Jac X denote the Jacobian
of X, and let X → Jac X denote the Abel-Jacobi map corresponding to the base point b.
(See [Ser88] for information on Jacobians of non-proper curves.) This data determines a
commutative diagram

(2) H1(Gk, π1) // H1(Gk, π1/[π1]2)

X(k)

OO

// Jac X(k)

OO

discussed in more detail below. Ellenberg’s obstruction δn is given by:

Definition δn : H1(Gk, π1/[π1]n)→ H2(Gk, [π1]n/[π1]n+1) is the boundary map associated
to

1→ [π1]n/[π1]n+1 → π1/[π1]n+1 → π1/[π1]n → 1

as in [Ser02, I §5].

The δn give a series of obstructions to an element of H1(Gk, π1/[π1]2) being the image
of an element of H1(Gk, π1), thereby also providing a series of obstructions to a rational
point of the Jacobian coming from a rational point of the curve: to a given element x of
H1(Gk, π1/[π1]2), apply δ2. If δ2(x) is not 0, x does not come from an element of H1(Gk, π1).
Otherwise, x lifts to H1(Gk, π1/[π1]3). Apply δ3 to all the lifts of x. If δ3 is never 0, x does
not come from an element of H1(Gk, π1). Otherwise, x lifts to H1(Gk, π1/[π1]4). Apply δ4

to all the lifts of x etc.
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α2

[α1, α2]

α2

α1

α1

α2 α1

FIGURE 3. Approximating P1
R − {0, 1,∞}

For X geometrically connected, smooth, of Euler characteristic ≤ 0, X(k) → Jac X(k) is
an injection, so we can think of the rational points of X as a subset of the rational points of
the Jacobian. If additionally k is a number field, it follows from the Mordell-Weil theorem
that Jac X(k) → H1(Gk, π1/[π1]2) is injective, at least for X proper. (We reproduce a proof
of this fact below for the reader’s convenience.) Thus, under these hypotheses, we can
think of X(k) as a subset of H1(Gk, π1/[π1]2) which we wish to approximate by the images
of H1(Gk, π1/[π1]n)→ H1(Gk, π1/[π1]2). These images are determined by the δn.

The elements of H1(Gk, π1) and H1(Gk, π1/[π1]n) should be thought of as homotopy
sections of the spaces B(πet

1 (X, b)) and B(πet
1 (X, b)/[πet

1 (X, b)]n) (resp.) of the tower 1 over
B(Gk). By the heuristic that for anabelian schemes Y, Y should be a sort of K(πet

1 (Y), 1) =
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B(πet
1 (Y)), elements of H1(Gk, π1) can also be thought of as homotopy sections of X, for

X hyperbolic. We adopt this terminology. Furthermore, although abelian varieties are
not considered anabelian schemes, we will also call elements of H1(Gk, π

et
1 (Yk)) homo-

topy sections for abelian varieties Y over number fields. For convenience, we will even
use the terminology ‘homotopy section’ of X to refer to an element of H1(Gk, π

et
1 (Xk)),

when k is not a number field, but this is only for convenience. (We will mainly deal with
geometrically connected, smooth, hyperbolic curves, over number fields, where ‘hyper-
bolic’ means that the corresponding complex analytic space has Euler characteristic < 0.)
Explicitly, we adopt the following definition:

Definition: Let Y be a geometrically connected, finite type scheme over k, where k is a
subfield of C. For simplicity, assume that Y is either a smooth curve such that the Euler
characteristic of the corresponding complex analytic space is ≤ 0 or an Abelian variety. A
homotopy section of Y → Spec k is an equivalence class of sections of πet

1 (Y)→ πet
1 (Spec k),

where two sections s1, s2 are considered equivalent if there is an element γ of πet
1 (Yk) such

that s1(g) = γs2(g)γ−1 for all g ∈ πet
1 (Spec k).

The name homotopy section comes from the fact that homotopy classes of continuous
unbased maps T → K($, 1) from a CW complex to a/the K($, 1) for a group $ are
in bijection with homomorphisms π

top
1 (T, t) → $ up to conjugation by elements of $.

(Compare with 1.1.1.) (It would therefore be reasonable to use the above definition of
‘homotopy section’ for any scheme Y, expected to be a K(πet

1 (Y), 1) in algebraic geometry.)

It follows from the short exact sequence

(3) 1→ πet
1 (Xk)→ πet

1 (X)→ Gk → 1

that for σ : X→ Spec k, b, and π1 as above, H1(Gk, π1) and H1(Gk, π1/[π1]2) are in natural
bijection with the homotopy sections of X and Jac X respectively. In more detail, this
natural bijection is described as follows: the point b gives a section of πet

1 (σ) : πet
1 (X, b)→

Gk by functoriality, and thus an isomorphism πet
1 (X, b) ∼= π1 o Gk. The Gk action on

π1 = πet
1 (Xk, b) is via the splitting of (3), or equivalently via the action of Gk on Xk. It

follows that the set of sections of πet
1 (σ) : πet

1 (X) → Gk up to conjugation by π1 equals
H1(Gk, π1) (see [Bro94, IV.2]. The profinite case is the same).

In this language, Ellenberg’s δn are obstructions to a homotopy section of Jac X →
Spec k coming from a homotopy section of X→ Spec k.

Rational points of Y give rise to homotopy sections of Y → Spec k. Here are two ways
to see this: the first uses functoriality of πet

1 . A k point is a section of the map Y → Spec k.
If we let b denote the base point of Y and y denote a k point, πet

1 (Y, b) and πet
1 (Y, y) are iso-

morphic by an isomorphism determined up to inner automorphism. (We are being sloppy
about the distinction between rational points and geometric points factoring through ra-
tional points.) By composing the map πet

1 (Spec k) → πet
1 (Y, y) induced by y : Spec k → Y

with an isomorphism πet
1 (Y, y) → πet

1 (Y, b) we obtain a map πet
1 (Spec k) → πet

1 (Y, b) such
that the composite πet

1 (Spec k) → πet
1 (Y, b) → πet

1 (Spec k) is an inner automorphism of
πet

1 (Spec k). By appropriately modifying the isomorphism πet
1 (Y, y)→ πet

1 (Y, b), we obtain
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a section of πet
1 (Y, b) → πet

1 (Spec k) determined up to conjugation by elements of the ker-
nel. A rational tangential point of Y gives rise to a homotopy section of Y → Spec k by the
same procedure.

A second way to associate a homotopy section to a rational point is via the boundary
map H0 → H1 in cohomology of Gk associated to π1(Yk) → Ỹ → Yk. Explicitly, take a k

point y of Y. Choose a path γ from b to y. (A path from b to y is a natural transformation
from the fiber functor of b to the fiber functor of y. See [SGAI, Exp. V §5].) Gk acts
on the set of such paths because b and y are defined over k. γ determines a cocycle
in C1(Gk, π

et
1 (Y, b)) by g 7→ γg(γ−1) for g ∈ Gk. (The notation C1(Gk, π

et
1 (Y, b)) is as in

2.0.4.) Associating y to the cohomology class of g 7→ γg(γ−1) gives the map Y(k) →
H1(Gk, π

et
1 (Y, b)). Both of these methods work in the category of topological spaces, as

well.

So we have the commutative diagram (2).

The map from points to homotopy sections can be thought of as a substitute for a map
from X→ B(π1) in the tower (1). A well-defined analogue for this tower is the commuta-
tive diagram

(4) ...

H1(Gk, π1/[π1]n)

��
...

H1(Gk, π1/[π1]3)

��
H1(Gk, π1) //

33ggggggggggggggggggggggg

;;vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

H1(Gk, π1/[π1]2)

X(k) //

OO

Jac(X)(k)

66mmmmmmmmmmmm

For section 3.4, we will need the following generalization of the definition of δn. Let
X,b, and π1 be as above. A filtration π1 > $2 > $3 > . . . of π1 such that the quotients
$n/$n+1 are abelian and the extensions

$n/$n+1 → π1/$n+1 → π1/$n

are central gives rise to a sequence of obstructions δn which determine which sections of
π1/$n o Gk → Gk admit a lift to a section of π1/$n+1 o Gk → Gk. δn : H1(Gk, π1/$n)→
H2(Gk,$n/$n+1) is the boundary map in group cohomology associated to the short exact
sequence of Gk groups $n/$n+1 → π1/$n+1 → π1/$n.
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Lastly, we include a proof of the injectivity of Jac X(k)→ H1(Gk, π1/[π1]2).

1.1.4. Proposition. — Let k be a number field. Let X → Spec k be a geometrically connected,
smooth, proper curve of genus ≥ 1. Let π denote πet

1 (Jac X, 0). Then Jac X(k) → H1(Gk, π) is
injective.

Proof. Jac X is an abelian variety over k. Let Jac X[n] denote the n-torsion k points. The
short exact sequence of Gk modules

0 // Jac X[n] // Jac X(k)
×n // Jac X(k) // 0

gives rise to the injection Jac X(k)/n Jac X(k) → H1(Gk, Jac X[n]). π = lim←−n
Jac X[n] and

H1(Gk, π) = lim←−n
H1(Gk, Jac X[n]). The kernel of Jac X(k) → H1(Gk, π) is therefore con-

tained in ∩nn Jac X(k). By the Mordell-Weil theorem, Jac X(k) is a finitely generated
abelian group, so ∩nn Jac X(k) = {0}. �

1.2. Summary of results. Section 2 is devoted to results on the structure of the δn. It
is group theoretic and could be applied to the boundary maps δn : H1(G, $/[$]n) →
H2(G, [$]n/[$]n+1), where G and $ are groups or profinite groups with G acting contin-
uously on $. For the rest of the summary of Section 2, we drop the more general group
theoretic δn, in favor of the geometric language of Section 1. The existence of the extra
generality, however, means that we do not incorporate interesting aspects of the Galois
action on the fundamental group. Rather, we look for structure and its origins to limit
what needs to be understood about this action.

Let X, b, and δn be as in 1.1.3. Let π abbreviate πet
1 (Xk, b).

Ellenberg observes in [Ell] that δ2 is quadratic, and that the associated bilinear form is
the cup product composed with the map on H2 induced from the commutator

π/[π]2 ⊗ π/[π]2 → [π]2/[π]3,

γ⊗ η 7→ γηγ−1η−1

Call this composition the bracket cup product. Two proofs that δ2 is quadratic with this
bilinear form are included- see 2.1.3 and 2.3.9. It follows that δ2 is a linear perturbation of
the bracket cup product after inverting two. Ellenberg points out that an attractive feature
of this decomposition is that the ‘highest order’ bracket cup product term only depends
on the Galois action on the Tate module (= π/[π]2).

This behavior of δ2 extends to higher δn, with certain bracket Massey products replacing
the bracket cup product, at least under the assumption that X is non-proper.

An arbitrary element of H2(π/[π]n o Gk, [π]n/[π]n+1) determines an obstruction map
H1(Gk, π/[π]n)→ H2(Gk, [π]n/[π]n+1) (2.2.1), and under this association, δn is determined
by the element classifying

1→ [π]n/[π]n+1 → π/[π]n+1 o Gk → π/[π]n o Gk → 1
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We show the filtration of H2 coming from the spectral sequence

Hi(Gk, H
j(π/[π]n, [π]n/[π]n+1))⇒ Hi+j(π/[π]n o Gk, [π]n/[π]n+1)

controls linearity properties of the corresponding obstruction maps (Proposition 2.2.5).
More specifically, this filtration is

H2(Gk) ⊂ H2(Gk)⊕H1(Gk, H
1(π/[π]n)) ⊂ H2(π/[π]n o Gk),

where Hi(G) abbreviates Hi(G, [π]n/[π]n+1) for any group G. Proposition 2.2.5 shows that
elements of H2(Gk) correspond to constant maps, and elements of H1(Gk, H

1(π/[π]n))
correspond to maps with a certain linearity property. More generally, Proposition 2.2.5
relates the spectral sequence filtration of H2 of a semi-direct product to the linearity of the
corresponding map.

For the structure of δn, this implies that if we can lift the class in H2(π/[π]n) classifying

1→ [π]n/[π]n+1 → π/[π]n+1 → π/[π]n → 1

to a class ω in H2(π/[π]n o G), we decompose δn into the sum of a linear term and the
obstruction associated to ω.

Since π is the profinite completion of a surface group (= the fundamental group of a
closed surface of genus ≥ 1) or a finitely generated free group, the extensions

(5) 1→ [π]n/[π]n+1 → π/[π]n+1 → π/[π]n → 1

and their classifying elements of cohomology are approachable computationally.

For n = 2, a simple calculation of the element of H2 classifying (5) reproves the above
decomposition of δ2 into the sum of a linear term and the bracket cup product. (This is
done in 2.3.9.) This element is expressed in terms of the (usual) cup product.

Now assume that X is non-proper, so that π is the profinite completion of a free group.
From work of Dwyer and well known results on the lower central series of free groups,
we express the element ωn of H2 classifying (5) in terms of order n Massey products.
(Proposition 2.3.8.)

We lift ωn to an element of H2(π/[π]n oGk, [π]n/[π]n+1) for small n using bracket Massey
products, defined in 2.4.10-2.4.19. This implies the existence of a decomposition of δn into
a bracket Massey product term plus a linear term, for small n. (See Theorem 2.4.28.) Like
the usual Massey products, bracket Massey products require the existence of defining
systems, which tautologically force the vanishing of lower order bracket Massey prod-
ucts. Theorem 2.4.28 relies on the vanishing of δm for m < n to obtain these conditions,
and obtains its decomposition of δn only when the linear terms of δm for m < n vanish.
Conversely, Theorem 2.4.28 obtains its decomposition when the elements of cohomology
corresponding to the linear terms of δm for m < n vanish.

The bracket Massey product term of the decomposition of δn of Theorem 2.4.28 de-
pends only on the action of Gk on π/[π]n, i.e. it is independent of the lift of this action to
the Gk action on π/[π]n+1, even though δn itself does depend on this lift. So the ‘highest
order’ term of δn requires less understanding of the Galois action than expected. (See
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2.4.30.) This is the generalization of Ellenberg’s observation that the bracket cup product
is determined by the Galois action on the Tate module.

Paragraph 2.4.31 records how the decomposition of δ2 depends on the choice of base
point b. More specifically, the bracket cup product term is independent of b, while
the linear term changes by bracket cup product with the class of the new base point in
H1(Gk, π1). The question “for which X, b, and m does the linear term of δm vanish ?” is
linked to obtaining the decomposition of Theorem 2.4.28. For example, if the linear term
of δ2 does not vanish, we do not obtain a decomposition of δ3.

Proposition 2.2.6 turns Proposition 2.2.5 into a tool to search for aspects of Ellenberg’s
obstructions controlled by the topology of the underlying surface of X. It says that up to
‘linear perturbation,’ in the sense of Proposition 2.2.5, δn is determined by π considered
as a profinite group, without its Gk action; or less optimistically (but more precisely),
δn up to linear perturbation is determined by the preimage of the element classifying
(5) as an extension of profinite groups without Gk action, under the map H2(π/[π]n o
Gk, [π]n/[π]n+1) → H2(π/[π]n, [π]n/[π]n+1). The domain of this map is dependent on the
Gk action on π/[π]n+1, but the range as well as the element classifying (5) are entirely
independent of the Galois action on the fundamental group.

Section 3 is devoted to computing the δn in examples.

The first two subsections consider the case k = R, and subsection 3.1 starts with a sum-
mary of the contained results. The main result is for smooth proper curves. It combines a
(deep!) theorem of Gunnar Carlsson on homotopy fixed points with geometric informa-
tion about Jacobians over R to show that the homotopy sections of the curve are precisely
those of the Jacobian in the kernel of δ2 (Proposition 3.2.1). The section conjecture over
R (which is known to be true- see [Pál], and which we wind up reproving in the special
case at hand) identifies homotopy sections with connected components of real points. In
this sense, not only does the tower (4) succeed in describing the connected components
of real points of the curve, but the first two levels suffice.

The next subsection considers δ3 for X = P1
Q − {0, 1,∞}. (The base point is the same

as in example 1.1.2.) Ellenberg showed that the linear term of δ2 vanishes. We obtain a
decomposition of δ3 into Massey products and a linear term. Theorem 3.3.4 computes the
linear term in terms of a well-known cocycle associated to the action of GQ on πet

1 (P1
Q −

{0, 1,∞}).

Subsection 3.4 evaluates a local mod 2 version of δ3 on an infinite subset of rational
points of Jac X. (Proposition 3.4.7) To do this, the lower central series is replaced by the
exponent 2 lower central series, so that computations can be carried out in the Brauer
group. An exponential formula of Anderson, Coleman, Deligne, Ihara, Kaneko and Yuk-
inari is used to compute the necessary projection of the above cocycle.

Acknowledgments. This thesis is greatly indebted to contributions of my advisor Gun-
nar Carlsson and Jordan Ellenberg. I would also like to thank Gregory Brumfiel, Daniel
Bump, Brian Conrad, and Ravi Vakil for useful discussions. My personal thanks to all
these mathematicians as well!
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2. δn AND MASSEY PRODUCTS

We establish some notation and recall certain constructions that will be useful:

2.0.1. For a group or profinite group π the lower central series filtration π = [π]1 > [π]2 >

[π]3 > . . . is defined by π = [π]1, [π]n+1 is the closure of the subgroup generated by
elements of the form [x, y] = xyx−1y−1 with x ∈ [π]n and y arbitrary. In other words, [π]n
is the closure of the subgroup generated by all order n brackets. π is said to be n-nilpotent
if that [π]n+1 = 0

2.0.2. For a central extension of G groups 1 → N → M → Q → 1, there is an exact
sequence

1→ NG →MG → QG → H1(G, N)→ H1(G, M)→ H1(G, Q)→ H2(G, N)

(See for instance [Ser02, I 5.7]) G, N, M, and Q may also be profinite.

2.0.3. Definition. Let G be a profinite group acting on a profinite group π. (Or sim-
ply assume that G and π are groups with G acting on π.) By analogy with 1.1.3, let
δn : H1(G, π/[π]n) → H2(G, [π]n/[π]n+1) be the boundary map of the cohomology exact
sequence associated to the short exact sequence of G groups

1→ [π]n/[π]n+1 → π/[π]n+1 → π/[π]n → 1

as in 2.0.2.

2.0.4. Notation. For a profinite group G and a profinite abelian group A with a continuous
action of G, let (C∗(G, A), D) be the complex of inhomogeneous cochains of G with coef-
ficients in A as in [NSW08, I.2 p. 14]. For c ∈ Cp(G, A) and d ∈ Cq(G, A), let c ∪ d denote
the cup product c ∪ d ∈ Cp+q(G, A⊗A)

(c ∪ d)(g1, . . . , gp+q) = c(g1, . . . , gp)⊗ ((g1 · · ·gp)d(gp+1, . . . , gp+1q)).

This product induces a well defined map Hp(G, A)⊗Hq(G, A)→ Hp+q(G, A⊗A). When
A is a commutative ring, the multiplication map A ⊗ A → A and the cup product give
C∗(G, A) the structure of a differential graded algebra. For a profinite group Q, no longer
assumed to be abelian, let C1(G, Q) denote the set of continuous twisted homomorphisms
{s : G→ Q|s is continuous, s(g1g2) = s(g1)g1s(g2)}.

