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ABSTRACT. We give an arithmetic count of the lines on a smooth cubic surface over an
arbitrary field k, generalizing the counts that over C there are 27 lines, and over R the
number of hyperbolic lines minus the number of elliptic lines is 3. In general, the lines
are defined over a field extension L and have an associated arithmetic type α in L∗/(L∗)2.
There is an equality in the Grothendieck-Witt group GW(k) of k∑

lines

TrL/k〈α〉 = 15 · 〈1〉+ 12 · 〈−1〉,

where TrL/k denotes the trace GW(L) → GW(k). Taking the rank and signature recovers
the results over C and R. To do this, we develop an elementary theory of the Euler number
in A1-homotopy theory for algebraic vector bundles. We expect that further arithmetic
counts generalizing enumerative results in complex and real algebraic geometry can be
obtained with similar methods.

1. INTRODUCTION

In this paper we give an arithmetic count of the lines on a smooth cubic surface in
projective space P3

k. A celebrated 19th century result of Salmon and Cayley [Cay49] is
that:

(1) #complex lines on V = 27,

where V is such a surface over the complex numbers C. In particular, this number is
independent of the choice of V . By contrast, a real smooth cubic surface can contain 3, 7,
15, or 27 real lines.

It is a beautiful observation of Finashin–Kharlamov [FK13] and Okonek–Teleman [OT14a]
that while the number of real lines on a smooth cubic surface depends on the surface, a
certain signed count of lines is independent of the choice. Namely, the residual intersec-
tions of V with the hyperplanes containing ` are conic curves that determine an involution
of `, defined so that two points are exchanged if they lie on a common conic. Lines are
classified as either hyperbolic or elliptic according to whether the involution is hyperbolic
or elliptic as an element of PGL2 (i.e. whether the fixed points are defined over k or not).
Finashin–Kharlamov and Okonek–Teleman observed that the equality

(2) #real hyperbolic lines on V −#real elliptic lines on V = 3.

can be deduced from Segre’s work. They gave new proofs of the result and extended it
to more general results about linear subspaces of hypersurfaces. We review this and later
work below.
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We generalize these results to an arbitrary field k of characteristic not equal to 2. The
result is particularly simple to state when k is a finite field Fq. As was observed in [Hir85,
pages 196–197], a line ` ⊂ V admits a distinguished involution, just as in the real case,
and we classify ` as either hyperbolic or elliptic using the involution, as before.

When all 27 lines on V are defined over Fq, we prove

#elliptic lines on V = 0mod 2.

For V an arbitrary smooth cubic surface over Fq, we have

Theorem 1. The lines on a smooth cubic surface V ⊂ P3
Fq

satisfy

(3) #elliptic lines on V with field of definition Fqa for a odd
+#hyperbolic lines on V with field of definition Fqa for a even = 0 (mod 2).

Here a line means a closed point in the Grassmannian of lines in P3
k, so a line corre-

sponds to a Galois orbit of lines over an algebraic closure. For example, consider the
Fermat surface V = {x31 + x

3
2 + x

3
3 + x

3
4 = 0} over Fq of characteristic p 6= 2, 3. When Fq

contains a primitive third root of unity ζ3, all the 27 lines are defined over Fq and are hy-
perbolic. Otherwise V contains 3 hyperbolic lines defined over Fq and 12 hyperbolic lines
defined over Fq2 . (See the Notation and Conventions Section 2 for further discussion.)

For arbitrary k, we replace the signed count valued in Z with a count valued in the
Grothendieck–Witt group GW(k) of nondegenerate symmetric bilinear forms. (See [Lam05]
or [Mor12] for information on GW(k).) The signs are replaced by classes 〈a〉 in GW(k)
represented by the bilinear pairing on k defined (x, y) 7→ axy for a in k∗. The class 〈a〉
is determined by arithmetic properties of the line, namely its field of definition and the
associated involution, and we call this class the type of the line.

As we will discuss later, the reason for enumerating lines as elements of GW(k) is that
the Grothendieck–Witt group is the target of Morel’s degree map in A1-homotopy theory.
The types 〈a〉 are local contributions to an Euler number. Despite this underlying reason,
the calculation of the types 〈a〉 as well as the proof of the arithmetic count are carried out
in an elementary manner and without direct reference to A1-homotopy theory.

Theorem 1 is a special case of the following more general result. Let ` be a line on V
and let k ⊆ L denote the field of definition of `, which must be separable (Corollary 54).
There is a transfer or trace map TrL/k : GW(L)→ GW(k) defined by taking a bilinear form
β : A × A → L on an L-vector space A to the composition TrL/k ◦β : A × A → L → k of β
with the field trace TrL/k : L → k, the vector space A now being viewed as a vector space
over k.

We refine the classification of lines on V as either hyperbolic or elliptic as follows. De-
fine the type of an elliptic line `with field of definition L to be the classD ∈ L∗/(L∗)2 of the
discriminant of the fixed locus, i.e., to be the D such that L(

√
D) is the field of definition

of the fixed locus. We extend this definition by defining the type of a hyperbolic line to
be 1 in L∗/(L∗)2. Observe that when k = R (respectively, Fq), the type of an elliptic line is
−1 (respectively, the unique non-square class), but in general there are more possibilities.
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The type can also be interpreted in terms of the A1-degree of the involution. We explain
this and other aspects of hyperbolic and elliptic lines in Section 3.

With this definition of type, we now state the main theorem.

Theorem 2 (Main Theorem). The lines on a smooth cubic surface V ⊂ P3
k satisfy

(4)
∑

h∈L∗/(L∗)2
(#lines of type h) · TrL/k(〈h〉) = 15 · 〈1〉+ 12 · 〈−1〉.

From Equation (4), we recover the complex count (1) by taking the rank of both sides,
the real count (2) by taking the signature (the complex lines contribute the signature zero
class 〈1〉 + 〈−1〉), and the finite field count (3) by taking the discriminant (which is an
element of F∗q/(F∗q)2 = Z/2).