2.0.5. Let 1 → N → M → Q → 1 be a short exact sequence of groups with N abelian. A
set-theoretic section s : Q→M of the quotient map gives rise to a cocycle

(6) (q1, q2) 7→ s(q1)s(q2)s(q1q2)
−1

in C2(Q,N) such that the associated cohomology class classifies the extension. (See [Bro94,
IV §3] for the classification of extensions by H2.) If N, M, Q, are profinite, and s is a con-
tinuous map of topological spaces, we likewise have the cocycle (6) which classifies the
extension. By [RZ00, Prop. 2.2.2], a continuous section s always exists.
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2.1. δ2 is quadratic. Let G be a profinite group acting on a profinite group π. Let δn be as
in 2.0.3.

We give a proof of Ellenberg’s observation that δ2 is quadratic and identify the corre-
sponding bilinear form, as in [Ell, Prop. 1].

2.1.1. Define a commutator or bracket map [−,−] : π/[π]2 ⊗ π/[π]2 → [π]2/[π]3 by

[−,−](m1 ⊗m2) = [m̃1, m̃2] = m̃1m̃2m̃1
−1m̃2

−1,

where m̃1 and m̃2 are elements of π/[π]3 mapping to m1 and m2 respectively. [m̃1, m̃2] is
independent of the choice of m̃1 and m̃2 because different choices differ by elements in
the center.

2.1.2. Let τ be the involution τ : π/[π]2 ⊗ π/[π]2 → π/[π]2 ⊗ π/[π]2 which switches the
two factors of π/[π]2. Recall that c ∪ d = (−1)pqτ∗(d ∪ c) in Hp+q(G, π/[π]2 ⊗ π/[π]2).
Note that [−,−](m1 ⊗ m2) = −[−,−](m2 ⊗ m1) = −[−,−](τ(m1 ⊗ m2)), i.e. [−,−]τ =
−[−,−]. It follows that in Hp+q(G, [π]2/[π]3), [−,−]∗(c ∪ d) = [−,−]∗((−1)pqτ∗d ∪ c) =
(−1)pq+1[−,−]∗(d∪c). For x, y in H1(G, π/[π]2), it follows that [−,−]∗(x∪y) = [−,−]∗(y∪x)
in H2(G, [π]2/[π]3). [−,−]∗(x ∪ y) is the symmetric bilinear form associated to δ2.

2.1.3. Proposition [Ellenberg] [Ell, Prop. 1]. — For x, y in H1(G, π/[π]2),

δ2(x + y) − δ2(x) − δ2(y) = [−,−]∗(x ∪ y),

in H2(G, [π]2/[π]3).

Proof. Notice that elements of π/[π]3 with the same image in π/[π]2 commute (because
they differ by an element of [π]2/[π]3 which is in the center). Similarly elements of π/[π]3
whose product is in [π]2/[π]3 commute.

Let c, d be cocycles in C1(G, π/[π]2) representing x and y respectively.

Choose a continuous section of π/[π]3 → π/[π]2 as in 2.0.5. Denote the image of m in
π/[π]2 under this section by m̃. Let ω : π/[π]2 × π/[π]2 → [π]2/[π]3 be the cocycle of 2.0.5
corresponding to this section, i.e. ω(m1,m2) = m̃1m̃2m̃1m2

−1
. By the second sentence of

this proof, we have that ω(m1,m2) = m̃1m2
−1

m̃1m̃2.

Define γ in C1(G, [π]2/[π]3) by γ(g) = ω(c(g), d(g)) for all g in G.

δ2(c + d), δ2(c), δ2(d), and [−,−]∗(d ∪ c) are elements of C2(G, [π]2/[π]3). We have the
equalities:

(δ2(c + d) − δ2(c) − δ2(d))(g1, g2) = ˜(c + d)(g1)(g1
˜(c + d)(g2)) ˜(c + d)(g1g2)

−1

(7)

(c̃(g1)(g1c̃(g2)) ˜c(g1g2)
−1

)−1

(d̃(g1)(g1d̃(g2))d̃(g1g2)
−1

)−1.
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(8) [−,−]∗(d ∪ c)(g1, g2) = [d̃(g1), g1c̃(g2)].

We will show that

(9) Dγ(g1, g2) = [−,−]∗(d ∪ c)(g1, g2) − (δ2(c + d) − δ2(c) − δ2(d))(g1, g2),

which will prove the propostition.

Because (d̃(g1)(g1d̃(g2))d̃(g1g2)
−1

)−1 = d̃(g1g2)g1(d̃(g2))
−1(d̃(g1))

−1 is in the center of
π/[π]3, equation (7) can be rewritten

(δ2(c + d) − δ2(c) − δ2(d))(g1, g2) = ˜(c + d)(g1)(g1
˜(c + d)(g2))

˜(c + d)(g1g2)
−1 ˜c(g1g2)d̃(g1g2)

(g1d̃(g2)
−1

)d̃(g1)
−1

(g1c̃(g2)
−1

)c̃(g1)
−1

.

We now repeatedly use that [π]2/[π]3 is contained in the center of π/[π]3, and we use
equation (8), and we use our two expressions for ω, namely ω(m1,m2) = m̃1m̃2m̃1m2

−1
=

m̃1m2
−1

m̃1m̃2, to obtain the following calculation of δ2(c + d) − δ2(c) − δ2(d):

(δ2(c + d) − δ2(c) − δ2(d))(g1, g2) = ω(c(g1g2), d(g1g2))

˜(c + d)(g1)(g1
˜(c + d)(g2))(g1d̃(g2)

−1

)d̃(g1)
−1

(g1c̃(g2)
−1

)c̃(g1)
−1

= ω(c(g1g2), d(g1g2))

˜(c + d)(g1)

(g1
˜(c + d)(g2))(g1d̃(g2)

−1

)(g1c̃(g2)
−1

)d̃(g1)
−1

[−,−]∗(d ∪ c)(g1, g2)

c̃(g1)
−1

= ω(c(g1g2), d(g1g2))[−,−]∗(d ∪ c)(g1, g2)

˜(c + d)(g1)

g1(ω(c(g2), d(g2))
−1)

d̃(g1)
−1

c̃(g1)
−1

= [−,−]∗(d ∪ c)(g1, g2)

ω(c(g1g2), d(g1g2))

g1(ω(c(g2), d(g2))
−1)

ω(c(g1), d(g1))
−1

= [−,−]∗(d ∪ c)(g1, g2) − Dγ(g1, g2).(10)

This gives equation (9) as desired. �
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Proposition 2.1.3 shows that after inverting 2, δ2 is a linear perturbation of a cup prod-
uct:

2.1.4. Proposition. — For any x ∈ H1(G, π/[π]2), 2δ2(x) = [−,−]∗(x ∪ x) + L(x), where
L : H1(G, π/[π]2)→ H2(G, [π]2/[π]3) is a homomorphism.

Proof.

2δ2(x + y) − [−,−]∗((x + y) ∪ (x + y)) =

2δ2(x) + 2δ2(y) + 2[−,−]∗(x ∪ y) − [−,−]∗((x + y) ∪ (x + y)) =

2δ2(x) − [−,−]∗(x ∪ x) + 2δ2(y) − [−,−]∗(y ∪ y)

The last equality follows from the symmetry of the bilinear form x ⊗ y 7→ [−,−]∗(x ∪ y),
shown in 2.1.2. �

(Note that after inverting 2, the linearity of x 7→ 2δ2(x) − [−,−]∗(x ∪ x) is equivalent to
δ2(x + y) − δ2(x) − δ2(y) = [−,−]∗(x ∪ y) .)

2.2. Decomposing obstruction maps. We establish an interesting relationship between
the spectral sequence filtration of H2 of a semi-direct product and linearity properties of
associated obstruction maps. (Proposition 2.2.5.) Proposition 2.2.5 is then used to obtain
a type of decomposition of an obstruction map. (Proposition 2.2.6)

2.2.1. Notation. Let π ′ and N be groups with G actions, and assume that N is abelian. An
element s ∈ H1(G, π ′) determines a homomorphism G → π ′ o G up to post-composition
with an inner automorphism of π ′ o G, where this inner automorphism is given by con-
jugation by an element of π ′. Since π ′ acts trivially on N, such an inner automorphism
determines an automorphism of H∗(π ′ o G, N). It is well-known that this map is in fact
the identity. Thus, s determines a homomorphism s∗ : H∗(π ′oG, N)→ H∗(G, N). For any
η ∈ H2(π ′ o G, N), denote by ℘η the map H1(G, π ′)→ H2(G, N) defined by ℘η(s) = s∗(η).

2.2.2. For a central extension of G groups 1→ N→M→ Q→ 1, the associated boundary
map in group cohomology H1(G, Q) → H2(G, N) is ℘η, where η ∈ H2(Q o G, N) is the
element of cohomology classifying the short exact sequence 1→ N→MoG→ QoG→
1.

2.2.3. Recall that morphisms of short exact sequences relate the classifying elements of
cohomology as follows: suppose that:

1 // N // M // Q // 1

1 // N ′ //

f(N ′)

OO

M ′ //

f(M ′)

OO

Q ′ //

f(Q ′)

OO

1
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is a commutative diagram of groups such that the rows are exact and N,N ′ are abelian.
Let ω ∈ H2(Q,N) classify the top short exact sequence, and ω ′ ∈ H2(Q ′,N ′) classify the
bottom short exact sequence. Then, f(Q)∗ω = f(N)∗ω

′.

2.2.4. To describe linearity properties of the obstruction maps 2.2.1, we use the following
definition. Let π ′ and G be profinite groups with G acting continuously on π ′. (In par-
ticular π ′ may not be abelian and H1(G, π ′) may not be an abelian group.) We say that
s1, s2 ∈ H1(G, π ′) admit a sum if they can be represented by cocycles σ1, σ2 ∈ C1(G, π ′)
(respectively) such that g 7→ σ1(g)σ2(g) is a cocycle. A cohomology class s3 ∈ H1(G, π ′)
is a sum of s1 and s2 if s3 can be represented by a cocycle of the form g 7→ σ1(g)σ2(g) If
π ′ abelian or if s1 or s2 is represented by a cocycle with values in the center of π ′, then s1

and s2 admit a sum. A sum of s1 and s2 will be denoted s1 + s2 in the next proposition,
but this is not meant to imply that such a sum is unique.

2.2.5. Proposition1. — Let π ′ and N be profinite groups with continuous G actions, and assume
that N is abelian. Consider N to be equipped with the trivial action of π ′ and with the action of
π ′ o G induced by the action of G. The filtration of H2(π ′ o G, N) from the spectral sequence

Hi(G, Hj(π ′,N))⇒ Hi+j(π ′ o G, N)

has the form:

H2(G, N) ⊂ H2(G, N)⊕H1(G, H1(π ′,N)) ⊂ H2(π ′ o G, N)

Let η be an element of H2(π ′ o G, N).

• If η is in H2(G, N), then ℘η is constant.
• If η is in H1(G, H1(π ′,N)), then ℘η is linear in the sense that whenever s1, s2 ∈ H1(G, π ′)

admit a sum, denoted s1 + s2 as in 2.2.4, then ℘η(s1 + s2) = ℘η(s1) + ℘η(s2).

Proof. Let F0 ⊂ F1 ⊂ H2(π ′ o G, N) be the filtration from the Serre spectral sequence
Hi(G, Hj(π ′,N))⇒ Hi+j(π ′ o G, N).

F0 is the image of the map p∗ : H2(G, N) → H2(π ′ o G, N) induced by the projection
p : π ′ o G → G. The canonical inclusion s : G → π ′ o G is a section of p, whence
p∗ : H2(G, N)→ F0 is an isomorphism.

Let i : π ′ → π ′ o G be the canonical inclusion, and i∗ : H2(π ′ o G, N) → H2(π ′,N) the
induced map on cohomology. F1 = Ker i∗. Furthermore, the inclusion F0 ⊂ F1 is split
by the restriction of s∗ to F1. Thus F1 is the direct sum of H2(G, N) and Ker s∗ ∩ Ker i∗.

Ker s∗ ∩ Ker i∗ is isomorphic to E
(1,1)∞ = Ker(E

(1,1)
2 → E

(3,0)
2 ), where E

(∗,∗)
r denotes the rth

page of the spectral sequence. Since s∗p∗ = id, p∗ : H3(G, N) → H3(π ′ o G, N) is an
injection. Thus E

(1,1)
2 → E

(3,0)
2 is the zero map. Thus Ker s∗ ∩Ker i∗ ∼= H1(G, H1(π ′,N)).

1This result looks like it may be folklore, but I am unaware of a prior such statement.
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It is clear that if η is in H2(G, N) ⊂ H2(π ′ o G, N), then ℘η is constant. (Just in case a
more explicit argument would be helpful: since η ∈ H2(G, N), we can choose a cocycle
n ∈ C2(π ′ o G, N) representing η such that n is the image of n ′ ∈ C2(G, N) under the
map C2(G, N) → C2(π ′ o G, N). Given s ∈ H1(G, π ′), let v ∈ C1(G, π ′) represent s. Then,
℘η(s) ∈ H2(G, N) is represented by the cocycle ℘η(v)(g1, g2) = n(v(g1) o g1, v(g2) o g2) =
n ′(g1, g2).)

Let η be an element of H1(G, H1(π ′,N)) ⊂ H2(π ′ o G, N), and let

(11) 1→ N→ E ′ → π ′ o G→ 1,

be a/the short exact sequence corresponding to η. Since s∗η = 0, there exists a continuous
homomorphism sE ′ : G→ E ′ lifting s as in the commutative diagram:

E ′

��
G

sE ′
;;wwwwwwwww s // π ′ o G

Let pE ′ be the surjection E ′ → π ′ o G→ G, and let E = Ker pE ′ . sE ′ splits pE ′, giving E a
continuous action of G, and an isomorphism E o G ∼= E ′. The map E → π ′ induced from
E ′ → π ′ o G is a surjection respecting the action of G with kernel N. We therefore have a
short exact sequence of profinite groups with a continuous G action

(12) 1→ N→ E→ π ′ → 1,

and an isomorphism of short exact sequences:

(13) 1 // N

=

��

// E o G

∼=
��

// π ′ o G

=

��

// 1

1 // N // E ′ // π ′ o G // 1

N is also in the center of E because the action of π ′ o G on N induced from the short
exact sequence (11) is the G action on N.

Thus η ∈ H2(π ′ o G, N) is the element of cohomology classifying 1 → N → E o G →
π ′ o G→ 1.

Proposition 2.2.3 implies that s∗(η) classifies (12) (where (12) is viewed as a short exact
sequence of profinite groups–the G structure is ignored).
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Since s∗(η) = 0, we have an isomorphism of profinite groups e : π ′ × N
∼=→ E. Define

γ : G× π ′ → N by γ(g,$ ′) = e(g$ ′)−1ge($ ′) for g ∈ G and $ ′ ∈ π ′. Since G acts on E,

(14) γ(g,$ ′
1$

′
2) = γ(g,$ ′

1) + γ(g,$ ′
2),

for all $ ′
1,$

′
2 ∈ π ′.

Let σ : π ′ o G → E o G be the section of (13) given by σ($ ′ o g) = e($ ′ × 0) o g,

so σ = e|π ′ o id, where e|π ′ denotes the restriction of e to π ′. Let n ∈ C2(π ′ o G, N) be
the cocyle corresponding to σ and (13) as in 2.0.5. (In particular, n represents η.) A short
calculation shows:

(15) n($ ′
1 o g1,$

′
2 o g2) = γ(g1,$

′
2).

(14) and (15) imply that ℘η is linear in the sense of the Proposition: more explicitly,
suppose that s1, s2 ∈ H1(G, π ′) are represented by cocycles v1, v2 ∈ C1(G, π ′) respectively,
such that the cochain v1 +v2 defined by (v1 +v2)(g) = v1(g)v2(g) is a cocycle. Let s1 +s2 ∈
H1(G, π ′) denote the corresponding cohomology class.

℘η(sj) ∈ H2(G, N) is represented by the cocycle ℘η(vj) ∈ C2(G, N) defined

℘η(vj)(g1, g2) = n(vj(g1) o g1, vj(g2) o g2),

for j = 1, 2. By (15),
℘η(vj)(g1, g2) = γ(g1, vj(g2)).

Similarly,

℘η(v1 + v2)(g1, g2) = γ(g1, (v1 + v2)(g2)) = γ(g1, v1(g2)v2(g2)).

By (14), we have ℘η(s1 + s2) = ℘η(s1) + ℘η(s2), as desired. �

Let X, π1, Gk, and δn be as in 1.1.3.

Proposition 2.2.5 partially separates the topology of the surface underlying X(C) from
the complicated Galois action in the determination of δn from πet

1 (X, b). More explicitly,
the short exact sequence 1→ π1/[π1]n → π1/[π1]n oGk → Gk → 1 decomposes π1/[π1]n o
Gk into the group π1/[π1]n, which comes from this surface, and the Galois group Gk. (This
short exact sequence is the substitute for viewing the approximating spaces in the tower
(1) as total spaces of fibrations over B(Gk) whose fibers approximate the surface alone.)
Let i denote the inclusion

i : π1/[π1]n → π1/[π1]n o Gk,

and let H2(i) : H2(π1/[π1]n o Gk, [π1]n/[π1]n+1) → H2(π1/[π1]n, [π1]n/[π1]n+1) be the in-
duced map on cohomology. Proposition 2.2.5 marks obstructions coming from classes in
the kernel of H2(i) as subject to a linearity condition. On the other hand, by 2.2.3, the
image under H2(i) of the class determining δn (as in 2.2.2) is controlled entirely by the
topology of the surface. We record this in the following Proposition.
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2.2.6. Proposition. — Let ωn in H2(π1/[π1]n, [π1]n/[π1]n+1) denote the element classifying

1→ [π1]n/[π1]n+1 → π1/[π1]n+1 → π1/[π1]n → 1

Then for any ε in H2(i)−1(ωn),
δn = ℘ε + L,

with L : H1(Gk, π1/[π1]n)→ H2(Gk, [π1]n/[π1]n+1) linear in the sense of Proposition 2.2.5

2.3. Lower central series extensions of finitely generated free groups and their profinite
completions are classified by Massey products. To apply Proposition 2.2.6, we compute
ωn when π1 is the profinite completion of a finitely generated free group. (The notation
ωn is as in Proposition 2.2.6.)

Let F = 〈x1, . . . , xr〉 be the free group on the generators x1, . . . , xr, and let $ denote
either F or the profinite completion of F, denoted F̂. Let ωn ∈ H2($/[$]n, [$]n/[$]n+1) be
the element of cohomology classifying the extension

1→ [$]n/[$]n+1 → $/[$]n+1 → $/[$]n → 1.

as in 2.0.5.

The homomorphisms x∗j : F→ Z defined by

(16) x∗j (xi) = δij

extend to morphisms F̂ → Ẑ also denoted x∗j . Here δij is the Kronecker delta: δij = 1 if
i = j, and δij = 0 if i 6= j. Let Z = Z if $ = F, and Z = Ẑ if $ = F̂. The x∗j determine
cohomology classes in H1($/[$]n, Z) for any n. These cohomology classes will also be
denoted x∗j .

Using results of Dwyer [Dwy75], we compute ωn in terms of nth order Massey prod-
ucts of the x∗j ’s:

2.3.1. For a commutative ring A with a G action, or a profinite commutative ring A with
a continuous G action, C∗(G, A) (defined in 2.0.4) is a differential graded A algebra with
multiplication given by the cup product. The cup product is defined

(a ∪ b)(g1, . . . , gp+q) = a(g1, . . . , gp)((g1 · · ·gp)b(gp+1, . . . , gp+1q)),

for a ∈ Cp(G, A) and b ∈ Cq(G, A).

2.3.2. Massey product sign conventions. Although Massey products can be defined in
much greater generality [May69], here we limit ourselves to Massey products of elements
of H1(G, A). We use the sign convention of [Dwy75], [Mor04], which is different from
[Kra66] [May69]:
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2.3.3. Definition. Let t1, . . . , tn be elements of H1(G, A). The nth order Massey product of
the ordered n-tuple (t1, . . . , tn) is defined if there exists a (n + 1)× (n + 1) strictly upper
triangular matrix T with entries Tij ∈ C1(G, A) such that

• Ti,i+1 represents ti.
• DTij =

∑j−1
p=i+1 Tip ∪ Tpj for i + 1 < j

T is called a defining system. The Massey product relative to T is defined by

〈t1, . . . tn−1〉T =

n∑
p=2

T1p ∪ Tp,n+1.

Let Un denote the multiplicative group of n× n upper triangular matrices with coeffi-
cients in A whose diagonal entries are 1. (“U” stands for unipotent.) We have an inclusion
A → Un given by sending a ∈ A to the matrix ea

1,n, where ea
1,n is defined as the matrix

with a as the (1, n)-entry, and with all other off diagonal matrix entries 0. This inclusion
gives rise to a central extension

(17) 1→ A→ Un → Un → 1.

Note that the function aij : Un → A taking a matrix to its (i, j) entry descends to a
function on the quotient group Un for (i, j) 6= (1, n). We repeat an observation of Dwyer:
for g1, g2 ∈ Un,

aij(g1g2) =

n∑
p=1

aip(g1)apj(g2),

whence

aij(g1g2) = aij(g2) +

j−1∑
p=i+1

aip(g1)apj(g2) + aij(g1).

Thus the matrix M with (i, j) entry given by −aij is a defining system for (−a12, . . . , −an−1,n).

The section Un → Un whose image lies in those matrices with vanishing (1, n) entry gives
rise to a 2-cocycle classifying (17), as in 2.0.5. This 2-cocycle is 〈−a12, . . . , −an−1,n〉M. Thus:

2.3.4. Proposition. — [Dwy75, Rmk p. 182]The central extension (17) is classified by

〈−a12, . . . , −an−1,n〉M

It is well-known that Un is n-nilpotent and Un is (n − 1)-nilpotent. (See 2.0.1 for the
definition of n-nilpotent.) Although F/[F]n has an initial universal property among n-
nilpotent groups that Un+1 does not, we show that ωn is also given by Massey products.

Take A = Z. Choose J : {1, . . . , n} → {1, . . . , r}. Let ϕJ : $ → Un+1 be the homomor-
phism determined by

ai,i+1ϕJ(xk) = x∗J(i)(xk),
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ai,jϕJ(xk) = 0,

for i = 1, . . . , n, j > i + 1, k = 1, . . . , r. Since Un+1 is n-nilpotent, ϕJ descends to a
map ϕJ($/[$]n) : $/[$]n → Un+1. It follows that ϕJ($/[$]n)∗(M) is a defining sys-
tem for (x∗J(1), . . . x

∗
J(n)), so the nth order Massey product 〈x∗J(1), . . . , x

∗
J(n)〉 is defined in

H2($/[$]n, Z)

Since Un+1 is n + 1-nilpotent, and Un+1 is n-nilpotent, ϕJ gives rise to the morphism of
short exact sequences

(18) 1 // Z // Un+1
// Un+1

// 1

1 // [$]n/[$]n+1
//

ϕJ([$]n/[$]n+1)

OO

$/[$]n+1
//

ϕJ($/[$]n+1)

OO

$/[$]n //

ϕJ($/[$]n)

OO

1

Applying Proposition 2.2.3 to the morphism 18, we have:

(19) ϕJ([$]n/[$]n+1)∗(ωn) = 〈−x∗J(1), . . . , −x∗J(n)〉ϕ($/[$]n)∗M

The function ϕJ([$]n/[$]n+1) : [$]n/[$]n+1 → Z is in fact the Magnus coefficient asso-
ciated to xJ(1) · · · xJ(n) as is implied by a result of Dwyer, which we now explain (we will
also recall the definition of the Magnus coefficient):

2.3.5. Magnus embedding. Let Z〈〈z1, . . . , zr〉〉 be the ring of associative power series in
the non-commuting variables z1, . . . , zn with coefficients in Z. The Magnus embedding
F → Z〈〈z1, . . . , zr〉〉× is an injection of the free group into the multiplicative group of
units of Z〈〈z1, . . . , zr〉〉 given by xj 7→ 1 + zj for all j. Since Ẑ〈〈z1, . . . , zr〉〉 is profinite,
F → Z〈〈z1, . . . , zr〉〉× extends to a continuous homomorphism F̂ → Ẑ〈〈z1, . . . , zr〉〉×. Thus
we have m : $ → Z〈〈z1, . . . , zr〉〉. For a degree d monomial zI(1) · · · zI(d) of Z〈〈z1, . . . , zr〉〉
(I : {1, . . . , d} → {1, . . . , r}), the associated Magnus coefficient µI : $ → Z is defined by
taking f ∈ $ to the coefficient of zI(1) · · · zI(d) in m(f). It is well known that µI(f) = 0 for
f ∈ [F]n and 0 < d < n (see [MKS04, §5.5, Cor. 5.7, p. 312]), and it follows by continuity
that µI(f) = 0 for f ∈ [$]n and 0 < d < n. Thus, µI induces a (well-defined) function
µI : [$]d/[$]d+1 → Z.

The following result is implied by [Dwy75, Lemma 4.2]. As the proof was omitted in
[Dwy75], we include one for completeness.

2.3.6. Proposition [Dwyer]. — ϕJ([$]n/[$]n+1) = µJ

Proof. The homomorphism ϕJ admits a factorization through m:
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$
m //

ϕJ
))RRRRRRRRRRRRRRRRRR Z〈〈z1, . . . , zr〉〉×

��
Un+1

More explicitly, the map Z〈〈z1, . . . , zr〉〉× → Un+1 is the restriction of a homomorphism
of algebras θJ : Z〈〈z1, . . . , zr〉〉→ Tn+1, where Tn+1 denotes the algebra of upper triangular
(n + 1)× (n + 1) matrices with coefficients in Z. θJ is given by

ai,i+1θJ(zl) = δJ(i),l,

ai,jθJ(zl) = 0,

for l = 1, . . . , r, i = 1, . . . , n and j 6= i + 1. Tn+1 admits a grading, where the homogeneous
degree d matrices are those such that ai,j = 0 for j 6= i + d. θJ is a map of graded algebras.
(The fact that θJ respects the gradings and Tn+1 has no homogeneous elements of degree
greater than n was used implicitly to see that θJ is well-defined).

Let bi,j be the matrix of Tn+1 with 1 in the (i, j) entry and all other entries 0 (i =
1, . . . , n + 1, j ≥ i). The only non-zero product of n elements of {b1,2, b2,3, . . . , bn,n+1}

is b1,2b2,3 · · ·bn,n+1 and this product is b1,2b2,3 · · ·bn,n+1 = b1,n+1. It follows that

a1,n+1θJ(zJ(1) · · · zJ(n)) = 1

and that
a1,n+1θJ(zI(1) · · · zI(n)) = 0

for I : {1, . . . , n}→ {1, . . . , r} such that I 6= J. Since θJ respects the gradings on our algebras,
we have a1,n+1θJ(zI(1) · · · zI(d)) = 0 for any I : {1, . . . , d} → {1, . . . , r} with d 6= n. Thus
a1,n+1θJm = µJ, whence ϕJ([$]n/[$]n+1) = µJ.

�

Combining Proposition 2.3.6 and equation (19), we have:

2.3.7. Proposition. — For any J : {1, . . . , n}→ {1, . . . , r}

(µJ)∗ωn = 〈−x∗J(1), . . . − x∗J(n)〉ϕ($/[$]n)∗M

Combining well known results, we now show that ωn is determined by the elements
(µJ)∗ωn ∈ H2($/[$]n, Z), where J ranges over all functions J : {1, . . . , n}→ {1, . . . , r}; this
is a consequence of the Lie basis theorem and the relationship between the lower central
series of free groups and the Magnus embedding [MKS04, Ch. 5], as we now explain:

The Lie elements of Z〈〈z1, . . . , zr〉〉 are the elements in the image of the map from the
free Lie algebra over Z on the r generators ζ1, . . . , ζr to Z〈〈z1, . . . , zr〉〉 given by ζj 7→ zj.

(The Lie bracket on Z〈〈z1, . . . , zr〉〉 is [z, z ′] = zz ′ − z ′z.) As previously commented,
µJ(f) = 0 for f ∈ [$]n and J a function J : {1, . . . , d} → {1, . . . , r} such that 0 < d < n.
(A reference is [MKS04, §5.5, Cor. 5.7, p. 312]). Thus for any f ∈ [$]n, m(f) is of the
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form 1 + ℘n + ℘>n, where ℘n is homogeneous of degree n and ℘>n only contains mono-
mials of degree greater than n. It is well known that f 7→ ℘n induces an isomorphism
from [F]n/[F]n+1 to the homogeneous degree n Lie elements of Z〈〈z1, . . . , zr〉〉 ([MKS04,
§5.7, Cor. 5.12(i), p. 341]). The inverse takes a weight n bracket in the variables ζ1, . . . , ζr

to the corresponding bracket in [F]n/[F]n+1 with the variable xj substituted for ζj, j =
1, . . . , r. As both this isomorphism and its inverse extend to continuous maps between
[$]n/[$]n+1 and the homogeneous degree n Lie elements of Ẑ〈〈z1, . . . , zr〉〉, we have that
f 7→ ℘n induces an isomorphism from [$]n/[$]n+1 to the homogeneous degree n Lie ele-
ments of Z〈〈z1, . . . , zr〉〉. By the Lie basis theorem ([MKS04, §5.6, Thm. 5.8(ii), p. 323]), the
inclusion of the Lie elements of degree n into all the degree n elements of Z〈〈z1, . . . , zr〉〉
is a direct summand. It follows by continuity arguments that the same statement holds
for Ẑ〈〈z1, . . . , zr〉〉. We may therefore choose a left inverse L to the map

(20)
⊕

J:{1,...,n}→{1,...,r}

µJ : [$]n/[$]n+1 → ⊕
J:{1,...,n}→{1,...,r}

Z.

Let L∗ :
⊕

J:{1,...,n}→{1,...,r} H
2($/[$]n, Z)→ H2($/[$]n, [$]n/[$]n+1) be the map induced

by L. By Proposition 2.3.7, we have:

2.3.8. Proposition. —

ωn = L∗
⊕

J:{1,...,n}→{1,...,r}

〈x∗J(1), . . . x
∗
J(n)〉ϕ($/[$]n)∗M

2.3.9. The above calculation of the element of H2 classifying

1→ [π]2/[π]3 → π/[π]3 → π/[π]2 → 1

as a cup product combines with Proposition 2.2.5 to give another proof of Proposition
2.1.4. Furthermore, this second proof is straightforward in the sense that it does not re-
quiring ‘guessing’ the cochain γ whose boundary is the difference of two given cocycles,
as in the proof in section 2.1.

Written out in excruciatingly unnecessary detail, this second proof goes as follows:

Proof. Let β be the map x 7→ [−,−]∗(x ∪ x).

Let $G ∈ H1(π/[π]2 o G, π/[π]2) be the cohomology class represented by the projection
π/[π]2 o G→ π/[π]2. Let BG ∈ H2(π/[π]2 o G, [π]2/[π]3) be the push-forward of $G ∪$G

under the commutator. Then, β = ℘BG
where ℘BG

is defined as in 2.2.1.

Let $ ∈ H1(π/[π]2), π/[π]2) be the cohomology class represented by the identity map.
Let B ∈ H2(π/[π]2, [π]2/[π]3) be the push-forward of $ ∪ $ under the commutator. So,
$ = i∗$G and B = i∗BG, where i : π→ π o G is the canonical inclusion.
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As above, let F = 〈x1, . . . , xr〉 be the free group, and if r = 2g for some g, let R =
F/〈[x1, x2][x3, x4] · · · [xg−1, xg]〉 be the fundamental group of a closed Riemann surface of
genus g. Ignoring the action of G on π, π is isomorphic to F∧ or R∧, where F∧ and R∧

denote the profinite completions of F and R respectively.

Suppose π = F∧. The abelianization of π is a free Ẑ module with basis {x1, . . . , xr}, so
an arbitrary element of π/[π]2 can be expressed as a proword xa1

1 xa2
2 · · · xar

r with aj ∈ Ẑ.

[do we need to explain the “pro-word” notation? — Kirsten] In [F]2/[F]3, we have the
computation:

[xai
i x

aj

j , xbi
i x

bj

j ] = (xai
i x

aj

j )(xbi
i x

bj

j )(xai
i x

aj

j )−1(xbi
i x

bj

j )−1

= [xi, xj]
−ajbixai+bi

i x
aj+bj

j x
−aj

j x−ai
i x

−bj

j x−bi
i

= [xi, xj]
−ajbixai+bi

i x
aj+bj

j [xi, xj]
aibjx

−aj−bj

j x−ai−bi
i

= [xi, xj]
aibj−ajbi

It follows that

(21) B(xa1
1 xa2

2 · · · xar
r , xb1

1 xb2
2 · · · xbr

r ) =
∏
i<j

[xi, xj]
aibj−ajbi,

whence pushing forward B by the Magnus coefficient for the function J : {1, 2}→ {1, 2, . . . , r}

with J(1) = i, J(2) = j, we have

(µJ)∗B = x∗i ∪ x∗j − x∗j ∪ x∗i = 2x∗i ∪ x∗j .

Use the notation that ω̂n is the element of H2(F∧/[F∧]n, [F∧]n/[F∧]n+1) classifying the
extension 1→ [F∧]n/[F∧]n+1 → F∧/[F∧]n+1 → F∧/[F∧]n → 1.

By Proposition 2.3.7, we have that 2(µJ)∗ω̂2 = (µJ)∗B. Since (20) is a split injection, we
have 2ω̂n = B. By Proposition 2.2.5, β − 2δ2 is linear as claimed.

The case π = R∧ is similar: the quotient map q : F∧ → R∧ induces an isomorphism on
abelianizations, and equation 21 remains valid. Thus,

(22) 2q([F∧]2/[F∧]3)∗ω̂2 = q(F∧/[F∧]2)
∗B,
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where q([F∧]2/[F∧]3) : [F∧]2/[F∧]3 → [R∧]2/[R∧]3 and q(F∧/[F∧]2) : F∧/[F∧]2 → R∧/[R∧]2
denote the maps induced by q. q induces a morphism of short exact sequences:

(23) 1 // [F∧]2/[F∧]3

q

��

// F∧/[F∧]3

q

��

// F∧/[F∧]2

q
∼=

��

// 1

1 // [R∧]2/[R∧]3 // R∧/[R∧]3 // R∧/[R∧]2 // 1

where q([F∧]2/[F∧]3) and q(F∧/[F∧]2) have been abbreviated to q.

Let ρ̂n ∈ H2(R∧/[R∧]n, [R∧]n/[R∧]n+1) be the element of cohomology classifying the
bottom short exact sequence of (23). By Proposition 2.2.3, q∗ω̂2 = q∗ρ̂n.

By (22), 2q∗ρ̂n = q∗B. Since q(F∧/[F∧]2) is an isomorphism, this gives 2ρ̂n = B, which
by Proposition 2.2.5 completes the proof. �

2.4. Bracket Massey products. 2.4.1. Definition. For a short exact sequence of groups
1 → N → M → Q → 1 with N abelian, and a (equivariant) homomorphism f : N → N ′

of abelian groups equipped with an action of M, an N additive N ′ coordinate is a function
A : M → N ′ such that A(nm) = f(n)A(m) for all n in N and m in M. In the case
where N ′ = N and f is the identity, we will say N coordinate to abbreviate ‘N additive N

coordinate.’

2.4.2. Proposition. — The boundary of an N additive N ′ coordinate descends to a 2-cocycle
in C2(Q,N).

Proof. Let A : M → N be an N additive N ′ coordinate for 1 → N → M → Q → 1 and
f : N → N ′. D(A) in C2(M,N ′) is defined D(A)(x, y) = A(x) + xA(y) − A(xy). Let n be
an element of N. We have the following straight-forward calculations:

D(A)(nx, y) = A(nx) + nxA(y) − A(nxy) = f(n) + A(x) + xA(y) − (f(n) + A(xy)) =
D(A)(x, y).

D(A)(x, ny) = A(x) + xA(ny) − A(xny) = A(x) + xf(n) + xA(y) − A((xnx−1)(xy)) =
A(x) + xf(n) + xA(y) − (xf(n) + A(xy)) = D(A)(x, y)

Thus D(A) descends to a function Q×Q→ N. Since D(A) considered as an element of
C2(M,N) is a cocycle, D(A) considered as an element of C2(Q,N) is a cocycle as well. �

2.4.3. The set of N coordinates of 1 → N → M → Q → 1 is in bijection with the set of
set-theoretic sections of the quotient map M→ Q, via the following bijection:
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To an N coordinate A : M→ N, we associate the set-theoretic section

q 7→ A(q)−1q,

where q is any element of M mapping to q. (Because A(nq)−1nq = (nA(q))−1nq =
A(q)−1q, this section is well-defined.)

The inverse bijection associates to a set theoretic section s : Q→M, the N coordinate

m 7→ ms(q)−1,

where q is the image of m in Q.

2.4.4. Proposition. — The extension 1 → N → M → Q → 1 is classified by −D(A) in
H2(Q,N), where A is any N coordinate.

Proof. Let s : Q → M denote the set-theoretic section of M → Q corresponding to A

defined in 2.4.3. Let q1, q2 be elements of Q, and let m1,m2 be elements of M mapping to
q1, q2 respectively. The proposition follows from the straight-forward algebraic manipu-
lation:

s(q1)s(q2)s(q1q2)
−1 =(A(m1)

−1m1)(A(m2)
−1m2)(A(m1m2)

−1m1m2)
−1

=A(m1)
−1(m1A(m2)

−1m−1
1 )A(m1m2)

�

2.4.5. Proposition. — Let A be the set of N coordinates of 1 → N → M → Q → 1, and let
ω ∈ H2(Q,N) classify this extension. The subset of cocycles of C2(Q,N) cohomologous
to ω equals {−D(A) : A ∈ A}.

Proof. By 2.0.5, ω is represented by the cocycle corresponding to a set-theoretic section
s of M → Q. Changing s to s + e for e : Q → N changes the corresponding cocycle by
adding D(e). The proposition then follows by 2.4.3 and the proof of Proposition 2.4.4. �

2.4.6. Let M be a graded associative algebra with unit of the form:

M =

∞∏
n=0

Mn,

where Mn denotes the homogeneous degree n elements of M. Let an : M → Mn denote
the projection. Addition and multiplication in M will be denoted by + and · respectively.

Let U be multiplicative subgroup of the units of M given by U = {1 + x|x ∈
∏∞

n=1 Mn}.