Over a more general field, one gets analogues of those equations by taking the rank,
discriminant, or signature (with respect to an ordering) of (4), but there can be more subtle
constraints as well. For example, there is no smooth cubic surface over k = Q with 27
lines defined over k, two with type 〈3〉, thirteen with type 〈1〉, and twelve with type
〈−1〉. Indeed, this is a special case of Theorem 2 because 2 · 〈3〉 + 13 · 〈1〉 + 11 · 〈−1〉 and
15 · 〈1〉 + 12 · 〈−1〉 have different Hasse–Witt invariants at the prime p = 3. We cannot,
however, rule out the existence of such a surface using the analogues of equations (1), (2),
and (3) because the forms have the same rank, discriminant, and signature.

Theorem 2 only applies to a smooth cubic surface, but we discuss the singular surfaces
at the end of this section, right before Section 1.1.

The statement and proof of Theorem 2 are inspired by Finashin–Kharlamov and Okonek–
Teleman’s proof of the real line count (2), which in turn is inspired by a proof of the
complex line count (1) that runs as follows. Let S denote the tautological subbundle on
the Grassmannian G := Gr(4, 2) of 2-dimensional subspaces of the 4-dimensional vector
space k⊕4. Given an equation f ∈ C[x1, x2, x3, x4] for a complex cubic surface V ⊂ P3

C, the
rule

σf(S) = f|S

determines a section σf of the vector bundle E = Sym3(S∨). By construction, the zeros of
σf are the lines contained in S, but a local computations shows that, when S is smooth, the
section σf has only simple zeros, and so in this case, the count of zeros equals the Chern
number c4(E). We immediately deduce that the number of lines on a complex smooth
cubic surface is independent of the surface, and it can be shown that this independent
count is 27 by computing c4(E) using structural results about e.g. the cohomology of the
complex Grassmannian.

The proofs by Finashin–Kharlamov and Okonek–Teleman of the real count of lines are
similar to the proof of the complex count just given. Both the real Grassmannian G(R)
and the vector bundle E are orientable, so after fixing orientations, the Euler number e(E)
of E is well-defined. The real count (2) can be proven along the same lines as the complex
count, only with Chern number replaced by the Euler number. One new complication is
that, in addition to showing that σf has only simple zeros, it is necessary to also show that
the local index of a zero is +1 at a hyperbolic line and −1 at an elliptic line.
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For this proof to generalize to a count over an arbitrary field, we need a generalization
of the Euler number, which is furthermore computable as a sum of local indices. Classi-
cally, the local index of an isolated zero of a section σ can be computed by choosing local
coordinates and a local trivialization, thereby expressing σ as a function Rr → Rr with
an isolated zero at the origin. The local degree of this function is then the local index,
assuming that the choice of local coordinates and trivialization were compatible with a
given orientation or relative orientation. In [Eis78], Eisenbud suggested defining the lo-
cal degree of a function Ar

k → Ar
k to be the isomorphism class of the bilinear form now

appearing in the Eisenbud–Khimshiashvili–(Harold) Levine signature formula. This bi-
linear form is furthermore explicitly computable by elementary means. For example, if
the Jacobian determinant J is non-zero at a point with residue field L, then the local degree
is TrL/k〈J〉. In [KW19], we showed it is also the local degree in A1-homotopy theory.

Define the Euler number e(E) ∈ GW(k) to be the sum of the local indices using the
described recipe and this local degree. Since local coordinates are not as well-behaved for
smooth schemes as for manifolds, some finite determinacy results are being used implic-
itly, but in the present case, these are elementary algebra. We show the Euler number is
well-defined using Scheja–Stoch’s perspective on duality for finite complete intersections
(e.g., [SS75]), which shows that this local degree behaves well in families.

The result is as follows. Let X be a smooth scheme of dimension r over k. Let E → X be a
relatively oriented rank r vector bundle such that any pair of sufficiently general sections
can be connected by sections with only isolated zeros (as in Definition 37), potentially
after further extensions of odd degree.

Theorem 3. The Euler number

e(E) =
∑

p such that σ(p)=0

indp σ

is independent of the choice of section σ.

This is shown as Corollary 38 in Section 4, and some examples are computed. We
deduce that the left-hand side of (4) is independent of the choice of surface. We then
show that this common class equals the right-hand side (4) by evaluating the count on a
specially chosen smooth surface.

We remark that for f defining a smooth cubic surface, the corresponding section σf has
only simple zeros (the Jacobian determinant is non-zero), so the more general calculations
of local degree from [SS75] [EL77] [Eis78] are only needed here to ensure that the local
degree behaves well in families [SS75].

When f defines a singular cubic surface, the section σf can have nonsimple zeros. If
we additionally assume σf has only isolated zeros (i.e. the surface contains only finitely
many lines), the index of a zero can be computing using the main result of [KW19]. For
example, when f = x20x3+x0x

2
2+x

3
1 (a surface with an E6-singularity), σf has a unique zero

whose local index is described in [KW19, Section 7]. If the type of a line corresponding to
a nonsimple zero of σf is defined to be the local index, then Theorem 2 remains valid for
singular cubic surfaces containing only finitely many lines.
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1.1. Relation to other work. A large number of Euler classes in arithmetic geometry have
been constructed, but the definition used here seems to be original. Closest to our def-
inition is that of Grigor‘ev and Ivanov in [GI80]. For a perfect field k of characteristic
different from 2, they consider the quotient ∆(k) = GW(k)/TF(k) of the Grothendieck-
Witt group by the subgroup generated by trace forms of field extensions, and define the
Euler number to be the element of ∆(k) given by the sum of the indices of the k-rational
zeros of a chosen section with isolated zeros. Quotienting by the group generated by the
trace forms allows them to ignore the zeros which are not k-rational. (See Proposition
34.) Their local index is also inspired by Eisenbud’s article [Eis78]. By contrast, they only
consider orientations in the case of real closed field k, and the group ∆(k) is quite small,
unless k is algebraically closed or real closed: They show that for k an algebraically closed
field, the rank induces an isomorphism ∆(k) ∼= Z; for k a real closed field, the signature
induces an isomorphism ∆(k) ∼= Z; for fields where there is a fixed prime p such that all
extensions have degree pm and which are not algebraically closed or real closed, the rank
determines an isomorphism ∆(k) ∼= Z/p, and for all other fields ∆(k) = 0. For example,
∆(k) is zero for a finite field or a number field, while the Grothendieck-Witt group of such
fields is infinite and contains distinct elements with the same rank.

In A1-homotopy theory, there is an Euler class in Chow-Witt groups, also called ori-
ented Chow groups, twisted by the dual determinant of the vector bundle, defined by
Barge-Morel [BM00] and Fasel [Fas08]: A rank r vector bundle E on a smooth d-dimensional
scheme X gives rise to an Euler class e(E) in C̃H

r
(X, detE∗). In [Mor12, Chapter 8.2], Morel

defines an Euler class inHr(X,KMW
r (detE∗)) as the primary obstruction to the existence of

a non-vanishing section. When the detE∗ is trivial, Asok and Fasel used an isomorphism
Hr(X,KMW

r (detE∗)) ∼= C̃H
r
(X, detE∗) (see [AF16, Theorem 2.3.4]), analogous to Bloch’s

formula for Chow groups, to show these two Euler classes differ by a unit [AF16, Theo-
rem 1] provided k is a perfect field with chark 6= 2. In a preprint that appeared while this
paper was being written, Marc Levine extended this result to the case where the deter-
minant is possibly nontrivial [Lev17b, Proposition 11.6]. In the same paper, Levine also
developed the properties of the Euler number or class of a relatively oriented vector bun-
dle of rank r on a smooth, proper r-dimensional X defined by pushing-forward the Euler
class along the map

C̃H
r
(X,ωX/k)→ C̃H

0
(k) ∼= GW(k),

where ωX/k is the canonical sheaf and where the relative orientation is used to identify
C̃H

r
(X, detE∗) and C̃H

r
(X,ωX/k). It is shown that this class coincides with e(E) when

our e(E) is defined in [BW, Second Corollary pg 3]. We give here a development of the
Euler number in GW(k) which does not use the machinery of oriented Chow groups,
and which is elementary in the sense that it only requires algebra to compute, along with
some additional duality theory from commutative algebra to show it is well-defined.

In earlier work, Nori, Bhatwadaker, Mandal, and Sridharan defined Euler class groups
and weak Euler class groups for affine schemes. These have been used to study the
question of when a projective module splits off a free summand [MS96] [BS99] [BS00]
[BDM06]. For smooth, affine varieties these groups can be mapped to the Chow–Witt
groups in a way that is compatible with Euler classes under suitable additional hypothe-
ses [Fas08, Propositions 17.2.10,17.2.11].
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The signed count of real lines (2) on a cubic surface has been extended in various
ways. Benedetti–Silhol gave a topological interpretation of the classification of lines as
hyperbolic or elliptic using pin structures in [BS95]. The signed count can also be iden-
tified as an enumerative invariant defined in work of Solomon. In [Sol06], Solomon de-
fined open Gromov–Witten invariants for a suitable real symplectic manifold of dimen-
sion 4 or 6. Solomon’s invariants count certain real genus g J-holomorphic curves, and
Finashin–Kharlamov explained in [FK13, Section 5.2] that (2) equals Solomon’s invariant
when g = 0 and the symplectic manifold is the space of real points of the cubic surface.
Solomon, together with Horev, also gave an alternative proof of (2) when the cubic sur-
face is the blow-up of the plane in [HS12], a paper in which they more generally compute
the open Gromov–Witten invariants for certain blow-ups of the plane.

Another approach to studying the lines on a cubic surface is given by Basu, Lerario,
Lundberg, and Peterson in [BLLP19]. They analyze the count of lines from the perspective
of probability theory and give a new probabilistic proof of (2) [BLLP19, Proposition 2].

Finashin–Kharlamov and Okonek–Teleman, in [OT14a] and [FK13], compute more gen-
erally a signed count of the real lines on a hypersurface of degree 2n− 3 in real projective
space Pn

R. As in the case of cubic surfaces, this count is obtained as a computation of an
Euler class, but unlike the case of cubic surfaces, care must be taken when defining the
Euler class because the relevant real Grassmannian can be non-orientable, and the Euler
number is often only defined for oriented vector bundles on an oriented manifold. The
two sets of researchers address this complication in different ways. Finashin–Kharlamov
work on the orientation cover ofG(R) and orient the pullback of E . By contrast, Okonek–
Teleman work on G(R) and construct a suitably defined relative orientation of E with an
associated Euler class. These results are also analyzed by Basu, Lerario, Lundberg, and
Peterson using tools from probability in [BLLP19]. Further extensions of these ideas are
found in [FK15] [OT14b].

The work described in the present paper is part of a broader program aimed at using
A1-homotopy theory to prove arithmetic enrichments of results in enumerative geome-
try, with earlier results by Marc Hoyois [Hoy14], the present authors [KW19], and Marc
Levine [Lev17b, Lev17a]. After a version of this paper was posted to the arXiv, additional
results were obtained by Marc Levine [Lev19, Lev18], Stephen McKean [McK20], Sabrina
Pauli [Pau20], Padma Srinivasan with the second author [SW18], and Matthias Wendt
[Wen20]. The most closely related of these results is Levine’s [Lev19] and Pauli’s [Pau20].
Levine computes the A1-Euler number of Sym2n−5 S∗ on Gr(n, 2), and Pauli analyzes the
lines on the quintic 3-fold.
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2. NOTATION AND CONVENTIONS

Given a k-vector spaceA and an integer r, the Grassmannian parameterizing r-dimensional
subspaces of A will be denoted by Gr(A, r). We will write Gr(n, r) for Gr(k⊕n, r). P(A)
is Gr(A, 1) or equivalently Proj(Sym(A∨)). With this convention, H0(P(A),O(1)) = A∨.
Pn
k is P(k⊕n+1). The standard basis of k⊕4 is (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1). The

dual basis of (k⊕4)∨ is denoted x1, x2, x3, x4.

A linear system on a projective k-variety V is a pair (T,L) consisting of a line bundle
L and a subspace T ⊂ H0(V,L) of the space of global sections. The linear system (T,L)
is base-point-free if ∩s∈T {s = 0} is the empty subscheme. If (T,L) is base-point-free, then
there is a unique morphism π : V → P(T∨) together with an isomorphism π∗O(1) ∼= L
that induces the identity on T .

In general, calligraphy font denotes a family of objects, such as E denoting a vector
bundle because it is a family of vector spaces. However, when there is a family of vector
bundles, the family then is denoted E .

The concept of a line on a scheme over the possibly non-algebraically closed field k is
slightly subtle and plays a fundamental role here. We use the following.