Let N be the subset of M given by N = {x|x ∈
∏∞

n=1 Mn}. N has the structure of a Lie
algebra by defining [n1, n2]N = n1n2 − n2n1 for any n1, n2 in N.
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Suppose Q injects into M0. Then, exp(x) =
∑∞

n=0 xn/n! and log(x) =
∑∞

n=1(−1)n+1(x −
1)n/n define functions exp : N → U and log : U → N, which are inverse bijections
between N and U (considered as sets). These bijections allow N to inherit the group
structure of U, namely N has a group structure ∗ defined: n1 ∗ n2 = log(exp(n1) exp(n2))
making exp and log inverse isomorphisms of groups. The Campbell-Hausdorff formula

n1 ∗ n2 = n1 + n2 +
1

2
[n1, n2] +

1

12
[[n1, n2], n2] +

1

12
[[n2, n1], n1] + . . .

expresses n1 ∗ n2 in terms of the Lie algebra structure on N, where in the above formula
[−,−] abbreviates [−,−]N. All the higher terms are higher order nested Lie brackets. For
use later, we state the Campbell-Hausdorff formula in its entirety:

(24)

n1∗n2 =
∑
m≥1

∑
{pi,qi≥0|
i=1,...,m,
pi+qi>0}

(−1)m

m
∑

(pi + qi)

1∏
pi!qi!

[· · · [· · · [[n1, n1], . . . , n1], n2, . . . , n2], n1, . . . , n2]

The bracket [· · · [· · · [[n1, n1], . . . , n1], n2, . . . , n2], n1, . . . , n2] has p1 n1’s, then q1 n2’s, then
p2 n1’s, then q2 n2’s etc. For I : {1, . . . ,m} → {1, 2}, it will be convenient to let CI denote
the coefficient of [· · · [[nI(1), nI(2)], nI(3)], . . . , nI(m)] in (24). In particular, we can abbreviate
(24):

(25) n1 ∗ n2 =

∞∑
m=1

∑
I:{1,...,m}→{1,2}

CI[· · · [[nI(1), nI(2)], nI(3)], . . . , nI(m)]

U is filtered by normal subgroups Un = {1 + x|x ∈
∏∞

j=n Mj}:

U = U1 ⊃ U2 ⊃ U3 . . .

The corresponding filtration for the group (N, ∗) is Nn = {x|x ∈
∏∞

j=n Mj}:

N = N1 ⊃ N2 ⊃ N3 . . .

These filtrations are additive with respect to the brackets [u1, u2]U = u1u2u
−1
1 u−1

2 on U

and [n1, n2]N = n1n2 −n2n1 on N in the sense that [Uj, Uk]U ⊂ Uj+k and [Nj,Nk]N ⊂ Nj+k.

2.4.7. We have a commutative diagram of group isomorphisms
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(Un/Un+1, ·)

��

(Mn,+)

77ooooooooooo

''OOOOOOOOOOO

(Nn/Nn+1, ∗)

OO

where m 7→ 1 + m is the isomorphism (Mn,+) → (Un/Un+1, ·), m 7→ m is the iso-
morphism (Mn,+) → (Nn/Nn+1, ∗) and the vertical isomorphism is given by exp in one
direction and log in the other.

2.4.8. Proposition. — an log : U/Un+1 → Un/Un+1 defines a Un/Un+1 coordinate on
U/Un+1

Remark. log descends to a function U/Un+1 → N/Nn+1. an descends to a function
N/Nn+1 →Mn. We can therefore view an log as a function U/Un+1 → N/Nn+1 →Mn →
Un/Un+1 via 2.4.7. This is what is meant by an log : U/Un+1 → Un/Un+1 in Proposition
2.4.8.

Proof. (of Proposition 2.4.8) Take x in Un/Un+1 and y in U/Un+1. an log(xy) = an(log x ∗
log y). Since log x is in Nn/Nn+1, [log x, z]N = 0 for any z in N/Nn+1. Thus by the Campbell-
Hausdorff formula, log x ∗ log y = log x + log y, and the proposition follows. �

2.4.9. Proposition 2.4.2, Proposition 2.4.4, and Proposition 2.4.8 imply that −D(an log)
determines a cocycle in C2(U/Un, Un/Un+1) which classifies the extension Un/Un+1 →
U/Un+1 → U/Un. We calculate −D(an log) using the Campbell-Hausdorff formula:

To do this, we express (u1, u2) 7→ an log(u1u2) as a Q linear combination of cochains
built from the aj log for j < n. The cochains in this Q linear combination are indexed by
pairs (I, P), where I is a function I : {1, . . . ,m} → {1, 2} for some integer m between 1 and
n inclusive, i.e. 1 ≤ m ≤ n, and where P : {1, . . . ,m} → {1, . . . , n − 1} is a function such
that

∑m
j=1 P(j) = n, i.e. P is a partition of n into the sum of m ordered, strictly positive

integers. For (I, P) as above, the associated cochain in C2(U/Un+1, Un/Un+1) is given by:

(26) (u1, u2) 7→ [· · · [[aP(1) log(uI(1)), aP(2) log(uI(2))], . . . , aP(3) log(uI(3))], aP(m) log(uI(m))]

Note that when m > 1, (26) defines a 2 cochain in C2(U/Un, Un/Un+1). By (25),

an log(u1u2) =

n∑
m=1

∑
(I,P)

CI[· · · [[aP(1) log(uI(1)), aP(2) log(uI(2))], . . . , aP(3) log(uI(3))], aP(m) log(uI(m))]

29



It follows that

−D(an log)(u1, u2) =

n∑
m=2

∑
(I,P)

CI[· · · [[aP(1) log(uI(1)), aP(2) log(uI(2))], . . . , aP(3) log(uI(3))], aP(m) log(uI(m))].

2.4.10. Bracket Massey products. Recall that for a ring A equipped with an action of a
profinite group G, one can define the nth order Massey product 〈t1, t2, . . . , tn〉 of certain
n-tuples (t1, t2, . . . , tn) of elements of H1(G, A). (The definition was recalled in 2.3.3.) The
definition of the Massey product uses the associativity of the cup product on C∗(G, A).
By replacing this associativity with the Jacobi relation, we define for a Lie algebra L with
a G-action, an analogue of the nth order Massey product 〈t1, t1, . . . , t1〉 of n copies of a
1-cocycle t1 in C1(G, L). As in the case of the usual Massey product, t1 must admit a
defining system, and this defining system introduces indeterminacy.

2.4.11. Bracket cup product. Composing the usual cup product H1(G, L) ⊗ H1(G, L) →
H2(G, L⊗L) with the map H2(G, L⊗L)→ H2(G, L), induced from the Lie bracket L⊗L→ L,
gives the order 2 bracket Massey product, or bracket cup product. (See 2.1.2 as well. Also,
note that although we claimed we would only define 〈t1, t1〉, here we define 〈t1, t2〉. For
the higher order bracket Massey products, we will only give a definition of an analogue
of 〈t1, t1, . . . , t1〉)

2.4.12. Third order bracket Massey product. Recall the following construction of the third
order (usual) Massey product of three elements τi ∈ H1(G, A) represented by cocycles
ti ∈ C1(G, A), i = 1, 2, 3. τ1, τ2, and τ3 must admit a defining system (s1, s2), s1, s2 ∈
C1(G, A), i.e. we must have Ds1 = t1 ∪ t2 and Ds2 = t2 ∪ t3. We can then form

s1 ∪ t3 + t1 ∪ s2

and it follows from the associativity of the cup product that this expression is a cocycle.

We can replace this associativity with the Jacobi relation.

Let [−,−] : L ⊗ L → L denote the Lie bracket. Suppose τ1 ∈ H1(G, L) is such that
[−,−]∗(τ1 ∪ τ1) = 0 in H2(G, L). Then we can form a third order bracket Massey product,
denoted 〈[τ1]〉3 as follows: let t1 ∈ C1(G, L) be a cocycle representing τ1. Since [−,−]∗(τ1∪
τ1) = 0 in H2(G, L), we can find t2 ∈ C1(G, L) such that D(t2) = [−,−]∗(t1 ∪ t1).

The boundary of the cochain [−,−]∗(t2 ∪ t1) is [−,−]∗(D(t2) ∪ t1 − t2 ∪D(t1)). Thus

D[−,−]∗(t2 ∪ t1)(g1, g2, g3) = [[t1(g1), g1t1(g2)], g1g2t1(g3)]

Similarly

D[−,−]∗(t1∪t2)(g1, g2, g3) = −[t1(g1), [g1t1(g2), g1g2t1(g3)]] = [[g1t1(g2), g1g2t1(g3)], t1(g1)]

Therefore, [−,−]∗(t2 ∪ t1) + [−,−]∗(t2 ∪ t1) is not a cocycle, but because of the Jacobi
relation

D([−,−]∗(t2 ∪ t1) + [−,−]∗(t2 ∪ t1))(g1, g2, g3) = −[[g1g2t1(g3), t1(g1)], g1t1(g2)]
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We now form two additional cochains in C2(G, L), whose boundary evaluated at (g1, g2, g3)
can be expressed as brackets [[−,−],−] evaluated at t1(g1), g1t1(g2), and g1g2t1(g3). We
will add a Q linear combination of these cochains to [−,−]∗(t2 ∪ t1) + [−,−]∗(t2 ∪ t1) to
form a cocycle.

First, consider the cochain in C1(G, L⊗ L)

∆(t1, t1)(g) = t1(g)⊗ t1(g)

Note that the boundary of ∆(t1, t1) is

D∆(t1, t1)(g1, g2) = t1(g1)⊗ t1(g1) + g1t1(g2)⊗ g1t1(g2) − t1(g1g2)⊗ t1(g1g2)

= t1(g1)⊗ t1(g1) + g1t1(g2)⊗ g1t1(g2) − (t1(g1) + g1t1(g2))⊗ (t1(g1) + g1t1(g2))

= −(t1(g1)⊗ g1t1(g2) + g1t1(g2)⊗ t1(g1))

where the second equality follows because t1 is a cocycle.

The two additional cochains in C2(G, L) mentioned above are [[−,−]−]∗(t1 ∪ ∆(t1, t1))
and [−, [−,−]]∗(∆(t1, t1) ∪ t1). We calculate the boundaries of these cochains:

D([[−,−]−]∗(t1∪∆(t1, t1)))(g1, g2, g3) = [[t1(g1), g1t1(g2)]g1g2t1(g3)]+[[t1(g1), g1g2t1(g3)]g1t1(g2)]

D[−, [−,−]]∗(∆(t1, t1) ∪ t1)(g1, g2, g3) = −[t1(g1), [g1t1(g2), g1g2t1(g3)]] − [g1t1(g2), [t1(g1), g1g2t1(g3)]]

= [[g1t1(g2), g1g2t1(g3)], t1(g1)] + [[t1(g1), g1g2t1(g3)], g1t1(g2)]

Thus,

D([−, [−,−]]∗(∆(t1, t1) ∪ t1) + [[−,−]−]∗(t1 ∪ ∆(t1, t1)))(g1, g2, g3)

= [[t1(g1), g1t1(g2)]g1g2t1(g3)] + [[g1t1(g2), g1g2t1(g3)], t1(g1)] + 2[[t1(g1), g1g2t1(g3)], g1t1(g2)]

= −[[g1g2t1(g3), t1(g1)], g1t1(g2)] + 2[[t1(g1), g1g2t1(g3)], g1t1(g2)]

= 3[[t1(g1), g1g2t1(g3)], g1t1(g2)]

where the second equality follows from the Jacobi relation.

D([−,−]∗(t2 ∪ t1) + [−,−]∗(t2 ∪ t1))(g1, g2, g3), D([[−,−]−]∗(t1 ∪ ∆(t1, t1)))(g1, g2, g3) ,
and D[−, [−,−]]∗(∆(t1, t1) ∪ t1)(g1, g2, g3) are all in the substance of L spanned by

[[t1(g1), g1g2t1(g3)], g1t1(g2)]

and
[[t1(g1), g1t1(g2)], g1g2t1(g3)],
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so they must satisfy a linear relation. From the above we see that this (unique up to scalar
multiplication) linear relation is

0 = D([−,−]∗(t2 ∪ t1) + [−,−]∗(t2 ∪ t1))(g1, g2, g3)

−
1

3
D([[−,−]−]∗(t1 ∪ ∆(t1, t1)))(g1, g2, g3)

−
1

3
D[−, [−,−]]∗(∆(t1, t1) ∪ t1)(g1, g2, g3)

We define 〈[τ1]〉3 by

〈[τ1]〉3 = [−,−]∗(t2∪t1)+[−,−]∗(t2∪t1)−
1

3
[[−,−]−]∗(t1∪∆(t1, t1))−

1

3
[−, [−,−]]∗(∆(t1, t1)∪t1)

and by the above 〈[τ1]〉3 is a cocycle.

2.4.13. nth order bracket Massey product. Instead of searching by hand for linear com-
binations of brackets of cochains which determine cocycles by the Jacobi identity, the
Campbell-Hausdorff formula produces such a linear combination automatically. We de-
scribe this linear combination in 2.4.14-2.4.19.

2.4.14. The cochain given in (26) generalizes to produce an operation C1(G, L)m → C2(G, L)
for each function I : {1, . . . ,m} → {1, 2}. This operation takes (b1, . . . , bm) ∈ C1(G, L)m to
the 2 cochain:

(g1, g2) 7→ [· · · [[l1, l2], l3], . . . , lm],

where li = bi(g1) if I(i) = 1, and li = g1bi(g2) if I(i) = 2. We will denote this cochain by
βI(b1, . . . , bm).

2.4.15. The operations βI : C1(G, L)m → C2(G, L) of 2.4.14 can be expressed in terms of
more familiar operations. We list these operations and give βI as a composition of them.

To a pair (b1, b2) ∈ C1(G,⊗m1L)×C1(G,⊗m2L), associate the cochain g 7→ b1(g)⊗b2(g)
in C1(G,⊗m1+m2L). (The justification for calling this operation ‘more familiar’ than βI is
that if ⊗m1L, ⊗m2L, and ⊗m1+m2L are replaced by a ring R, the boundary of the analogous
cochain shows that the cup product H1(G, R) ⊗ H1(G, R) → H2(G, R) is antisymmetric.)
Repeating this process gives a map ∆ : C1(G, L)m → C1(G,⊗mL) which takes (b1, . . . , bm)
to the cochain

(27) g 7→ b1(g)⊗ b2(g)⊗ . . .⊗ bm(g)

Let i1, i2, . . . , im1
be the list of elements of I−1(1) given in increasing order, and let

im1+1, im1+2, . . . , im1+m2
be the list of elements of I−1(2) given in increasing order. Let σ be

the permutation of {1, . . . ,m} given by σ(ij) = j. In other words, σ puts the list i1, . . . im
back into increasing order. σ induces σ∗ : C∗(G,⊗mL) → C∗(G,⊗mL). The mth order Lie
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bracket [· · · [[−,−],−], . . . , −] : ⊗mL → L induces [· · · [[−,−],−], . . . ,−]∗ : C∗(G,⊗mL) →
C∗(G, L). The operation βI is a composition of these operations:

(28)
βI(b1, . . . , bm) = [· · · [[−,−],−], . . . , −]∗σ∗(∆(bi1 , bi2 , . . . , bim1

)∪∆(bim1+1
, bim1+2

, . . . , bim1+m2
))

2.4.16. Definition. Let L be a Lie-algebra with an action of a profinite group G. Let τ1 be
an element of H1(G, L). A defining system for the order n bracket Massey product of τ1 is
(t1, . . . , tn−1) ∈ C1(G, L)n−1 such that:

(1) t1 is a cocycle representing τ1

(2) D(tj) = −
∑j

m=2

∑
(I,P) CIβI(tP(1), tP(2), . . . , tP(m)) for 1 < j < n

The sum in condition (2) runs over all pairs (I, P) where I is a function I : {1, . . . ,m} →
{1, 2} and P : {1, . . . ,m} → {1, . . . , n − 1} is a function such that

∑m
j=1 P(j) = n. (See also

2.4.9.)

2.4.17. Definition. The order n bracket Massey product of τ1 with respect to the defining sys-
tem (t1, . . . , tn−1) is an element of C2(G, L) denoted by [〈τ1; t1, . . . , tn−1〉]n and is defined

[〈τ1; t1, . . . , tn−1〉]n =

n∑
m=2

∑
(I,P)

CIβI(tP(1), tP(2), . . . , tP(m)),

where the indexing of the sum is as in 2.4.16.

Although we have defined [〈τ1; t1, . . . , tn−1〉]n as a cochain, we will show in Proposi-
tion 2.4.19 that [〈τ1; t1, . . . , tn−1〉]n is a cocycle, and we will sometimes denote the corre-
sponding cohomology class by [〈τ1; t1, . . . , tn−1〉]n or by [〈τ1〉]n if the defining system is
understood.

Note that condition (2) of Definition 2.4.16 is equivalent to D(tj) = −[〈τ1; t1, . . . , tj−1〉]j
for 1 < j < n

2.4.18. Example. By construction, the extensions Un/Un+1 → U/Un+1 → U/Un of 2.4.6
are classified by bracket Massey products: let U = U1 ⊃ U2 ⊃ U3 · · · and the cochains
aj log ∈ C1(U/Un, Uj/Uj+1), j < n, be as in 2.4.6. Let G = U/Un and L = ⊕∞

j=1Uj/Uj+1. G

acts trivially on L. By 2.4.9 we have a cocycle −D(an log) ∈ C2(G, Un/Un+1) classifying
Un/Un+1 → U/Un+1 → U/Un. Viewing −D(an log) as a cocycle in C2(G, L), note that

−D(an log) = [〈a1 log; a1 log, a2 log, . . . , an−1 log〉]n
33



2.4.19. Proposition. — For (t1, . . . , tn−1) ∈ C1(G, L)n−1 a defining system of τ1 ∈ H1(G, L),
[〈τ1; t1, . . . , tn−1〉]n ∈ C2(G, L) is a cocycle.

Proof. Abbreviate the cochain [〈τ1; t1, . . . , tn−1〉]n ∈ C2(G, L) by [〈τ1〉]n. Take (g1, g2, g3) ∈
G3. We show D[〈τ1〉]n(g1, g2, g3) = 0. Let E be the subset of L given by

E = {t1(g1), ..., tn(g1), g1t1(g2), ..., g1tn(g2), g1g2t1(g3), ..., g1g2tn(g3)} ⊂ L.

By example 2.4.18, it suffices to show that D[〈τ1〉]n(g1, g2, g3) can be expressed as a Q
linear combination of Lie brackets of any weight and arrangement in the elements of E.

By 2.4.15, it suffices to show that

D(∆(bi1 , bi2 , . . . , bim1
) ∪ ∆(bim1+1

, bim1+2
, . . . , bim1+m2

))(g1, g2, g3)

is a Q linear combination of simple tensors in Lie brackets of any weight and arrangement
in the elements of E.

Let x abbreviate ∆(bi1 , bi2 , . . . , bim1
) and let y abbreviate ∆(bim1+1

, bim1+2
, . . . , bim1+m2

).

D(x ∪ y)(g1, g2, g3) = Dx(g1, g2)⊗ g1g2y(g3) − x(g1)⊗ g1Dy(g2, g3)

Since x(g1) and g1g2y(g3) are simple tensors in the elements of E, it suffices to show that
Dx(g1, g2) and g1Dy(g2, g3) are Q linear combinations of simple tensors in Lie brackets
of any weight and arrangement in the elements of E. Since (t1, . . . , tn−1) is a defining
system, Dtj(g1, g2) and g1Dtj(g2, g3) are Q linear combinations of simple tensors in Lie
brackets of any weight and arrangement in the elements of E. The proposition follows
from the calculation that for any (b1, b2, . . . , bm ′) ∈ C1(G, L)m ′ , we have

D(∆(b1, b2, . . . , bm ′))(g1, g2) = ⊗m ′

i=1bi(g1) +⊗m ′

i=1g1bi(g2) −⊗m ′

i=1bi(g1g2)

= ⊗m ′

i=1bi(g1) +⊗m ′

i=1g1bi(g2) −⊗m ′

i=1(bi(g1) + g1bi(g2) − Dbi(g1, g2))

(Here it is understood that the tensor product over the index i respects order, e.g. ⊗k
i=1bi(g1) =

b1(g1)⊗ b2(g1)⊗ . . .⊗ bm(g1).)