Definition 4. A line ` in P3
k is a closed point of Gr(4, 2). The residue field of this closed

point is called the field of definition of `.

To a line `with field of definition L, there is the following associated closed subscheme
of P3

L. The closed point ` ∈ Gr(4, 2) defines a morphism Spec(L) → Gr(4, 2). If the
pullback of the tautological subbundle under this morphism is the rank 2 submodule S ⊂
L⊕4, then the homogeneous ideal generated by ann(S) ⊂ Sym((L4)∨) defines a subscheme
of P3

L. By abuse of notation we denote this subscheme by `.

For a in k∗, the element of the Grothendieck–Witt group GW(k) represented by the
symmetric, nondegenerate, rank 1 bilinear form (x, y) 7→ axy for all x, y in k is denoted
by 〈a〉.

3. HYPERBOLIC AND ELLIPTIC LINES

Here we define the type of a line on a cubic surface over an arbitrary field k of charac-
teristic 6= 2, define hyperbolic and elliptic lines, and derive an explicit expression for the
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type (Proposition 14). This expression will be used in Section 5 to relate the type to a local
A1-Euler number.

We fix a cubic polynomial f ∈ k[x1, x2, x3, x4] that defines a k-smooth cubic surface,
which we denote by V := {f = 0} ⊂ P3

k.

Definition 5. Suppose that ` is a line contained in V , with field of definition L. Define
T ⊂ (L⊕4)∨ = H0(P3

L,O(1)) to be the vector space of linear polynomials that vanish on `.
This vector space is naturally a subspace of the space of global sections of OV(1) and the
space of global sections of the sheaf I`(1) := I` ⊗ OV(1) of linear polynomials vanishing
on `.

The subspace T can alternatively be described as T = ann(S) for S ⊂ L⊕4 the subspace
corresponding to `.

The ideal sheaf I` is a line bundle because ` is a codimension 1 subscheme of the smooth
surface V ⊗k L. Thus T defines two linear systems on V ⊗k L: the linear system (T,OV(1))
and the linear system (T, I`(1)). The elements (T,OV(1)) are the intersections with planes
containing `, while the elements of (T, I`(1)) are the residual intersections with these
planes. The linear system (T,OV(1)) has base-points, namely the points of `, but as the
following lemma shows, the other linear system is base-point-free.

Lemma 6. The linear system (T, I`(1)) is base-point-free.

Proof. The sheaf I`(1) is the restriction of the analogous sheaf on P3
L, and the sheaf on P3

L

is generated by T by the definition of the subscheme ` ⊂ P3
L (see Section 2). We conclude

that the same holds on V , and T generating I`(1) is equivalent to base-point-freeness. �

Definition 7. Let π : V ⊗ L → P(T∨) be the morphism associated to the base-point-free
linear system (T, I`(1)). The restriction of π to ` is a finite morphism of degree 2 (see
Lemma 10), hence is Galois (as chark 6= 2). We denote the nontrivial element of the
Galois group of `→ P(T∨) by

i : `→ `.

The involution i is the one discussed in the introduction. Concretely π is the unique
morphism that extends projection from `. One may identify P(T∨) with the space of
planes in P3

L containing `. Under this identification, π sends a point p to the tangent space
TpV to V at p viewed as a projective plane of dimension 2, and therefore the involution
i swaps p and q if and only if TpV = TqV . Note that the intersection of TpV with V is a
degree 3 plane curve containing `, which can therefore be described as a conic Q union `.
We see that π should be degree 2 because given a point p of `, the intersection of Q with
` contains two points (counted with multiplicity), and these are precisely the points with
the same tangent space.

Remark 8. Recall that we require chark 6= 2, and this requirement is important because
otherwise the involution i might not exist, in which case the type is undefined. Indeed,
consider the surface V over F2 defined by f = x31 + x

3
2 + x

3
3 + x

3
4. This surface contains

the line ` defined by the subspace spanned by (1, 1, 0, 0) and (0, 0, 1, 1). The morphism
π : ` → P(T∨) is purely inseparable, as can be seen either by direct computation or an
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application of Lemma 10 below. In particular, ` does not admit a nontrivial automorphism
that respects π.

Having defined i, we can now define hyperbolic and elliptic lines in direct analogy
with Segre’s definition. We use Morel’s A1-Brouwer degree, as constructed in [Mor12].

Definition 9. The type of a line on V is 〈−1〉 ·degA1

(i), the product of 〈−1〉 and A1-degree
of the associated involution i. We say that the line is hyperbolic if the type equals 〈1〉
(i.e. degA

1

(i) = 〈−1〉). Otherwise we say that the line is elliptic.

The general definition of the A1-degree is complicated, but degA
1

(i) has a simple de-
scription. If we identify ` with P1

L so that i is the linear fractional transformation (αz +
β)/(γz+ δ), then the A1-degree is 〈αδ−βγ〉 ∈ GW(k). In particular, ` is hyperbolic if and
only if −(αδ− βγ) is a perfect square in L.

We define the type to be the negative of the degree rather than the degree itself so that,
when k = R, the type is consistent with the sign conventions in [FK13, OT14a]. There
hyperbolic lines are counted with sign +1 and elliptic lines with sign −1.

We now derive an expression for the fibers of π : `→ P(T∨).

Lemma 10. Suppose thatV contains the line ` defined by the subspace spanned by (0, 0, 1, 0)
and (0, 0, 0, 1). Write

f = x1 · P1 + x2 · P2
for homogeneous quadratic polynomials P1, P2 ∈ k[x1, x2, x3, x4]

Then the fiber of π : ` → P(T∨) over the k-point corresponding to the 1-dimensional
subspace spanned by (a, b, 0, 0) ∈ T∨ is

(5) {a · P1(0, 0, x3, x4) + b · P2(0, 0, x3, x4) = 0} ⊂ `

Proof. The point corresponding to (a, b, 0, 0) is the zero locus of bx1 − ax2, considered as
a global section of OP(T∨)(1). By construction, the preimage of this point under π : ` →
P(T∨) is the zero locus of bx1 − ax2 considered as a global section of O` ⊗ I`(1). We prove
the lemma by identifying O` ⊗ I`(1) with O`(2) in such a way that bx1 − ax2 is identified
with the polynomial in (5).

Consider the line bundle I`(1). On V , we have 0 = x1P1 + x2P2, so x1 = −P2/P1 · x2,
showing that x2 generates I`(1) on {P1 6= 0} and x1 generates I`(1) on {P2 6= 0}. We conclude
that the analogue is true for O` ⊗ I`(1), and the map sending x2 to −P1(0, 0, x3, x4) and
x1 to P2(0, 0, x3, x4) defines an isomorphism O` ⊗ I`(1) ∼= O`(2) that sends bx1 − ax2 to
aP1(0, 0, x3, x4) + bP2(0, 0, x3, x4). �

We now collect some general results about involutions and then apply those results to
get a convenient expression for degA

1

(i).

Lemma 11. Every nontrivial involution i : P1
k → P1

k is conjugate to the involution z 7→
−α/z for some α ∈ k.
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Proof. This is [Bea10, Theorem 4.2]. �

Lemma 12. The A1-degree of i(z) = −α/z is 〈α〉 ∈ GW(k).

Proof. This is a special case of e.g. the main result of [Caz12]. �

Corollary 13. If i is a nontrivial involution on P1
k and D ∈ k is the discriminant of the

fixed subscheme of i, then

〈−1〉 · degA1

(i) = 〈D〉 in GW(k).

Proof. Both the A1-degree and the class of the discriminant are unchanged by conjugation,
so by Lemma 11, it is enough to prove result when i is the involution i(z) = −α/z. In this
case, the fixed subscheme is {z2 + α = 0}, which has discriminant −4α. We have that
〈−4α〉 = 〈−α〉, and the second class is 〈−1〉 · degA1

(i) by Lemma 12. �

Proposition 14. Let e1, e2, e3, e4 be a basis for k⊕4 such that the subspace S := k · e3+ k · e4
defines a line contained in V . Let x1, x2, x3, x4 denote the dual basis to e1, e2, e3, e4. Then
the associated involution satisfies

(6) 〈−1〉 · degA1

(i) = 〈Res( ∂f
∂x1

|S,
∂f

∂x2
|S)〉 in GW(k).

Remark 15. Note that the resultant in (6) should be understood as the resultant of homo-
geneous polynomials in x3 and x4. The choices of bases are not significant because dif-
ferent choices would change the resultant by a perfect square, leaving the class in GW(k)
unchanged.

Remark 16. For any line `, we may choose a basis such that ` corresponds to a subspace
S := L · e3+L · e4, where L = k(`) is the field of definition of `. Proposition 14 then implies
the equality 〈−1〉 · degA1

(i) = 〈Res( ∂f
∂x1

|S, ∂f
∂x2

|S)〉 in GW(L).

Proof. By Corollary 13, it is enough to show that the right-hand side of (6) equals the
class of the discriminant of the fixed locus of i. This fixed locus maps isomorphically
onto the ramification locus of π : ` → P(T∨), and we compute by directly computing the
discriminant of the ramification locus using Lemma 10 as follows.

If we write f = x1P1 + x2P2, then Lemma 10 implies that the ramification locus is the
locus where the polynomial

(7) a · P1(0, 0, x3, x4) + b · P2(0, 0, x3, x4)

in x3, x4 has a multiple root. The ramification locus is thus the zero locus of Discx3,x4(a ·
P1(0, 0, x3, x4) + b · P2(0, 0, x3, x4)), the discriminant of (7) considered as a polynomial in
x3 and x4. Consequently the discriminant of the ramification locus is Disca,b(Discx3,x4(a ·
P1(0, 0, x3, x4) + b · P2(0, 0, x3, x4))) ∈ k∗/(k∗)2.

The right-hand of (6) can also be described in terms of P1, P2. Differentiating f = x3P1+
x4P2, we get ∂f

∂e1
|S = P1(0, 0, x3, x4) and ∂f

∂e2
= P2(0, 0, x3, x4). We now complete the proof by
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computing explicitly. If P1(0, 0, x3, x4) =
∑
aix

i
3x
2−i
4 and P2(0, 0, x3, x4) =

∑
bix

i
3x
2−i
4 , then

resultant computations show

Res(P1(0, 0, x3, x4), P2(0, 0, x3, x4)) =a
2
1b0b2 − a2a1b0b1 − a0a1b1b2 + a

2
2b
2
0 + a0a2b

2
1

+ a20b
2
2 − 2a0a2b0b2

=1/16 ·Disca,b(Discx3,x4(a · P1(0, 0, x3, x4) + b · P2(0, 0, x3, x4))).
�

4. EULER NUMBER FOR RELATIVELY ORIENTED VECTOR BUNDLES

In this section, we define an Euler number in GW(k) for an algebraic vector bundle
which is appropriately oriented and has a sufficiently connected space of global sections
with isolated zeros. The definition is elementary in the sense that it can be calculated
with linear algebra. Some duality theory from commutative algebra as in [Bea71] [EL77]
[SS75] is used to show the resulting element of GW(k) is well-defined, but no tools from
A1-homotopy theory are needed. The precise hypothesis we use on sections is given in
Definition 37. The precise hypothesis on orientations is that the vector bundle be rel-
atively oriented as in Definition 17. The vector bundle is assumed to be on a smooth
k-scheme with k a field.

An alternative approach using Chow-Witt groups or oriented Chow groups of Barge-
Morel [BM00] and Fasel [Fas08] is developed in the work of Marc Levine [Lev17b] without
the hypothesis on sections. Please see the introduction for further discussion.

Let π : E → X be a rank r vector bundle on a smooth dimension r scheme X over k.
In [Mor12, Definition 4.3], an orientation of E is a line bundle L and an isomorphism
L⊗2 ∼= ∧topE. Following Okonek–Teleman [OT14a], we make use of the related concept of
a relative orientation.

Let T (X)→ X denotes the tangent bundle.

Definition 17. A relative orientation of E is a pair (L, j) consisting of a line bundle L and
an isomorphism j : L⊗2

∼=→ Hom(∧topT (X),∧topE).

Assume furthermore that π : E → X is relatively oriented. On an open U of X, we say
that a section s of Hom(∧topT (X),∧topE) is a square if its image under

Γ(U,Hom(∧topT (X),∧topE)) ∼= Γ(U, L⊗2)

is the tensor square of an element in Γ(U, L).