�

2.4.20. Obtaining defining systems.

We describe a situation in which we can form an order n bracket Massey product. Let
G and $ be profinite groups, with G acting continuously on $. Let $ > $2 > $3 . . . be a
G invariant filtration of $ by normal subgroups such that [$i,$j] ⊂ $i+j. For instance,
we could take the lower central series filtration $n = [$]n. Let τ1 ∈ H1($/$2 oG, $/$2)
be the cohomology class represented by the projection t1 : $/$2 o G → $/$2, and by
abuse of notation, τ1 and t1 will also denote the pullbacks to $/$n o G for n > 2.
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Form the Lie algebra L = ⊕∞
j=1$j/$j+1. G acts on L and therefore so does $/$n o G

for any n, by letting $/$n act trivially. We describe a situation in which we can form the
order n bracket Massey product of τ1 for the group $/$n o G (or $/$m o G for m ≥ n)
acting on L. The resulting bracket Massey product from the below procedure will be the
push-forward of a cocycle in C2($/$n o G, $n/$n+1).

(t1) is a defining system for the order 2 bracket Massey product as above.

Suppose inductively that (t1, . . . , tn−2) is a defining system for the order n − 1 bracket
Massey product on the group $/$n−1 o G. Thus, we can form [〈τ1; t1, . . . , tn−2〉]n−1 in
H2($/$n−1, L). Under the hypothesis that [〈τ1; t1, . . . , tn−2〉]n−1 is the pushforward to L

of the element of cohomology classifying

1→ $n−1/$n → $/$n o G→ $/$n−1 o G→ 1,

we can form the order n bracket Massey product on $/$n o G as follows:

By Proposition 2.4.5, we have a $n−1/$n coordinate

tn−1 : $/$n o G→ $n−1/$n

such that D(tn−1) = −[〈τ1; t1, . . . , tn−2〉]n−1. (For this equality, view D(tn−1) as a cocycle
in C2($/$n−1 o G, L) via $n−1/$n → L. c.f. Proposition 2.4.2.)

Pulling back (t1, . . . , tn−2) to $/$noG, we have the defining system (t1, . . . , tn−2, tn−1)
for the order n bracket Massey product of τ1, making it possible to repeat this process.

2.4.21. Let G, $ > $2 > $3 . . ., τ1, and t1 be as in 2.4.20. As above, suppose that for each
j < n, we have a $j/$j+1 coordinate tj for

1→ $j/$j+1 → $/$j+1 o G→ $/$j o G→ 1

such that D(tj) = −[〈τ1; t1, . . . , tj−1〉]j in C2($/$j o G, $j/$j+1).

In particular, (t1, . . . , tn−1) is a defining system for the order n bracket Massey product
of τ1, and this defining system pulls back along any group homomorphism G→ $/$n o
G to a defining system of the pull-back of τ1. This gives an alternate description of the
map

℘η : H1(G, $/[$]n)→ H2(G, [$]n/[$]n+1)

for
η = [〈τ1; t1, . . . , tn−1〉]n

defined in Notation 2.2.1: for every x in H1(G, $/[$]n), we have a homomorphism G →
$/[$]n oG defined up to conjugation by an element of $/[$]n. (This is also described in
Notation 2.2.1.) The pullback of (t1, . . . , tn−1) is a defining system for the order n bracket
Massey product of x, and the resulting bracket Massey product [〈x〉]n ∈ H2(G, [$]n/[$]n+1)
is independent of the choice of homomorphism G → $/[$]n o G. Furthermore, it is im-
mediate from the definitions that

℘η(x) = [〈x〉]n
where the defining system on the right hand side is understood to be the pull-back of
(t1, . . . , tn−1).
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2.4.22. Let G, $ > $2 > $3 . . ., τ1, and t1 be as in 2.4.20. Recall from 2.4.20 that under the
hypothesis that for each j < n, we have a $j/$j+1 coordinate tj for $/$j+1 o G such that
D(tj) = −[〈τ1; t1, . . . , tj−1〉]j, we can form [〈τ1; t1, . . . , tn−1〉]n in C2($/$n o G, $n/$n+1).
We can repeat this process, i.e. we can find a $n/$n+1 coordinate tn for $/$n+1 oG such
that D(tn) = −[〈τ1; t1, . . . , tn−1〉]n and form [〈τ1; t1, . . . , tn〉]n+1, if

[〈τ1〉]n ∈ H2($/$n o G, $n/$n+1)

classifies

(29) 1→ $n/$n+1 → $/$n+1 o G→ $/$j o G→ 1

([〈τ1〉]n denotes the cohomology class of the cocycle [〈τ1; t1, . . . , tn−1〉]n).

The next proposition shows that when $ is a finitely generated free group filtered by
its lower central series, the pullback of [〈τ1〉]n along i : $n/$n+1 → $n/$n+1 o G always
classifies the pullback of (29).

2.4.23. Proposition. — Suppose that $ is a finitely generated free group with an action of G such
that the lower central series filtration $ > [$]2 > [$]3 . . . satisfies the hypothesis that for each j <

n we have a [$]j/[$]j+1 coordinate tj for $/[$]j+1 o G such that D(tj) = −[〈τ1; t1, . . . , tj−1〉]j
in C2($/[$]j o G, $j/[$]j+1). Let i : $/[$]n → $/[$]n o G be the inclusion. Then

i∗[〈τ1; t1, . . . , tn−1〉]n

classifies

1→ [$]n/[$]n+1 → $/[$]n+1 → $/[$]n → 1

To prove Proposition 2.4.23 we will use the following lemma and corollary to the lemma:

2.4.24. Lemma. — Let $ be a finitely generated free group. The pullback H2($/[$]n, Z) →
H2($/[$]n+1, Z) is the zero map for all n.

Remark. The hypothesis that $ be free is necessary: if $ is the fundamental group of a
compact surface of genus g > 1, H2($/[$]2, Z)→ H2($/[$]3, Z) is non-zero. (The kernel
is the image of the boundary map H1([$]2/[$]3, Z)→ H2($/[$]2, Z) of the E2 page of the
Serre spectral sequence Hi($/[$]2, H

j([$]2/[$]3, Z)) ⇒ H2($/[$]3, Z), which can not be
surjective as H1([$]2/[$]3, Z) is free of rank

(
g
2

)
− 1 and H2($/[$]2, Z) is free of rank

(
g
2

)
Proof. By the universal coefficient theorem, H2($/[$]n, Z) is dual to H2($/[$]n, Z), so it
suffices to show that H2($/[$]n+1, Z) → H2($/[$]n, Z) is the zero map. This follows by
the natural isomorphisms H2($/[$]n, Z) ∼= [$]n/[$]n+1 given by Hopf’s theorem (see for
instance [Bro94, II Thm. 5.3]). �

Lemma 2.4.24 implies the following uniqueness result for bracket Massey products in
free groups.
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2.4.25. Corollary. — Let $ be a finitely generated free group. Form the Lie algebra⊕[$]n/[$]n+1.
Suppose ⊕[$]n/[$]n+1 → L is a morphism of Lie algebras, and view L and ⊕[$]n/[$]n+1 as
equipped with the trivial action of $. Suppose (t1, . . . , tn−1) is a defining system for the order n

bracket Massey product of τ1 ∈ H1($/[$]n, L) such that tj is a [$]j/[$]j+1 additive L coordinate
for $/[$]j+1. Suppose (s1, . . . , sn−1) is another such defining system. Then in H2($/[$]n, L),
we have the equality

[〈τ1; t1, . . . , tn−1〉]n = [〈τ1; s1, . . . , sn−1〉]n

Proof. By Lemma 2.4.24, H2($/[$]n−1, L) → H2($/[$]n, L) is the 0 map. Thus, it suffices
to show that [〈τ1; t1, . . . , tn−1〉]n−[〈τ1; s1, . . . , sn−1〉]n descends to a cochain (which is there-
fore automatically a cocycle) in C2($/[$]n−1, L).The only summands of [〈τ1; t1, . . . , tn−1〉]n
given in 2.4.17 which do not descend to $/[$]n−1 are (x, y) 7→ [t1(x), tn−1(y)] and (x, y) 7→
[tn−1(x), t1(y)]. Because tn−1 and sn−1 are [$]n−1/[$]n additive L coordinates for $/[$]n,
their difference tn−1 −sn−1 descends to an element of C1($/[$]n−1, L). Therefore (x, y) 7→
[t1(x), (tn−1 − sn−1)(y)] and (x, y) 7→ [(tn−1 − sn−1)(x), t1(y)] descend to C2($/[$]n−1, L).

�

Proof. (of Proposition 2.4.23)Let sj = i∗tj for j = 1, . . . , n−1. Notice that sj ∈ C2($/[$]j, [$]j/[$]j+1)
is a [$]j/[$]j+1 coordinate for 1 → [$]j/[$]j+1 → $/[$]j+1 → $/[$]j → 1, and that
D(sj) = −[〈i∗τ1; s1, . . . , sj−1〉]j (where this equality is an equality of cocycles in C2($/[$]j, [$]j/[$]j+1)).
We need to show that [〈i∗τ1; s1, . . . , sn−1〉]n classifies 1 → [$]n/[$]n+1 → $/[$]n+1 →
$/[$]n → 1.

As in 2.3.5, let m : $ → Z〈〈z1, . . . , zr〉〉× be the Magnus embedding. Let U and Uj

(j = 1, 2, . . .) be as in 2.4.6 for the graded associative algebra M = Z〈〈z1, . . . , zr〉〉.

Let ωj ∈ H2($/[$]j, [$]j/[$]j+1) denote the cohomology class classifying

(30) 1→ [$]j/[$]j+1 → $/[$]j+1 → $/[$]j → 1

(cf. Proposition 2.3.8). Let νj ∈ H2(U/Uj, Uj/Uj+1) denote the cohomology class classify-
ing

(31) 1→ Uj/Uj+1 → U/Uj+1 → U/Uj → 1

m induces a map from the central extension (30) to the central extension (31). By 2.2.3,
m∗ωn = m∗νn.

Because m : [$]n/[$]n+1 → Un/Un+1 is a split injection (see equation 20), it suffices to
show that m∗ωn = m∗[〈i∗τ1; s1, . . . , sn−1〉]n in H2($/$n, Un/Un+1).
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Let aj and log be as in 2.4.6. By Example 2.4.18, (a1, a2 log, . . . , an−1 log) is a defining
system for the order n bracket Massey product of a1, and [〈a1; a1, a2 log, . . . , an−1 log〉]n =
νn in H2(U/Un, Un/Un+1).

We are therefore reduced to showing that

m∗[〈i∗τ1; s1, . . . , sn−1〉]n = m∗[〈a1; a1, a2 log, . . . , an−1 log〉]n

This is equivalent to showing

[〈m∗i
∗τ1; m∗s1, . . . , m∗sn−1〉]n = [〈m∗a1; m

∗a1,m
∗a2 log, . . . , m∗an−1 log〉]n

This last equality follows by Corollary 2.4.25 �

2.4.26. Let G, $ be profinite groups with G acting on $. Let δn : H1(G, $/[$]n) →
H2(G, [$]n/[$]n+1) be as in 2.0.3.

Let εn denote the element of H2($/[$]n o G, [$]n/[$]n+1) classifying

1→ [$]n/[$]n+1 → $/[$]n+1 o G→ $/[$]n o G→ 1

So, δn = ℘εn (see 2.2.2 and 2.2.1).

Suppose additionally that $ is a finitely generated free group. Combining Proposi-
tion 2.2.5 and Proposition 2.4.23 gives the following recursive understanding of the struc-
ture of δn for small n (or “until the linear term comes from a non vanishing cohomol-
ogy class”): δ2(x) = [〈x〉]2 + L2(x), where L2 is linear. L2 is the linear map associated
to `2 ∈ H2($/[$]2 o G, [$]2/[$]3). If `2 is 0, then L2 = 0 and δ3(x) = [〈x〉]3 + L3(x),
where L3 is linear in the sense of Proposition 2.2.5. L3 is the linear map associated to
`3 ∈ H2($/[$]3 o G, [$]3/[$]4). If `3 is 0, then L3 = 0 and δ4(x) = [〈x〉]4 + L4(x), where L4

is linear in the sense of Proposition 2.2.5 etc. ([〈x〉]n is as in 2.4.21. The map associated to
a cohomology class is given in 2.2.1. For δ2, see also Proposition 2.1.4.) Formally:

2.4.27. Definition. Let G, $ > $2 > $3 > . . ., τ1, and t1 be as in 2.4.20. Consider $ as
a filtered group with a G action. Say that $ has property Pn if there is a defining system
(t1, . . . , tn−1) for the order n bracket Massey product of τ1, satisfying the hypothesis that
tj is a $j/$j+1 coordinate for $/[$]j+1 o G. (The order n bracket Massey product of τ1 is
for the group $/$n o G acting on the Lie algebra ⊕$j/$j+1.)

2.4.28. Theorem. — Suppose G is a profinite group acting continuously on $, where $ is a
finitely generated free group or the profinite completion of such a group. If $ filtered by its lower
central series has property Pn, then

• δm(x) = [〈x〉]m for m < n, where [〈x〉]m denotes the order m bracket Massey product as
in 2.4.21.

• δn(x) = [〈x〉]n + Ln(x), where Ln : H1(G, $/[$]n) → H2(G, [$]n/[$]n+1) is linear in
the sense of Proposition 2.2.5.
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• Ln = ℘`n , where `n ∈ H2($/[$]n o G, [$]n/[$]n+1) is given by `n = εn − [〈τ1〉]n with
[〈τ1〉]n as in 2.4.17 and 2.4.27, εn as in 2.4.26, and ℘`n as in 2.2.1.

Furthermore, if `n is 0, then $ has property Pn+1.

Proof. Since $ has property Pn, we have for m < n, a $m/$m+1 coordinate tm for
$/[$]m+1 o G such that −D(tm) = [〈τ1; t1, . . . , tm−1〉]m in C2($/[$]m o G, $m/[$]m+1),
where τ1 and t1 are as in 2.4.20 for the lower central series filtration of $. By Proposition
2.4.4, it follows that for m < n

1→ [$]m/[$]m+1 → $/[$]m+1 o G→ $/[$]m o G→ 1

is classified by the cohomology class [〈τ1〉]m of the cocycle [〈τ1; t1, . . . , tm−1〉]m. By 2.2.2,
we therefore have δm = ℘η for η = [〈τ1〉]m for m < n. Thus δm(x) = [〈x〉]m, as in 2.4.21 for
m < n.

Since $ has property Pn, we can form the cocycle [〈τ1; t1, . . . , tn−1〉]n and its corre-
sponding cohomology class [〈τ1〉]n ∈ H2($/[$]n o G, [$]n/[$]n+1). By 2.2.2 and 2.4.21,
δn(x) − [〈x〉]n = ℘`n(x) (for any x ∈ H1(G, $/[$]n)). Let i : $/[$]n → $/[$]n o G denote
the inclusion. By Proposition 2.4.23, i∗[〈τ1〉]n classifies

(32) 1→ [$]n/[$]n+1 → $/[$]n+1 → $/[$]n → 1

By 2.2.3, i∗εn classifies (32). Since both i∗[〈τ1〉]n and i∗εn classify (32), i∗`n = 0. By 2.2.5,
℘`n is linear in the sense of Proposition 2.2.5, i.e. ℘`n(x1 + x2) = ℘`n(x1) + ℘`n(x2) for any
x1, x2 in H1(G, $/[$]n) such that we have x1 + x2 in H1(G, $/[$]n). So, we may define
Ln = ℘`n , and we have δn(x) = [〈x〉]n + Ln(x) with Ln linear in the sense of Proposition
2.2.5.

Now suppose ` = 0. Then [〈τ1〉]n classifies

1→ [$]n/[$]n+1 → $/[$]n+1 o G→ $/[$]n o G→ 1

By 2.4.20, $ has property Pn+1. �

2.4.29. Theorem 2.4.28 applies to the obstructions δn for any non-proper, smooth, geo-
metrically irreducible, algebraic curve X over a subfield k of C, as in 1.1.3. For instance,
π1 filtered by its lower central series and equipped with its action of Gk (with π1 as in
1.1.3), has property P2 and we recursively apply Theorem 2.4.28 as above to describe δn

for small n. (We may only get a description of δ2.)

2.4.30. By 2.4.20 and 2.4.17, [〈τ1〉]n is independent of the lift of the action of G on $/[$]n
to the action of G on $/[$]n+1. On the other hand, εn depends on this lift. The bracket
Massey term in the decomposition of δn of Theorem 2.4.28 therefore requires less under-
standing of the G action than is required to compute δn. It is only the term subject to
linearity conditions that depends on G’s action on all of $/[$]n+1.

2.4.31. Dependence of the linear term of δ2 on the base point.
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Let b1, b2 be rational base points or tangential base points of X ⊗ k, and let πb1
,πb1

denote the etale fundamental group of X⊗ k based at b1, b2 respectively.

πb1
and πb2

are isomorphic as groups, but not (necessarily) as G groups.

Let ℘ be a path from b1 to b2. ℘ determines a group isomorphism i℘ : πb1
→ πb2

,

given by γ 7→ ℘γ℘−1. The failure of i℘ to be G equivariant is measured by the cocycle
g 7→ ℘−1(g℘) in C1(G, πb2

) corresponding to (b1, ℘). (This correspondence refers to the
second map from rational points to homotopy sections given in 1.1.3.)

gi℘(γ) = i℘((℘−1(g℘))(gγ)(℘−1(g℘))−1)

Note that i℘ induces a G equivariant isomorphism πb2
/[πb2

]2 → πb1
/[πb1

]2.

Furthermore, i℘ induces a G equivariant isomorphism [πb2
]2/[πb2

]3 → [πb1
]2/[πb1

]3,
because for any γ ∈ [πb2

]2, we have (℘−1(g℘))(gγ)(℘−1(g℘))−1(gγ)−1 ∈ [πb2
]3.

We therefore denote both πb1
/[πb1

]2 and πb2
/[πb2

]2 by π/[π]2. Similarly, [π]2/[π]3 de-
notes both [πb1

]2/[πb1
]3 and [πb2

]2/[πb2
]3.

Let δ2,b1
and δ2,b2

denote the obstructions H1(Gk, π/[π]2) → H2(Gk, [π]2/[π]3) corre-
sponding to b1 and b2 respectively. Both δ2,b1

and δ2,b2
are the sum of the bracket cup

product H1(Gk, π/[π]2) → H2(Gk, [π]2/[π]3) and a linear term. (The bracket cup product
is given in 2.1.2 or 2.4.11. It is the same map for either base point because i℘ identifies the
two maps πbi

/[πbi
]2 ⊗ πbi

/[πbi
]2 → [πbi

]2/[πbi
]3 for i = 1, 2, in the sense that the obvious

diagram commutes.) Denote the linear term of δ2,b1
by Lb1

, and denote the linear term of
δ2,b2

by Lb2
.

Lb1
−Lb2

is the obstruction H1(Gk, π/[π]2)→ H2(Gk, [π]2/[π]3) corresponding to ε1 −ε2,
where εi ∈ H2(π/[π]2 o Gk, [π]2/[π]3) is the element of cohomology classifying

1→ [π]2/[π]3 → πbi
/[πbi

]3 o Gk → π/[π]2 o Gk

for i = 1, 2.