Let p be a closed point of X, which as above is a smooth dimension r scheme over k.

Definition 18. An étale map

φ : U→ Ar
k = Spec k[x1, . . . , xr]

from an open neighborhood U of p to the affine space, which induces an isomorphism on
the residue field of p is called Nisnevich coordinates around p.
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Lemma 19. There are Nisnevich coordinates around any closed point whose residue field
is separable over k for r ≥ 1.

(When r = 0, this result does not hold. For a counter-example, consider SpecL→ Spec k
for a non-trivial, finite, separable extension k ⊆ L.)

Proof. Let X → Spec k be smooth of dimension r ≥ 1 and let p be a closed point of X
such that k ⊆ k(p) is separable. We may assume that X is affine. Let p also denote
the ideal corresponding to p. By [sga03, II Corollaire 5.10 and 5.9], there are x1, . . . , xr
in OX such that x1, . . . , xr generate p. Since k ⊆ k(p) is separable, there is x ∈ OX
which generates k(p) as an extension of k by the primitive element theorem. If dx is
zero in Ω1

X/k ⊗ k(p), then d(x + x1), dx2, . . . , dxr is a k(p)-basis of Ω1
X/k ⊗ k(p), whence

X → Speck[x + x1, x2, . . . , xr] is étale at p. Furthermore, x + x1 = x modulo p. It follows
that the map X→ Speck[x + x1, x2, . . . , xr] gives Nisnevich coordinates around p. If dx is
nonzero in Ω1

X/k ⊗ k(p), then we may use dx as the first basis element in a basis formed
from the spanning set {dx, dx1, . . . , dxr}. The map to r-dimensional affine space over k
corresponding to this basis gives Nisnevich coordinates.

�

Proposition 20. There are Nisnevich coordinates around any closed point of a smooth
k-scheme of dimension r ≥ 1.

Proof. Nisnevich coordinates exist around closed points of smooth r-dimensional k-schemes
when k is infinite and r ≥ 1 by [Knu91, Chapter 8, Proposition 3.2.1]. Combining with the
previous lemma, we have the claimed existence of Nisnevich coordinates. �

We thank Alexey Ananyevskiy and Ivan Panin for the reference to [Knu91].

Let φ be Nisnevich coordinates around p. Since φ is étale, the standard basis for the
tangent space of Ar

k gives a trivialization for TX|U. By potentially shrinking U, we may
assume that the restriction of E to U is trivial.

Definition 21. A trivialization of E|U will be called compatible with Nisnevich coordi-
nates φ and the relative orientation if the element of Hom(∧topT (X)|U,∧topE|U) taking the
distinguished basis of ∧topT (X)|U to the distinguished basis of ∧topE|U is a square.

Given φ and a compatible trivialization of E|U, let rU in Γ(U, L) denote an element such
that r⊗2U maps to the distinguished section of Hom(∧topT (X)|U,∧topE|U) under the relative
orientation.

Let σ in Γ(X, E) denote a section, and let Z ⊆ X denote the closed subscheme {σ = 0}.

Definition 22. A point p of Z is said to be an isolated zero of σ if the local ring OZ,p is a
finite k-algebra. We say that the section σ has isolated zeros if OZ is a finite k-algebra.

A section σ has isolated zeros if every zero is isolated and X is connected.
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Proposition 23. The following are equivalent characterizations of an isolated zero of a
section σ, and of σ having isolated zeros.

• p is an isolated zero of σ if and only if there is a Zariski open neighborhood U of p
such that the set-theoretic intersection U ∩ Z is p, i.e., U ∩ Z = {p}.
• σ has isolated zeros if and only if Z consists of finitely many closed points.

Proof. If p is an isolated zero of σ, then OZ,p is dimension 0. Since p is a closed point,
OZ,p/p has dimension 0. Let Z0 be an irreducible component of Z containing p. Since Z0

is finite type over a field, dimZ0 = dimOZ,p + dimOZ,p/p = 0. Thus Z0 is an irreducible
dimension 0 scheme which is finite type over k and is therefore a single point, which must
be p. Thus we may take U to be the complement of the other irreducible components of
Z.

If p is a closed point with a Zariski open neighborhood U such that U ∩ Z = {p}, then
dimZ0 = 0. A zero dimensional finite type k-algebra is finite.

Since a zero dimensional Noetherian ring has finitely many points, if σ has isolated
zeros, then Z has finitely many points. These points are closed because since Z is closed,
any specialization of a point of Z is in Z, and since Z is zero dimensional, there are no
such specializations.

If Z consists of finitely many closed points, then Z is a zero dimensional finite type
k-algebra, which is thus finite. �

We will use Nisnevich coordinates around p and a local trivialization of E to express
the section σ of E as a function Ar

k → Ar
k plus an error term in a high power of the

ideal corresponding to p. This will allow us to use a notion of local degree of a function
Ar
k → Ar

k to define the local contribution to the Euler number. To do this, we will relate
local rings OX,p and OZ,p of p to the coordinate functions coming from the Nisnevich
coordinates. The ideal corresponding to pwill also be denoted by p.

Lemma 24. Let p be an isolated zero of the section σ, and letφ : U→ Ar
k = Speck[x1, . . . , xr]

be Nisnevich coordinates around p. Then

• OZ,p is generated as a k-algebra by x1, . . . , xr. (We identify the xi with their pull-
backs φ∗xi.)
• For any positive integer m, the local ring OX,p/pm is generated as a k-algebra by
x1, . . . , xr.

Proof. Since OZ,p is finite, there exists an m such that pm = 0 in OZ,p. Since OZ,p is a
quotient of OX,p, it thus suffices to show the second assertion. Let q ⊂ k[x1, . . . , xr] be the
prime ideal q = φ(p). By construction of φ, the induced map k[x1, . . . , xr]/q → OX,p/p
on residue fields is an isomorphism. We claim by induction that the map k[x1, . . . , xr] →
OX,p/pm is a surjection. Given an element y of OX,p/pm, by induction on m, we can find
an element y ′ of the image such that y− y ′ is in pm−1. We can therefore express y− y ′ as
y−y ′ =

∑
i aibi where ai is in pm−2 and bi ∈ p. Sinceφ is étale,φ induces an isomorphism
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on cotangent spaces. It follows that there exist a ′i ∈ pm−2 and b ′i ∈ p in the image, such
that ai−a ′i is in pm−1 and bi−b ′i is in p2. Then

∑
i aibi =

∑
i a
′
ib
′
i inOX,p/pm and the latter

is in the image, showing the lemma. �

Let p be an isolated zero of σ as above. Choosing a compatible trivialization of E|U, the
section σ becomes an r-tuple of functions (f1, . . . , fr), and each fi restricts to an element of
the local ring OX,p. The local ring OZ,p is the quotient

OZ,p ∼= OX,p/〈f1, . . . , fr〉.

We furthermore have a commutative diagram

k[x1, . . . , xr]

����xx
OX,p // // OZ,p

.

Since OZ,p is finite, there exists an m ≥ 1 such that pm = 0 in OZ,p. In particular, we have
the equality of ideals 〈f1, . . . , fr〉 = 〈f1, . . . , fr〉 + pm in OX,p. By Lemma 24, k[x1, . . . , xr]
surjects onto OX,p/p2m. Therefore, we have gi in k[x1, . . . , xr] for i = 1, . . . , r such that
gi − fi ∈ p2m ⊆ pm+1. (We again identify the gi’s with their images under φ∗.)

Lemma 25. 〈g1, . . . , gr〉e = 〈f1, . . . , fr〉e in OX,p for all positive integers e.

Proof. It suffices to show the lemma for e = 1. Since 〈f1, . . . , fr〉 ⊇ 〈f1, . . . , fr〉 + pm ⊇
〈f1, . . . , fr〉+ pm+1, we have that

〈g1, . . . , gr〉 ⊆ 〈f1, . . . , fr〉.

In the other direction, the gi’s generate 〈g1, . . . , gr〉 + pm modulo pm+1 because modulo
pm+1, the gi’s are equal to the fi’s. Thus pm ⊆ 〈g1, . . . , gr〉, giving equality. �

Let q ⊂ k[x1, . . . , xr] be the prime ideal q = φ(p).

Lemma 26. 〈g1, . . . , gr〉e = (φ∗)−1(〈f1, . . . , fr〉e) in k[x1, . . . , xr]q for all positive integers e.

Proof. It suffices to show that the quotient map

(8) a : k[x1, . . . , xr]q/〈g1, . . . , gr〉e → k[x1, . . . , xr]q/(φ
∗)−1(〈f1, . . . , fr〉e)

is injective. Since φ is flat, the map of local rings φ∗ : k[x1, . . . , xr]q → OX,p is faithfully
flat. It thus suffices to show the injectivity of the map

a⊗k[x1,...,xr]q OX,p : OX,p/〈g1, . . . , gr〉
e → OX,p/OX,p((φ∗)−1(〈f1, . . . , fr〉)e).

This map is injective by Lemma 25. �

Lemma 27. OZ,p ∼= k[x1, . . . , xr]q/〈g1, . . . , gr〉 is a finite complete intersection.

Proof. By Lemma 24, the map k[x1, . . . , xr]q → OZ,p is surjective. The kernel is (φ∗)−1〈f1, . . . , fr〉,
so the lemma follows by Lemma 26. �
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By [SS75, Section 3], the presentation k[x1, . . . , xr]q/〈g1, . . . , gr〉 ∼= OZ,p of the finite com-
plete intersection k-algebra OZ,p determines a canonical isomorphism

(9) Homk(OZ,p, k) ∼= OZ,p
of OZ,p-modules. Let η be the element of Homk(OZ,p, k) corresponding to 1 in OZ,p as in
[SS75, p. 182].

Lemma 28. Letm ≥ 1 be such that pm = 0 inOZ,p. Choose gi in k[x1, . . . , xr] for i = 1, . . . , r
such that gi − fi is in p2m, and let η be the corresponding element of Homk(OZ,p, k). Then
η is independent of the choice of g1, . . . , gr.

Proof. η commutes with base-change, as can be seen from the construction [SS75, Sec-
tion 3], so we may assume that k(p) = k, and that φ(p) is the origin by translation. Let
g ′1, . . . , g

′
r be another choice of g1, . . . , gr, and let η ′ and η denote the corresponding ele-

ments of Homk(OZ,p, k). Since φ is a flat map of integral domains, k[x1, . . . , xr] → OX,p
is injective. By construction, g ′i − gi is in p2m ∩ k[x1, . . . , xr]q. Since pm ⊆ 〈f1, . . . , fr〉, it
follows that p2m ⊆ 〈f1, . . . , fr〉2. Thus p2m ∩ k[x1, . . . , xr]q ⊆ 〈f1, . . . , fr〉2 ∩ k[x1, . . . , xr]q.
By Lemma 26, it follows that p2m ∩ k[x1, . . . , xr]q ⊆ 〈g1, . . . , gr〉2. Thus we may express
g ′i − gi as a sum g ′i − gi =

∑r
j=1 c̃i,jgj with c̃i,j in 〈g1, . . . , gr〉. Let ci,j = c̃i,j for i 6= j and

let ci,i = 1 + c̃i,i. Then g ′i =
∑r

j=1 ci,jgj. Let c in OZ,p denote the image of det
(
ci,j
)
. By

[SS79, Satz 1.1], for all y inOZ,p there is equality η(y) = η ′(cy). Since
(
ci,j
)

is congruent to
the identity modulo 〈g1, . . . , gr〉, and 〈g1, . . . , gr〉 is in the kernel of k[x1, . . . , xr]→ OZ,p, it
follows that c = 1. �

The homomorphism η defines a symmetric bilinear form β on OZ,p by the formula

β(x, y) = η(xy),

which is furthermore nondegenerate because the map y 7→ η(xy) in Homk(OZ,p, k) maps
to x in OZ,p under the isomorphism (9).

Suppose that φ,φ ′ : U → Spec k[x1, . . . , xr] are Nisnevich coordinates aound p and
ψ,ψ ′ : E|U → OrU are local trivializations compatible with φ and φ ′, respectively. By
Lemma 28, this data defines η, η ′ : OZ,p → k, respectively, and corresponding nonde-
generate symmetric bilinear forms β,β ′. Let rU and r ′U denote elements of Γ(U, L) as in
Definition 21 for (φ,ψ) and (φ ′, ψ ′) respectively. Note that rU and r ′U are non-vanishing
by construction, and therefore rU/r ′U defines an element of Γ(U,O∗).