Let a2 be a [π]2/[π]3 additive [π]2/[π]3 coordinate for

[π]2/[π]3 → πb1
/[πb1

]3 → π/[π]2

Then a2i℘ is a [π]2/[π]3 additive [π]2/[π]3 coordinate for

[π]2/[π]3 → πb2
/[πb2

]3 → π/[π]2

It follows that the map πb1
/[πb1

]3 o Gk → [π]2/[π]3, also denoted a2, defined by

γ o g 7→ a2(γ)

is a [π]2/[π]3 coordinate for

[π]2/[π]3 → πb1
/[πb2

]3 o Gk → π/[π]2 o Gk
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In the same way, a2i℘ is a [π]2/[π]3 coordinate for

[π]2/[π]3 → πb2
/[πb2

]3 o Gk → π/[π]2 o Gk

By Proposition 2.4.4, ε1 − ε2 = D(a2i℘) − D(a2).

(D(a2)−D(a2i℘))(γ1 og1, γ2 og2) = a2(γ1 og1 ·πb1
γ2 og2)−a2i℘(γ1 og1 ·πb2

γ2 og2)

i℘(γ1og1·πb2
γ2og2) = i℘(γ1g1γ2)og1g2 = γ1i℘(g1γ2)og1g2 = γ1(℘

−1(g1℘))−1g1γ2(℘
−1(g1℘))o

g1g2.

Thus (D(a2)−D(a2i℘))(γ1og1, γ2og2) = a2(γ1g1γ2)−a2(γ1(℘
−1(g1℘))−1g1γ2(℘

−1(g1℘))).

γ1(℘
−1(g1℘))−1g1γ2(℘

−1(g1℘)) = γ1g1γ2[−g1γ2,−℘−1(g1℘)] = [g1γ2, ℘
−1(g1℘)]γ1g1γ2

Thus (D(a2) − D(a2i℘))(γ1 o g1, γ2 o g2) = [℘−1(g1℘), g1γ2]. This is the bracket cup
product of the point b1 with the ‘identity’ i.e. this is the bracket cup product of the cocycle
corresponding to (b1, ℘) with the twisted homomorphism π/[π]2 o Gk → π/[π]2 given by
γ o g 7→ γ.

Thus, (L1−L2)(x) = b1∪x, where the cup product here denotes the bracket cup product.

3. EXAMPLES AND COMPUTING δn

3.1. δn over R. For geometrically connected, finite type R schemes, the GR action on πet
1

comes from the GR action on π
top
1 via the canonical isomorphism (πtop

1 )∧ ∼= πet
1 [SGAI,

Exp. XII Cor. 5.2]. To study δn over R, we first establish results allowing us to re-
place πet

1 by π
top
1 . (See Proposition 3.1.19.) The analogue of the injection Jac X(k) →

H1(Gk, π1/[π1]2) for number fields (discussed in 1.1.3) does not hold over R. Instead ho-
motopy sections can only record connected components of real points (3.1.2). In particu-
lar, Ellenberg’s δn are obstructions to connected components of real points of the Jacobian
coming from the curve itself. In 3.2 , we show that for proper, smooth, geometrically
connected curves over R, the δn succeed in determining the connected components of
R-points of the curve, and in fact δ2 itself is sufficient for this (Proposition 3.2.1).

For the above, we use a ‘section conjecture for π
top
1 ,’ under certain hypotheses (Corol-

laries 3.1.8 and 3.1.9). This ‘section conjecture’ is an immediate corollary of a theorem of
Gunnar Carlsson (reproduced below as Theorem 3.1.4). It implies the usual section con-
jecture over R for schemes such that H1(GR, π

top
1 ) → H1(GR, (πtop

1 )∧) is an isomorphism.
To establish Proposition 3.1.19, we show H1(GR, π

top
1 ) → H1(GR, (πtop

1 )∧) is an isomor-
phism for smooth proper (geometrically connected) curves and abelian varieties with an
R-point (Propositions 3.1.14 and 3.1.17), thereby also giving another proof of the usual
section conjecture for these schemes (Remark 3.1.20). See [Pál] for a nice discussion and a
topological proof of the section conjecture over R in full generality.

3.1.1. Homotopy sections over R.
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For k = R, the map from sections of X → Spec k to homotopy sections (1.1.3) passes
through π0(X(R)). (In particular, for curves and their Jacobians with X(R) 6= ∅, X(R) →
H1(GR, πet

1 (XC)) is not injective.)

3.1.2. Proposition. — Let X → Spec R be finite type and geometrically connected, and suppose
that X(R) 6= ∅. Then the map X(R)→ H1(GR, πet

1 (XC)) defined in 1.1.3 admits a factorization

X(R)→ π0(X(R))→ H1(GR, πet
1 (XC))

(where π0(X(R)) denotes the connected components of the real points of the complex analytic space
corresponding to XC).

Proof. Let b denote the chosen basepoint. Let x1, x2 ∈ X(R) be two points with the same
image in π0(X(R)). Let X(C) denote the complex analytic space corresponding to XC, by
a slight abuse of notation. Choose a path γ1 : [0, 1] → X(C) from b to x1, and a path
η : [0, 1] → X(C)GR from x1 to x2 whose image lies entirely inside the real points of X(C).
In particular, γ2 = γ1η is a path from b to x2. (Composition in π

top
1 (X(C)) is denoted

left to right here.) Let χi ∈ C1(GR, π
top
1 (X(C))) be the cocycle g 7→ γig(γ−1

i ) for i =

1, 2. Let ι : H1(GR, π
top
1 (X(C))) → H1(GR, πet

1 (XC)) be the map induced by the canonical
isomorphism π

top
1 (X(C))∧ ∼= πet

1 (XC). x1 and x2 are sent to ι(χ1) and ι(χ2) respectively in
H1(GR, πet

1 (XC)). Since g(η) = η,

χ2(g) = γ1ηg(γ1η)−1 = γ1ηg(η)−1g(γ−1
1 ) = χ1(g),

proving the proposition. �

3.1.3. ‘Section conjecture for π
top
1 ’ over R.

Let G be a finite group. By a G CW complex we mean a CW complex X with an action
of G by cellular maps such that for each g ∈ G, {x ∈ X|g(x) = x} is a subcomplex of X

(see [Bre67]). By a finite G complex we mean a finite dimensional G CW complex X with
only finitely many cells in each dimension. For a topological space T , let T∧

p denote the
Bousfield-Kan mod p completion.

3.1.4. Theorem [Carlsson]. — Let G be a finite p-group. Let X be a finite based G CW complex,
and let

XG =
∐

α∈π0(XG)

(XG)α

be the decomposition of XG into its connected components. Let Kα be the kernel of

π1((X
G)α)→ π1(X)

and let (̃XG)α → (XG)α be the connected covering space corresponding to Kα. Let Lα = π1((X
G)α)/Kα.

Let XG
α = ELα ×Lα ((̃XG)α)∧

p .

There is a natural map F(EG, X)G → ∐α∈π0(XG) XG
α which induces an isomorphism on mod-p

homology.
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This is Theorem B(a) of [Car91].

A weak G-homotopy equivalence is a G equivariant map f : X → Y such that for any
subgroup H of G, the induced map on fixed points fH : XH → YH is a weak equivalence.

3.1.5. Corollary. — Let G be a finite p-group and let X be weakly G homotopy equivalent to a
finite based G CW complex. Then there is a natural bijection π0(F(EG, X)G) ∼= π0(X

G).

Proof. The spaces XG
α are connected. �

When X is a K(π, 1), there is a natural bijection π0(F(EG, X)G) = H1(G, π) by a standard
representability result for group cohomology with twisted coefficients. For the conve-
nience of the reader, we include a proof.

3.1.6. Proposition. — Let G be a group and let T be a topological space with a G action such that
πi(T) = 0 for i 6= 1 and π1(T) ∼= $, i.e. T is a K($, 1). Assume there is a G invariant simply
connected set B (e.g. B could be a fixed point), and fix an isomorphism π1(T, B) ∼= $, so $ inherits
a G action from the G action on π1(T, B). Then, there is a canonical isomorphism of pointed sets

π0(F(EG, T)G) ∼= H1(G, $)

Proof. Composition in π1(T, B) is written left to right, so γ1γ2 is the loop obtained by ‘first
following the loop γ1 and then following the loop γ2. Choose a base point p of EG. To
f ∈ F(EG, T)G and a choice of path γ from B to f(p), we associate a cochain σ ∈ C1(G, $),
defined as follows: let γg be a path in EG from p to gp. Define

σ(g) = γf∗(γg)g(γ−1) ∈ π1(T, B) = $

Since EG is contractible, σ(g) does not depend on the choice of γg. Choosing γg1g2
to be

γg1
g1(γg2

) shows that σ is a cocycle. Choosing a different path from B to f(p) produces a
cocycle of the form

g 7→ η−1σ(g)gη

for η ∈ π1(T, B) and therefore does not change the cohomology class of σ. Choosing
a different base point p of EG does not change the cohomology class of σ either. We
therefore have a map F(EG, T)G → H1(G, $). It is not hard to see that this map descends
to a map π0(F(EG, T)G)→ H1(G, $).

It suffices to show that this map is an isomorphism for the model of EG which is the
classifying space of the category whose objects are G and which has a unique morphism
between any two objects. We show surjectivity. Choose b ∈ B. Let σ be a cocycle in
C1(G, $). The 0-skeleton, EG0, of EG is in G equivariant bijection with G equipped with
the G action of left translation. Map EG0 to T by sending g to gb. The 1-skeleton, EG1, of
EG is in G equivariant bijection with G×G equipped with the G action of left translation
on each factor of G. Choose a path representing σ(g) starting at b and ending at gb. Map
the 1-simplex 1 × g in EG1 to this path. This determines a G-equivariant map EG1 → T .
Since σ is a cocycle, we can extend this map to a G-equivariant map EG2 → T . Since
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the higher homotopy groups of T are trivial. We can extend this map to a G-equivariant
map EG → T , showing surjectivity. Injectivity is shown similarly, by constructing a G

equivariant map EG× [0, 1]→ T whose restriction to EG× {0} and EG× {1} are two given
maps determining the same element of H1(G, $). (Here, [0, 1] has the trivial G-action.) �

3.1.7. Corollary. — Let G be a finite p-group and let X be a K(π1(X), 1) such that X is weakly G-
homotopy equivalent to a finite based G CW complex. Then there is a natural bijection π0(X

G) ∼=
H1(G, π1(X)).

This follows immediately from Corollary 3.1.5 and Proposition 3.1.6.

For a smooth, geometrically connected curve over R, it is not hard to see that the asso-
ciated complex analytic space is GR-homotopy equivalent to a finite GR CW complex. By
Corollary 3.1.7, we have:

3.1.8. Corollary. — Let X → Spec R be a geometrically connected, smooth curve such that the
associated complex analytic space has Euler characteristic ≤ 0. Assume that X(R) 6= ∅. Then
there is a natural bijection π0(X(R)) ∼= H1(GR, π

top
1 (X(C)))

It is tautological that the natural map X(R) → H1(GR, π
top
1 (X(C))) from rational points

to homotopy sections described in 1.1.3 induces the bijection of Corollary 3.1.8.

A smooth compact Z/2 manifold is triangulable as a finite Z/2-CW complex by a theo-
rem of Illman [LMSM86, I.1 Thm 1.2]. By Corollary 3.1.7, we have:

3.1.9. Corollary. — Let X → Spec R be a geometrically connected, smooth, and proper scheme
over R such that the associated complex analytic space is a K(π, 1). Assume that X(R) 6= ∅. (In
particular, X could be an abelian variety over R such that X(R) 6= ∅.) Then there is a natural
bijection π0(X(R)) ∼= H1(GR, π

top
1 (X(C))).

This bijection is again induced by the map X(R) → H1(GR, π
top
1 (X(C))) described in

1.1.3.

Corollaries 3.1.8 and 3.1.9 can be viewed as ‘section conjectures for π
top
1 ,’ as in the head-

ing of this subsection. We now explain what is meant by the name ‘section conjecture for
π

top
1 ,’ but this explanation is not necessary to understand δn over R (as in Proposition

3.1.19 and Proposition 3.2.1).

For a smooth, proper, geometrically connected curve X over a number field k, Grothendieck’s
Section Conjecture is that the map from sections of X → Spec k to homotopy sections is a
bijection, in the terminology of 1.1.3. When X(k) 6= ∅, this is equivalent to the natural map
X(k)→ H1(Gk, π

et
1 (Xk)) of 1.1.3 being a bijection.

As the map X(R) → H1(GR, πet
1 (XC)) descends to a map π0(X(R)) → H1(GR, πet

1 (XC))
(3.1.2), it is this later map that the section conjecture over R says is a bijection. Explicitly,
the section conjecture over R for a smooth, geometrically connected curve X such that
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X(R) 6= ∅ is that the natural map π0(X(R)) → H1(GR, πet
1 (XC)) is a bijection. This map

factors through the map π0(X(R)) → H1(GR, π
top
1 (XC)) By the section conjecture for π

top
1 ,

we mean that the map π0(X(R)) → H1(GR, π
top
1 (XC)) is a bijection. Thus Corollaries 3.1.8

and 3.1.9 are section conjectures for π
top
1 .

The section conjecture over R has been proven by Mochizuki, Stix, and Pál (Pál also
mentions relevant work of Cox and Scheiderer); see [Pál] for more information.

3.1.10. δtop
n determines δet

n .

Let G = 〈τ|τ2 = 1〉 ∼= Z/2 and let $ be a group with a G action. The G action on $

extends uniquely to a continuous G action on $∧ by the universal property of profinite
completion.

Let I denote the set of normal finite index subgroups N of $ which are stable under G

(i.e. τN ⊂ N). For each N ∈ I, the G action on $ determines a G action on $/N. I is
cofinal in the set of all normal finite index subgroups (because for a normal finite index
subgroup N, N∩τN is in I). Thus we have a canonical G isomorphism $∧ = lim←−N∈I

$/N.

A group $ is residually finite if for any x ∈ $ such that x 6= 1, there exists a normal
subgroup N of finite index such that x /∈ N.

3.1.11. Lemma. — Let G and $ be as above. Suppose that $ is residually finite, and that
H1(G, $) is finite. The projection maps $→ $/N for N ∈ I induce a surjection of pointed sets

H1(G, $)→ lim←−
N∈I

H1(G, $/N)

Proof. Take N ∈ I. Any element of H1(G, $/N) is represented by x ∈ $ such that τxx ∈ N.
If τxx = 1, then [x] is in the image of the map H1(G, $) → H1(G, $/N). Otherwise, we
can find M ∈ I such that τxx /∈ M, since $ is residually finite. Replacing M by M ∩ N

allows us to assume that M ⊂ N. For any y ∈ $, τyxy−1 does not determine a cocycle in
C1(G, $/M) because

τ(τyxy−1)(τyxy−1) = yτxxy−1

is not in M. Thus [x] is not in the image of the map H1(G, $/M) → H1(G, $/N). Thus
H1(G, $) surjects onto the image of the projection lim←−N∈I

H1(G, $/N) → H1(G, $/N).
Let α be an element of lim←−N∈I

H1(G, $/N), and αN the image of α in H1(G, $/N). Let
ON be the subset of H1(G, $) of elements mapping to αN. Note that ON ∩ OM ⊃ ON∩M

for N,M ∈ I, and that by the above, ON 6= ∅. Since H1(G, $) is finite, it follows that
∩N∈ION 6= ∅. This shows surjectivity. �

3.1.12. Lemma. — Let G and $ be as above. Suppose that $ is residually finite. The map

H1(G, $∧)→ lim←−
N∈I

H1(G, $/N)
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induced by the projection maps lim←−N∈I
$/N→ $/N is an isomorphism of pointed sets.

Proof. Let x, y ∈ $∧ represent cohomology classes [x], [y] ∈ H1(G, $∧) with the same
image in lim←−N∈I

H1(G, $/N). Thus, for each N ∈ I, there is z ∈ $∧ such that x = (τz)yz−1

mod N. Equivalently, zy−1(τz)−1x ∈ N. For each N, let ON = {z ∈ $∧|zy−1(τz)−1x ∈ N}.
By the previous, ON 6= ∅. Note that ON ∩ OM ⊃ ON∩M. Thus {ON|N ∈ I} has the finite
intersection property. Since $∧ is compact, ∩N∈ION 6= ∅. Thus there exists z ∈ $∧ such
that zy−1(τz)−1x ∈ ∩N∈IN. Since $ is residually finite, ∩N∈IN = 1. Thus [x] = [y] in
H1(G, $∧), showing injectivity.

As in the proof of Lemma 3.1.11, H1(G, $∧) surjects onto the image of the projection
lim←−N∈I

H1(G, $/N) → H1(G, $/N). Let α be an element of lim←−N∈I
H1(G, $/N), and αN

the image of α in H1(G, $/N). Let ON be the subset of $∧ of elements mapping to αN.
Note that ON ∩ OM ⊃ ON∩M for N,M ∈ I, and that by the above, ON 6= ∅. Since $∧ is
compact, it follows that ∩N∈ION 6= ∅. This shows surjectivity.

�

3.1.13. Lemma. — Let G and $ be as above. Suppose that $ is a finitely generated abelian group.
Then for all i ≥ 1 the map G map $→ $∧ induces an isomorphism of finite abelian groups

Hi(G, $) ∼= Hi(G, $∧)

Proof. The periodic resolution

· · ·ZGR
τ−1 // ZGR

τ+1 // ZGR
τ−1 // ZGR // Z

shows that the cohomology groups Hi(G, $) and Hi(G, $∧) are the cohomology groups
of the lower and upper complexes of the commutative diagram

· · · $ ′ $ ′
τ−1

oo $ ′
τ+1

oo $ ′
τ−1

oo 0oo

· · · $

OO

$
τ−1

oo

OO

$
τ+1

oo

OO

$
τ−1

oo

OO

0oo

Since $ is a finitely generated abelian group, the map $ → $∧ is $ → $ ⊗Z Ẑ ∼= $∧.
Since Ẑ is a flat Z module, Hi(G, $)⊗Z Ẑ→ Hi(G, $∧) is an isomorphism.

Hi(G, $) is a finitely generated abelian group, because $ is finitely generated. Ad-
ditionally, Hi(G, $) is 2-torsion for i ≥ 1. Thus Hi(G, $) is finite, whence Hi(G, $) =

Hi(G, $)⊗Z Ẑ, proving the lemma. �

Applying Lemma 3.1.13 to the topological fundamental group of an abelian variety
over R implies:
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3.1.14. Proposition. — Let X be an abelian variety over R such that X(R) 6= ∅. Let π
top
1 denote

the fundamental group of the associated complex analytic space to X based at a real point. Then
the natural map π

top
1 → (πtop

1 )∧ induces an isomorphism

H1(GR, π
top
1 )→ H1(GR, (πtop

1 )∧)

3.1.15. Lemma. — Let G be as above. Let $ and $ ′ be groups with G actions such that $ is
residually finite, and $ ′ is a finitely generated abelian group. Suppose that there is a morphism
$→ $ ′ inducing an injection of sets H1(G, $)→ H1(G, $ ′). Then the G morphism $→ $∧

induces an isomorphism of pointed sets

H1(G, $) ∼= H1(G, $∧)

Proof. Since $ ′ is a finitely generated abelian group, H1(G, $ ′) is finite. Thus H1(G, $)
is finite. By lemmas 3.1.12 and 3.1.11, H1(G, $) → H1(G, $∧) is surjective. By Lemma
3.1.13, H1(G, $ ′) → H1(G, $ ′∧) is injective. By hypothesis, H1(G, $) → H1(G, $ ′) is
injective. Injectivity of H1(G, $)→ H1(G, $∧) follows from the commutative diagram

$∧ // $ ′∧

$

OO

// $ ′

OO

�

We will apply Lemma 3.1.15 with $ → $ ′ equal to the map on πet
1 induced from the

Abel-Jacobi map X → Jac X. To do this, we will use the following well known lemma.
This lemma follows directly from [GH81], but we include a proof for completeness.

3.1.16. Lemma. — Let X be a geometrically connected, smooth, proper, curve of genus g ≥ 1

over R such that X(R) 6= ∅. Let b ∈ X(R) be a real point and let X → Jac(X) be the associated
Abel-Jacobi map. Then, the induced map on connected components

π0(X(R))→ π0(Jac(X)(R))

is an injection.

Proof. By [GH81, Prop. 2.2a], every point of Jac(X)(R) can be represented by a GR in-
variant divisor of X(C). Let C(X) denote the rational functions on XC, R(X) the rational
functions on X, and let P denote the principal divisors of XC. The exact sequence of mul-
tiplicative GR modules

1→ C∗ → C(X)∗ → P → 1

gives the exact sequence in cohomology R(X)∗ → PGR → H1(GR, C∗) = 1. Thus Jac(X)(R)
is the quotient of the GR invariant divisors of X(C) by {div f|f ∈ R(X)∗}. By [GH81, Lem.
4.1], for any f ∈ R(X)∗, div f has an even number of points on each component of X(R),
whence there is a map Jac(X)(R) → (Z/2)π0(X(R)), sending a divisor to the number of
points it contains on each component of X(R) mod 2. Since the image of two real points
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of X in different connected components of X(R) under the composite morphism X(R) →
Jac(X)(R)→ (Z/2)π0(X(R)) are different, π0(X(R))→ π0(Jac(X)(R)) is an injection. �

3.1.17. Proposition. — Let X be a geometrically connected, smooth, proper, curve of genus g ≥ 1

over R such that X(R) 6= ∅. Let π
top
1 denote the fundamental group of the associated complex

analytic space to X based at a real point. Then the natural map π
top
1 → (πtop

1 )∧ induces an
isomorphism

H1(GR, π
top
1 )→ H1(GR, (πtop

1 )∧)

Proof. π
top
1 is the fundamental group of a surface of genus g, and in particular, π

top
1

is finitely generated. π
top
1 is residually finite by [Lop94, Thm.A] (originally shown by

Peter Scott [Sco78]) By 3.1.9, we have natural isomorphisms H1(GR, π
top
1 ) ∼= π0(X(R))

and H1(GR, π
top
1 /[πtop

1 ]2) ∼= π0(Jac X(R)). The Abel-Jacobi map X → Jac X (for the base
point of π

top
1 ) induces an injection π0(X(R)) → π0(Jac X(R)) by Lemma 3.1.16. Thus

H1(GR, π
top
1 ) → H1(GR, π

top
1 /[πtop

1 ]2) is an injection. The Proposition follows by Lemma
3.1.15. �

3.1.18. Definition δtop
n and δet

n . Let X → Spec R be a geometrically connected curve such
that X(R) 6= ∅ and let δet

n = δn be Ellenberg’s obstructions as in 1.1.3 with respect to
some real base point b. Let X(C) denote the complex analytic space corresponding to
X. GR acts on π

top
1 (XC) = π

top
1 (X(C), b). Define δtop

n : H1(GR, π
top
1 (XC)/[πtop

1 (XC)]n) →
H2(GR, [πtop

1 (XC)]n/[πtop
1 (XC)]n+1) to be the boundary map associated to

1→ [πtop
1 (XC)]n/[πtop

1 (XC)]n+1 → π
top
1 (XC)/[πtop

1 (XC)]n+1 → π
top
1 (XC)/[πtop

1 (XC)]n → 1

For smooth curves over R, δtop
n determines δet

n for any n, and δ
top
2 is equivalent to δet

2 :

3.1.19. Proposition. — Let X be a smooth, geometrically connected curve over R such that X(R) 6=
∅. Let δtop

n and δet
n be as above. The diagram

H2(GR, [πtop
1 ]n/[πtop

1 ]n+1)
∼= // H2(GR, [πet

1 ]n/[πet
1 ]n+1)

H1(GR, π
top
1 /[πtop

1 ]n) //

δtop
n

OO

H1(GR, πet
1 /[πet

1 ]n)

δet
n

OO

H1(GR, π
top
1 ) //

OO

H1(GR, πet
1 )

OO

commutes. (The horizontal arrows are induced by the natural isomorphism (πtop
1 )∧ ∼= πet

1 . π
top
1

and πet
1 abbreviate π

top
1 (X(C), b) and πet

1 (XC, b) respectively.)

The top horizontal arrow is an isomorphism. The bottom two are (at least) surjections. For
n = 2, the middle arrow is an isomorphism. For X proper, the bottom arrow is an isomorphism.
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Proof. The natural morphism of GR equivariant short exact sequences

1 // [πet
1 ]n/[πet

1 ]n+1
// πet

1 /[πet
1 ]n+1

// πet
1 /[πet

1 ]n // 1

1 // [πtop
1 ]n/[πtop

1 ]n+1
//

OO

π
top
1 /[πtop

1 ]n+1
//

OO

π
top
1 /[πtop

1 ]n //

OO

1

gives the commutativity of the top square in the diagram. Commutativity of the bottom
square is immediate.

By [SGAI, Exp. XII Cor. 5.2], there is a canonical isomorphism πet
1 = (πtop

1 )∧. By
the universal properties of profinite completion and taking the quotient by subgroups
of the lower central series, the profinite completion of [πtop

1 ]n/[πtop
1 ]n+1 is canonically

[πet
1 ]n/[πet

1 ]n+1. Thus, the top horizontal arrows are isomorphisms by Lemma 3.1.13. Sim-
ilarly, the profinite completion of π

top
1 /[πtop

1 ]n is canonically πet
1 /[πet

1 ]n. For n = 2, the
middle arrow is an isomorphism by Lemma 3.1.13. π

top
1 is either a free group or the fun-

damental group of a surface of genus g, and in particular, π
top
1 is finitely generated and

residually finite [MKS04, 2.4 ex.24] [Lop94, Thm.A] [Sco78]. Finitely generated nilpotent
groups are residually finite [MKS04, 6.5]. H1(GR, π

top
1 ) is finite by Proposition 3.1.8. By

induction and [Ser02, I.5.7 Prop. 42], H1(G, πtop/[πtop]n) is finite for all n. Therefore, Lem-
mas 3.1.11 and 3.1.12 imply that the bottom two arrows are surjections. For X proper, the
bottom horizontal arrow is an isomorphism by Proposition 3.1.17. �

I see no reason why H1(GR, π
top
1 ) → H1(GR, πet

1 ) should not be an isomorphism for
all curves. Similarly, δtop

n may equal δet
n for all n. (However, we will show below that

for X proper, the kernel of δ2 is precisely π0(X(R)), so Ellenberg’s first obstruction already
succeeds at determining the connected components of R-rational points of the curve from
those of the Jacobian, making the higher obstructions less interesting.)

3.1.20. Remark. Propositions 3.1.17 and 3.1.14 turn the topological section conjectures of
Corollaries 3.1.9 and 3.1.8 into the usual section conjecture over R for πet

1 .

3.2. δ2 for proper smooth curves over R. Following a suggestion of Jordan Ellenberg, we
show that δ2 over R determines the connected components of X(R) from those of Jac X(R)
for X a proper curve.

Let X→ Spec R be a proper smooth geometrically connected curve. Let g be the genus
of X, and suppose that g > 0. Let Jac(X)→ Spec R denote the Jacobian of X. Assume that
X(R) is non-empty and choose b in X(R).

As above, let GR denote the absolute Galois group of R, let π = π
top
1 (X(C), b), and let

δ2 be δ
top
2 as in 3.1.18. By Proposition 3.1.19, δ2 is Ellenberg’s obstruction of 1.1.3. Let H

denote the GR module H1(X(C), Z) = πab = π/[π]2 = π1(Jac(X)(C)). Let τ ∈ GR denote
complex conjugation.
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The abelian group structure on Jac(X)(R) gives π0(Jac(X)(R)) the structure of an abelian
group. In fact, π0(Jac(X)(R)) is a Z/2 vector space and is isomorphic to the Tate cohomol-
ogy group Ĥ0(GR, Jac(X)(C)) by, for instance, [GH81, Prop 1.1]. (For the reader’s conve-
nience, here is the proof in [GH81]: the norm map N : Jac(X)(C) → Jac(X)(R), defined
by sending x in Jac(X)(C) to x + τx, is a continuous homomorphism from a compact con-
nected group. The image of N is therefore a closed connected subgroup. The image of
N also contains 2 Jac(X)(R), and is therefore finite index, whence open. Thus the image
is the connected component of the identity of Jac(X)(R), whence Ĥ0(GR, Jac(X)(C)) =
π0(Jac(X)(R)).)

We have the commutative diagram

H1(GR, π) // H1(GR,H)

π0(X(R))

∼=

OO

// π0(Jac(X)(R))

∼=

OO

where the vertical arrows are isomorphisms by Corollaries 3.1.9 and 3.1.8. The horizontal
arrows are injections by Lemma 3.1.16.

The obstruction δ2 : H1(GR,H) → H1(GR, [π]2/[π]3) can therefore be viewed as a map
with domain π0(Jac(X)(R)). By Proposition 2.1.3, δ2 is a quadratic form, and by con-
struction, δ2 vanishes on π0(X(R)). In fact, the kernel of δ2 is precisely π0(X(R)) (and
therefore none of the higher obstructions eliminate further elements of π0(Jac(X)(R))). In
other words, δ2 is a quadratic form on the Z/2 vector space π0(Jac(X)(R)) which vanishes
precisely on π0(X(R)).

3.2.1. Proposition. — The kernel of δ2 is π0(X(R))

Proof. Recall that as a complex manifold, Jac(X)(C) is Ω(X(C))∗/H, where Ω(X(C)) de-
notes the g dimensional complex vector space of holomorphic one-forms on X(C), and
Ω(X(C))∗ denotes its dual. Choosing a basis for Ω(X(C))∗, we have that Jac(X)(C) is
isomorphic to Cg/H. Since the connected component of the identity of Jac(X)(R) is a con-
nected, compact, abelian, real Lie group of dimension g, it is isomorphic to (R/Z)g. Thus
H ∩ Rg ∼= Zg. View Zg as a GR module with τ acting by the identity. We therefore have
an injection of GR modules Zg ↪→ H. For any v ∈ H, τv + v is an element of H ∩ Rg. The
cokernel of the injection Zg ↪→ H is therefore I, where I denotes the GR module which
is Zg as an abelian group and where τ acts by multiplication by −1. So we have the short
exact sequence

0 // Zg r // H ι // I // 0

Since H1(GR, Zg) = 0, it follows that H1(GR,H)→ H1(GR, I) is an injection.

For any GR module M, we have the cup product

∪ : H1(GR,M)⊗H1(GR,M)→ H2(GR,M⊗M).
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We also have the quotient map pM : M ⊗M →M ∧ M, where M ∧ M := M ⊗M/〈m ⊗
m|m ∈ M〉. Combining the two, we have a symmetric pairing

H1(GR,M)⊗H1(GR,M)→ H2(GR,M ∧ M),

which is natural in M.

The periodic resolution

· · ·ZGR
τ−1 // ZGR

τ+1 // ZGR
τ−1 // ZGR // Z

gives rise to isomorphisms H1(GR,M) ∼= Ker(τ + 1)/ Image(τ − 1), and H2(GR,M) ∼=
Ker(τ − 1)/ Image(τ + 1), where τ + 1 and τ − 1 are viewed as endomorphisms of M. It is
straightforward to see that in terms of these isomorphisms, the above symmetric pairing
is

m1 ⊗m2 7→ m1 ∧ τm2

Thus for the GR module I, the symmetric pairing H1(GR, I)⊗H1(GR, I)→ H2(GR, I∧I)
is isomorphic to p(Z/2)g : (Z/2)g ⊗ (Z/2)g → (Z/2)g ∧ (Z/2)g.

The map ι : H→ I gives rise to the commutative diagram:

(33) H1(GR,H)⊗H1(GR,H) //

��

H2(GR,H∧H)

��
(Z/2)g ⊗ (Z/2)g

p(Z/2)g
// (Z/2)g ∧ (Z/2)g

The commutator v ⊗ w 7→ vwv−1w−1 defines a map q : H ⊗ H → [π]2/[π]3. We show
that the induced map q∗ : H2(GR,H∧H)→ H2(GR, [π]2/[π]3) is injective:

Let E : H×H→ Z be the intersection pairing on H1(X(C), Z). Recall that E is antisym-
metric. Since τ induces an orientation reversing homeomorphism of X(C), E(τv, τw) =
−E(v,w) for all v,w ∈ H. From the construction of the genus g surface which consists of
gluing the sides of a 4g-gon following the pattern

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · ·agbga
−1
g b−1

g ,

we see that the kernel of H ⊗H → [π]2/[π]3 is generated as a Z module by an element x

of the form
x = a1 ∧ b1 + . . . + ag ∧ bg,

such that E(ai, bi) = 1 for all i. Let K denote this kernel. Since E(x) = g, we have that
E(τx) = −g. Thus, x is not fixed by τ. Because GR acts on K, it follows that τx = −x. Thus
H2(GR, K) = 0, so the map H2(GR,H∧H)→ H2(GR, [π]2/[π]3) is injective.

Let [b] denote the element of π0(X(R)) containing b. By [GH81] Prop 2.2, Lemma 4.1,
and Prop 4.2, the image of π0(X(R)) − {[b]} in π0(Jac(X)(R)) is a basis of π0(Jac(X)(R))
as a Z/2 vector space. (For the convenience of the reader, we include a proof below.
See Lemma 3.2.2.) Choose one point of each connected component of X(R) other then
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[b], and denote these points by b1, b2, . . . , bn. So, π0(X(R) = {[b], [b1], [b2], . . . , [bn]}, and
{[b1], [b2], . . . , [bn]} is a basis of π0(Jac(X)(R)).

By Proposition 2.1.3, δ2(v+w) = δ2(v)+δ2(w)+q∗(pH)∗(v∪w). Since {[b1], [b2], . . . , [bn]}
is a Z/2 basis of π0(Jac(X)(R)), an element of π0(Jac(X)(R)) can be expressed uniquely in
the form bi1 + bi2 + . . . + bim with ij < ij+1. Since δ2([bi]) = 0 for all i, δ2(bi1 + bi2 + . . . +
bim) =

∑
1≤j<k≤m q∗(pH)∗(bij ∪ bik).

Since H1(GR,H) injects into H1(GR, I),
∑

1≤j<k≤m(pH)∗(bij ∪ bik) 6= 0 for m > 1 by
equation 33. Since q∗ is injective, we have that δ2(bi1 + bi2 + . . . + bim) 6= 0 for m > 1,
proving Proposition 3.2.1. �

As above, b is the basepoint of π, and X→ Jac(X) is the Abel-Jacobi map corresponding
to b. As promised above, we give a more detailed proof of the following:

3.2.2. Lemma. — Let [b] denote the connected component of X(R) containing b. The image of
π0(X(R)) − {[b]} in π0(Jac(X)(R)) is a basis of π0(Jac(X)(R)) as a Z/2 vector space.

Proof. As described in the proof of Lemma 3.1.16, [GH81] shows there is a continuous
homomorphism c : Jac(R)→ (Z/2)π0(X(R)), which sends a divisor to the number of points
it contains on each connected component of X(R) mod 2. In particular, c is a surjective
homomorphism, and X(R) // Jac X(R)

c // (Z/2)π0(X(R)) determines a well defined

map on π0(X(R)) − {[b]} whose image is the standard basis of (Z/2)π0(X(R)). [GH81, Prop.
4.2] identifies the kernel of c as 2 Jac X(R). As commented above, π0(Jac(X)(R)) is a Z/2

vector space, whence 2 Jac X(R) is contained in the connected component of the identity
of Jac X(R). As commented above, the connected component of the identity of Jac X(R)
is isomorphic to (R/Z)g and is therefore divisible. Thus, 2 Jac X(R) equals the connected
component of the identity of Jac X(R). Thus, c induces an isomorphism π0(Jac(X)(R))→
(Z/2)π0(X(R)), and under this isomorphism, π0(X(R)) − {[b]} is sent to the standard basis.

�

Remark: For the above, we used Carlsson’s Theorem 3.1.4 to identify π0(X(R)) and
π0(Jac(X)(R)) with H1(GR, π) and H1(GR,H) respectively. One can give an alternate proof
that π0(Jac(X)(R)) = H1(GR,H) using specific information about Jacobians, as follows:

3.2.3. Proposition. — The natural map π0(Jac(X)(R)) → H1(GR,H) is an isomorphism of Z/2

vector spaces.

Proof. As above, we have that Jac(X)(C) is isomorphic to Cg/H. We therefore have the
exact sequence of GR modules

0→ H→ Cg → Jac(X)(C)→ 0,

and the resulting exact sequence of Tate cohomology groups

. . . Ĥ0(GR, Cg)→ Ĥ0(GR, Jac(X)(C))→ Ĥ1(GR,H)→ Ĥ1(GR, Cg) . . .
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Since Ĥ0(GR, Cg) and Ĥ1(GR, Cg) are both 0, and Ĥ0(GR, Jac(X)(C)) = π0(Jac(X)(R)), we
have that π0(Jac(X)(R))→ H1(GR,H) is an isomorphism as claimed. �

3.3. P1
Q − {0, 1,∞}: lower order terms of δ2 and δ3. 3.3.1. Note that the triple Massey

product 〈α, β, γ〉 for α, β, γ such that α ∪ β = 0 and β ∪ γ = 0 is described by choosing
cochains A,B such that DA = α∪β and DB = β∪γ, and setting 〈α, β, γ〉 = A∪γ+α∪B.

The indeterminacy is the ideal generated by α and γ.

Let k be a number field, and X = P1
k − {0, 1,∞}. Base π = π1(P1

k
− {0, 1,∞}) at the

tangential base point at 0 pointing towards 1 along the real line. Then π = 〈x, y〉∧, where
x is a loop around 0 and y is a loop around 1. The map π → π/[π]2 is the fundamental
group functor applied to the Abel-Jacobi map Xk → Jac(Xk) = Gm,k ×Gm,k associated to
the same base point. Thus, the action of Gk on π/[π]2 is given by:

σ(x) = xχ(σ)

σ(y) = yχ(σ),

where χ : GQ → Ẑ∗ denotes the cyclotomic character. It follows that [π]n/[π]n+1 is a free
Ẑ(n) module of rank 2n−2. (Ẑ(n) denotes the nth Tate twist of Ẑ, which is Ẑ equipped with
the Gk action given by χn.)

{[x, y]} is a basis for [π]2/[π]3 as a Ẑ(2) module.

{[[x, y], x], [[x, y], y]} is a basis for [π]3/[π]4 as a Ẑ(3) module. This basis gives an isomor-
phism H2(Gk, [π]3/[π]4) ∼= H2(Gk, Ẑ(3))⊕H2(Gk, Ẑ(3)), decomposing δ3 into a direct sum
of two obstructions

δ3,[[x,y],x], δ3,[[x,y],y] : H1(Gk, π/[π]3)→ H2(Gk, Ẑ(3)).

More specifically, taking the image of ε3 (see 2.4.26 for the definition of ε3) under the
isomorphism

b : H2(π/[π]3 o Gk, [π]3/[π]4) ∼= H2(π/[π]3 o Gk, Ẑ(3))⊕H2(π/[π]3 o Gk, Ẑ(3))

given by the basis {[[x, y], x], [[x, y], y]}, we obtain two classes ε3,[[x,y],x], ε3,[[x,y],y] ∈ H2(π/[π]3o
Gk, Ẑ(3)) defined by

b(ε3) = ε3,[[x,y],x] ⊕ ε3,[[x,y],y].

3.3.2. Notation. Let δ3,[[x,y],x] = ℘ε3,[[x,y],x]
and δ3,[[x,y],y] = ℘ε3,[[x,y],y]

, where ℘ is as in 2.2.1.

Many properties of the Galois action on π1(P1
k

− {0, 1,∞}) are encoded in Drinfeld’s
Grothendieck-Teichmüller group [Dri90] . One such property is that the action of Gk on π

is of the form
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(34) σ(x) = xχ(σ)

σ(y) = f(σ)−1yχ(σ)f(σ),

where f : GQ → [π]2 is a certain cocyle. (Here, σ is any element of Gk; x and y are
as above; and as above, χ is the cyclotomic character.) This property of the action fol-
lows from symmetry arguments, the fact that Galois actions on fundamental groups pre-
serve inertia, and the identification of Jac(Xk) with Gm,k × Gm,k (see [Iha94]). Also see
[Iha94] for a discussion of f and further properties of the action as described by Drinfeld’s
Grothendieck-Techmüller group.

3.3.3. Notation. We will use the following notation in this subsection: the basis {x, y}

for π/[π]2 as a Ẑ(1) module gives rise to homomorphisms x∗, y∗ : H1(Gk, π/[π]3) →
H1(Gk, Ẑ(1)) defined by pushing forward by the Gk homomorphisms π/[π]3 → π/[π]2 →

^Z(1), where the maps π/[π]2 → Ẑ(1) are determined by the basis {x, y} in the obvious man-
ner. Note that this definition of x∗ and y∗ is different from that which would be suggested
by (16).

3.3.4. Theorem. — Let X = P1
k − {0, 1,∞}, and base the fundamental group of P1

k
− {0, 1,∞} at

the tangential base point at 0 pointing towards 1 along the real line. Then:

δ3,[[x,y],x] = 〈y∗, x∗, x∗〉+ 〈(χ − 1)/2, x∗, y∗〉

δ3,[[x,y],y] = −〈x∗, y∗, y∗〉+ 〈(χ − 1)/2, x∗, y∗〉− f ∪ y∗

where δ3,[[x,y],x] and δ3,[[x,y],y] are as in (3.3.2), x∗ and y∗ are as in 3.3.3, 〈·, ·, ·〉 denotes the triple
Massey product, χ : Gk → Ẑ∗ denotes the cyclotomic character, and f : Gk → [π]2/[π]3 is as in
(34).

Furthermore, the indeterminacy of the Massey products encodes the indeterminacy of lifting an
element of H1(Gk, π/[π]2) to an element of H1(Gk, π/[π]3), as is made precise in the following
remark.

3.3.5. Remark. Note that x∗ and y∗ factor through H1(Gk, π/[π]3) → H1(Gk, π/[π]2). The
condition on an element of H1(Gk, π/[π]2) to lift to an element of H1(Gk, π/[π]3) and the
indeterminacy of the choice of lift are precisely the conditions required for the existence
of the Massey products and the indeterminacy of the Massey products when they are de-
fined, respectively; namely, given an element p of H1(Gk, π/[π]3), we have a distinguished
choice of cochain whose boundary is x∗(p)∪y∗(p), and making that choice in the construc-
tion of the Massey product of 3.3.1 (along with making certain standard choices for the
cochain whose boundary is x∗(p) ∪ x∗(p), (χ − 1)/2 ∪ x∗(p) etc.), the above equations for
δ3(p) are equalities of cohomology classes (i.e. without any indeterminacy). Starting from
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the right hand side of the se equations, if we have a choice of cohain whose boundary is
x∗(p) ∪ y∗(q), we have a distinguished element of H1(Gk, π/[π]3), and the equations of
Theorem 3.3.4 are again equalities of cohomology classes.

Proof. (of Theorem 3.3.4)

For a ∈ Ẑ and n ∈ Z, let
(

a
n

)
= (a(a − 1) · · · (a − n + 1))/(n!) ∈ Ẑ denote the binomial

coefficient. We have the following equalities in π/[π]4 :

A straightforward computation shows:

(35) xbya = yaxb[x, y]ab[[x, y], y]b(
a+1

2 )[[x, y], x]a(
b+1

2 )

Using equation (35), one obtains the further computation:

(36) [xa, ya] = [x, y]a
2

[[x, y], x]−a(a
2)[[x, y], y]−a(a

2)

Let f : Gk → Ẑ be defined by

(37) f(σ) = [x, y]f(σ)

f is a cocycle in C1(Gk, Ẑ(2)).

For any g ∈ Gk, a straightforward computation using (34), (36) and (37) shows that:

g(yaxb[x, y]c) =(38)

yχ(g)axχ(g)b[x, y]χ(g)2c[[x, y], x]−
χ(g)−1

2
χ(g)2c[[x, y], y]−

χ(g)−1
2

χ(g)2c[[x, y], y]−f(g)χ(g)a

An arbitrary element of π/[π]3 can be written uniquely in the form yaxb[x, y]c for a, b, c ∈
Ẑ. Sending yaxb[x, y]c ∈ π/[π]3 to yaxb[x, y]c ∈ π/[π]4 determines a section of the quotient
map π/[π]4 → π/[π]3, which gives rise to a cocycle e ∈ C2(π/[π]3oGk, [π]3/[π]4) represent-
ing ε3 (see 2.0.5), as well as cocycles e[[x,y],x], e[[x,y],y] ∈ C2(π/[π]3 o Gk, Ẑ(3)) representing
ε3,[[x,y],x], ε3,[[x,y],y] respectively.

Combining (35) and (38):

e[[x,y],x](y
a1xb1 [x, y]c1og1, y

a2xb2 [x, y]c2 o g2) =(39)

c1χ(g1)b2+

(
b1 + 1

2

)
χ(g1)a2

+b1χ(g1)
2a2b2−

χ(g1) − 1

2
χ(g1)

2c2

e[[x,y],y](y
a1xb1 [x, y]c1og1, y

a2xb2 [x, y]c2 o g2) =(40)

c1χ(g1)a2 + b1

(
χ(g1)a2 + 1

2

)
−c2χ(g1)

(
χ(g1)

2

)
− f(g1)χ(g1)a2
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We now show that (39) and (40) are the claimed Massey products with respect to defin-
ing systems as in Remark 3.3.5.

Let a, b ∈ C1(π/[π]3 o Gk, Ẑ(1)) denote the cocycles determined by yaxb[x, y]c 7→ a

and yaxb[x, y]c 7→ b respectively. Let c ∈ C1(π/[π]3 o Gk, Ẑ(2)) denote the cochain
yaxb[x, y]c 7→ c. Dc = −b ∪ a. Note that g 7→ (χ(g) − 1)/2 determines a cocycle in
C1(Gk, Ẑ(1)). Recall that f ∈ C1(Gk, Ẑ(2)) is a cocycle.

The “standard choices” discussed in Remark 3.3.5 for the cochains (in C1(Gk, Ẑ(2)))
whose boundaries are a ∪ a, b ∪ b, or (χ − 1)/2 ∪ b are as follows:

We invert 2.

Define B ∈ C1(Gk, Ẑ(2)) by B(yaxb[x, y]c) = b. (So B is not b because the former is in
C1(Gk, Ẑ(2)) and the latter is in C1(Gk, Ẑ(1)).) Note that

B(ya1xb1 [x, y]c1 o g1, y
a2xb2 [x, y]c2 o g2) =

b1 + χ(g1)
2b2 − (b1 + χ(g1)b2) = (χ(g1) − 1)χ(g1)b2

Thus, DB = (χ − 1) ∪ b. We take B/2 as the “standard choice” of cochain in C1(Gk, Ẑ(2))
whose boundary is (χ − 1)/2 ∪ b.

Define a2 ∈ C1(Gk, Ẑ(2)) by a2(yaxb[x, y]c) = a2. Then Da2 = −2a ∪ a. We take −a2/2

as the “standard choice” of cochain in C1(Gk, Ẑ(2)) whose boundary is a ∪ a. We do the
same for b.

Consider e[[x,y],y]. Note that the cochain g 7→ b1

(
χ(g1)a2+1

2

)
equals b ∪ a2/2 + B/2 ∪ a. By

equation (40), it follows that

e[[x,y],y] = c ∪ a + b ∪ a2/2 + B/2 ∪ a − (χ − 1)/2 ∪ c − f ∪ a.

Since c∪ a + b∪ a2/2 = 〈x∗,−y∗, y∗〉, and B/2∪ a − (χ − 1)/2∪ c = 〈(χ − 1)/2, x∗, y∗〉, we
have established the claimed decomposition of δ3,[[x,y],y] into a Massey product and the
lower order term 〈(χ − 1)/2, x∗, y∗〉− f∪y∗. Furthermore, the defining systems implicit in
the Massey products are as in Remark 3.3.5.

Consider e[[x,y],x]. By decomposing the cochain g 7→ (
b1+1

2

)
χ(g1)a2 into b2/2∪a+B/2∪a,

we see that equation (39) becomes

e[[x,y],x] = c ∪ b + b2/2 ∪ a + B/2 ∪ a + b ∪ (ab) − (χ − 1)/2 ∪ c,

where (ab) ∈ C1(Gk, Ẑ(2)) is the cochain g 7→ ab. A short calculation shows that D(ab) =
−a∪b−b∪a. In particular D(c−ab) = a∪b. Thus (c−ab)∪b+a∪(−B/2) = 〈y∗, x∗, x∗〉.
The expression for e[[x,y],x] follows. �

3.4. P1
Q − {0, 1,∞}: evaluating δ2 and δ3. We wish to use the results of §3.3 to determine

whether a given homotopy section of one of the bottom two spaces of the nilpotent tower
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of P1
Q − {0, 1,∞} lifts to the next. This is equivalent to determining whether certain ele-

ments of H2(GQ, Ẑ(2)) and H2(GQ, Ẑ(3)) vanish. Using Bloch-Kato, questions about the
vanishing of elements of H2(GQ, Ẑ(2)) can be converted into questions about the Milnor
K-group K2Q. Determining whether the cocycles of Theorem 3.3.4 vanish in H2(GQ, Ẑ(3)),
however, seems difficult. Instead, we replace the lower central series with the lower ex-
ponent 2 central series, and perform calculations in the Brauer group.

Filter π by the lower exponent 2 central series, π > [π]22 > [π]23 > . . . , and let δ2
n denote

the corresponding obstructions. Theorem 3.3.4 remains valid if we replace δ3 by δ2
3. For

simplicity, take k = Q.

By Theorem 3.3.4, to explicitly evaluate δ2
3,[[x,y],y], we need further information about f

(where f : Gk → [π]2 is as in 34).

An explicit formula for the Magnus coefficients of the projection of f onto the nilpo-
tent completion of π in terms of the cyclotomic elements of Soulé and Deligne is known
due to contributions of Anderson, Coleman, Deligne, Ihara, Kaneko and Yukinari (see for
instance [Iha91, 6.3 p.115]; this result is also in [And89], [Col89], and [IKY87]). Further-
more, the projection of f to a function f : Gk → [π]2/[π]3 is independent of the cyclotomic
elements. From this formula, we obtain:

3.4.1. Proposition. — Let [f]23 ∈ H1(GQ, [π]22/[π]23) denote the cohomology class represented by
f. The basis {[x, y]} for [π]22/[π]23 as a Z/2-module gives an isomorphism H1(GQ, [π]22/[π]23)

∼=
H1(GQ, Z/2). View [f]23 as an element of H1(GQ, Z/2). Then, [f]23 equals the image of −1 under
the Kummer map Q→ H1(GQ, Z/2).

3.4.2. Convention. We will choose specific cocycles representing elements of cohomology
in the image of Kummer maps. This is equivalent to choosing an nth root for every n and
every element of Q. We make this choice by declaring the argument of a positive rational
number to be 0, and the argument of a negative rational number to be π. By abuse of
notation, we will let a rational number a ∈ Q also denote the corresponding cocycle in
C1(GQ, µ∞). Choosing an embedding of Q into C, and choosing the primitive nth roots
of unity e(2πi)/n, we identify µ∞ and Ẑ(1), and let a ∈ Q also denote the corresponding
cocycle in C1(GQ, Ẑ(1)).

3.4.3. Let p be an odd prime. Recall the following well-known computation of the cup
product map

H1(Qp, Z/2)⊗H1(Qp, Z/2)→ H2(Qp, Z/2) :

Let K be a finite extension of Qp. The Kummer exact sequence 1 → Z/2 → K
∗ → K

∗ → 1

and Hilbert 90 give an isomorphism K∗/(K∗)2 ∼= H1(GK, Z/2). Let p be a uniformizer of
the ring of integers OK of K, and let u ∈ OK be a unit which reduces to an element of the
residue field with is not a square, i.e. u is not a quatratic residue. K∗/(K∗)2 is a free Z/2

module with basis {u, p}. H2(GK, Z/2) ∼= Q/Z[2] is the 2 torsion of the Brauer group. The
computation of p ∪ p depends on if −1 is a quadratic residue. The following table gives
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the cup product, with the case where −1 is a quadratic residue given before the comma,
and the case where −1 is not a quadratic residue given after the comma:

∪ u p u + p
u 0 1/2 1/2

p 1/2 0 , 1/2 1/2 , 0

u + p 1/2 1/2 , 0 0 , 1/2

3.4.4. Lemma. — Let p be a prime and let a, b ∈ Z be such that p does not divide b and p divides
a exactly once. Suppose we have u, v, w ∈ Q not all 0 such that u2 = bv2 + aw2. Then b is a
square mod p.

3.4.5. Lemma. — Take b in Q. The cochain in C1(GQ, Z/2)

σ 7→ (
b(σ) + 1

2

)
equals

√
b when restricted to an element of C1(GQ(

√
b), Z/2). In particular, the restriction is a

cocycle.

Proof. By the choices of Convention (3.4.2), b(σ) ∈ Z/4 is determined by

σ
4
√

b = e2πib(σ)/4 4
√

b.

Note that the choices of Convention (3.4.2) are such that (
4
√

b)2 =
√

b. Thus σ
√

b =

e2πi2b(σ)/4
√

b and b(σ) = 0 or 2 for σ ∈ GQ(
√

b).

If b(σ) = 0, then
(

b(σ)+1
2

)
= 0 in Z/2.

If b(σ) = 2, then
(

b(σ)+1
2

)
= 1 in Z/2.

This proves the Lemma. �

3.4.6. Lemma. — Let p be an odd prime and let a, b ∈ Q. Suppose that b is a square in Qp and
let
√

b be a chosen square root. If
√

b is a square in Qp, then (0, 0) is contained in the subset ∆ of
H2(GQp, Z/2)⊕H2(GQp, Z/2) :

∆ = {(c̃ ∪ a + (−1) ∪ c̃ + (−1) ∪ a,
√

b ∪ a + (−1) ∪ c̃) : c̃ ∈ H1(GQp, Z/2)}

Proof. Since
√

b is a square in Qp,
√

b ∪ a = 0.

Case 1: p ≡ 1 mod 4. Then −1 vanishes in H1(GQp, Z/2). Thus,

∆ = {(c̃ ∪ a, 0) : c̃ ∈ H1(GQp, Z/2)}

It follows from 3.4.3 that we can choose c̃ such that c̃ ∪ a = 0.
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Case 2: p ≡ 3 mod 4. Since −1 is not a square mod p and has valuation 0, we have
that −1 = u ∈ H1(GQp, Z/2) in the notation of 3.4.3. For c̃ = u, we therefore have that
(c̃ ∪ a + (−1) ∪ c̃ + (−1) ∪ a,

√
b ∪ a + (−1) ∪ c̃) = (2u ∪ a, 0) = (0, 0). �

3.4.7. Proposition. — Let p be an odd prime and let a, b ∈ Z be such that p does not divide
b and p divides a exactly once. Suppose further that δ2

2(b × a) = 0. Then there exists a lift
(b×a)c ∈ H1(GQp, π/[π]23) of (b×a) ∈ H1(GQp, π/[π]22) such that δ2

3(b×a)c = 0 if and only
if b is a fourth power mod p or p ≡ 1 mod 4

Proof. (39) and (40) imply:

δ2
3,[[x,y],x](b× a)c(σ, τ) = c(σ)b(τ) +

(
b(σ) + 1

2

)
a(τ) + b(σ)a(τ)b(τ) −

χ(σ) − 1

2
c(τ)

δ2
3,[[x,y],y](b× a)c(σ, τ) = c(σ)a(τ) + b(σ)

(
χ(σ)a(τ) + 1

2

)
−

χ(σ) − 1

2
c(τ) −

χ(σ) − 1

2
a(τ)

Since δ2
2(b×a) = b∪a, we have that b∪a = 0 in H2(GQ, Z/2). Thus the corresponding

Brauer-Severi variety is trivial. It is well known that b∪a corresponds to u2 = bv2 +aw2.

Thus we have u, v, w ∈ Q not all 0 such that u2 = bv2 + aw2. By 3.4.4, we have that b

is a square in Qp, and therefore that δ2
3(b × a)c in H2(GQp, [π]23/[π]24) factors through the

restriction GQ → GQ(
√

b)

Thus in H2(GQp, Z/2):

δ2
3,[[x,y],x](Qp)(b× a)c(σ, τ) =

(
b(σ) + 1

2

)
a(τ) −

χ(σ) − 1

2
c(τ)

δ2
3,[[x,y],y](Qp)(b× a)c(σ, τ) = c(σ)a(τ) −

χ(σ) − 1

2
c(τ) −

χ(σ) − 1

2
a(τ)

Because Dc = b ∪ a, c restricts to a cocycle in C1(GQp, Z/2). Since an arbitrary lift of
(b × a) ∈ H1(GQp, π/[π]22) to H1(GQp, π/[π]23) differs from a given one by changing c by
any cocycle, we have that c varies over all elements of H1(GQp, Z/2).

Let ∆2
3(Qp) denote the set of the images under δ2

3(Qp) = (δ2
3,[[x,y],x](Qp), δ

2
3,[[x,y],y](Qp)) of

lifts of (b× a) ∈ H1(GQp, π/[π]22) :

∆2
3(Qp) = {(δ2

3,[[x,y],x](Qp)(b× a)c, δ
2
3,[[x,y],y](Qp))(b× a)c : (b× a)c lifts b× a}.
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Then,

∆2
3(Qp) = {(

√
b ∪ a + (−1) ∪ c̃, c̃ ∪ a + (−1) ∪ c̃ + (−1) ∪ a) : c̃ ∈ H1(GQp, Z/2)}

By Lemma 3.4.6, if b is a fourth power, we can choose a lift such that δ2
3 vanishes.

If b is not a fourth power and −1 is a quadratic residue,
√

b ∪ a + (−1) ∪ c̃ will never
vanish.

If b is not a fourth power and −1 is not a quadratic residue, letting c̃ = u + p in the
notation of 3.4.3 shows that δ2

3 vanishes on such a lift. �
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