Lemma 29. β is the pullback of β ′ by the isomorphism OZ,p → OZ,p given by multiplica-
tion by rU/r ′U.

Proof. The lemma is equivalent to the assertion that η(y) = η ′((rU/r ′U)
2y) for all y in OZ,p.

Suppose first that φ ′ = φ and that r ′U = rU. Let (f1, . . . , fr) and (f ′1, . . . , f
′
r) denote ψ(σ)

and ψ ′(σ) expressed as r-tuples of regular functions on U. Then there is M : U → SLr
such that

f ′j =

r∑
i=1

Mjifi.
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By Lemma 24, there exist M ′
ij ∈ k[x1, . . . , xr] such that in M ′

ij −Mij is in p2m, where as
before m is chosen so that pm = 0 in OZ,p. By potentially shrinking U, we may assume
that U is affine andM ′

ij −Mij ⊆ p2mO(U). Define g ′j in k[x1, . . . , xr] by

g ′j =

r∑
i=1

M ′
jigi.

By construction f ′j − g ′j is in p2m, and we may therefore use g ′1, . . . , g
′
r to compute η ′.

Because detM = 1, the difference detM ′ − 1 is in p2m, which is therefore 0 in OZ,p. Thus
η = η ′, as claimed.

Now suppose that φ ′ = φ, and ψ ′ = Aψ where A in GLrOU is the matrix restricting
to the identity on Or−1U and multiplying the last coordinate by α2 for α in Γ(U,O∗). As
before, let (f1, . . . , fr) and (f ′1, . . . , f

′
r) denote ψ(σ) and ψ ′(σ) expressed as r-tuples of reg-

ular functions on U, so (f ′1, . . . , f
′
r) = (α2f1, . . . , fr). Then η ′(α2y) = η(y) for all y in OZ,p

by [SS79, Satz 1.1]. Furthermore, the distinguished basis of ∧rE|U via ψ is α2 times the
distinguished basis via ψ ′ by construction. Since φ = φ ′, it follows that α2(r ′U)

2 = r2U,
showing the claim.

Combining the previous two paragraphs, we see that the lemma holds when φ ′ = φ.

Suppose givenφ,φ ′ : U→ Speck[x1, . . . xr] Nisnevich coordinates around p. By Lemma
24, φ and φ ′ induce surjections Spec k[x1, . . . xr] → OX,p/pN for any chosen positive inte-
ger N. We may therefore choose a map ϕ : Spec k[x1, . . . xr]→ Speck[x1, . . . xr] fitting into
the commutative diagram

k[x1, . . . xr]
ϕ∗ //

φ∗

&&

k[x1, . . . xr]

(φ ′)∗xx
OX,p/pN

.

Let φ̃ = ϕ ◦ φ ′. It follows that φ̃ : U → Spec k[x1, . . . xr] determines Nisnevich coor-
dinates around p, and φ̃∗xi − φ∗xi is contained in pN for i = 1, . . . r. The coordinates
φ̃ and φ determine trivializations tφ̃, tφ : TX|U

∼=−→ OrU. Let A = tφ̃ ◦ t−1φ . By choos-
ing N sufficiently large, we may assume that A ∈ GLrOU is congruent to the identity
mod p2m. Let ψ : E|U → OrU be a trivialization of E|U compatible with φ. Define ψ̃ by
ψ̃ = Aψ. Then ψ̃ is a trivialization of E|U compatible with φ̃ such that r̃U = rU,where r̃U is
defined by Definition 21 for (φ̃, ψ̃). Let (f1, . . . , fr) and (f̃1, . . . , f̃r) denote ψ(σ) and ψ̃(σ)
expressed as r-tuples of regular functions onU, so in particular (f̃1, . . . , f̃r) = A(f1, . . . , fr).
Choose g1, . . . , gr in k[x1, . . . , xr] such that gi − fi is in p2m. By Lemma 24, we may choose
Ã ∈ GLr k[x1, . . . , xr] such that φ∗Ã − A is congruent to the identity mod p2m. Define
(g̃1, . . . , g̃r) by the matrix equation (g̃1, . . . , g̃r) = Ã(g1, . . . , gr). Then φ̃ ′g̃i− f̃i is in p2m. By
construction (Lemma 27), we obtain presentations OZ,p ∼= k[x1, . . . , xr]q/〈g1, . . . , gr〉 and
OZ,p ∼= k[x1, . . . , xr]q/〈g̃1, . . . , g̃r〉 of OZ,p. Furthermore, mapping xi to xi for i = 1, . . . , r
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determines a commutative diagram

k[x1, . . . xr]
ϕ∗ //

φ∗

%%

k[x1, . . . xr]

(φ ′)∗yy
OZ,p

because pm = 0 inOZ,p. Let η̃ : OZ,p → k denote the homomorphism corresponding to the
presentationOZ,p ∼= k[x1, . . . , xr]q/〈g̃1, . . . , g̃r〉 as in [SS75, p. 182]. By [SS79, Satz 1.1] there
is equality η = η̃.

It follows that we may replace φ by φ̃ and assume that φ = ϕ ◦ φ ′. η commutes with
base-change, so we may assume that k(p) = k, and that φ(p) is the origin by translation.
We may likewise assume that φ ′(p) is the origin, and therefore that ϕ takes the origin to
the origin. Let ψ ′ : E|U → OrU denote a trivialization of E|U compatible with φ ′. Since ϕ is
étale on a neighborhood of 0, the Jacobian of ϕ defines a map Tϕ from this neighborhood
to GLr. By possibly shrinking U, we therefore have a map Tϕ ◦ φ ′ : U → GLr. Using
the canonical action of GLr on the free sheaf of rank r, we obtain a second trivialization
of E|U given by ψ = (Tϕ ◦ φ ′)ψ ′ : E|U → OrU, which is compatible with φ, and rU = r ′U.
Let (f ′1, . . . , f

′
r) ∈ OrU denote the coordinate projections of σ under the trivialization ψ ′. It

follows that the coordinate projections (f1, . . . , fr) ∈ OrU of σ under the trivialization ψ are
Tϕ ◦ φ(f ′1, . . . , f ′r). Choose gi in k[x1, . . . , xr] for i = 1, . . . , r such that (φ)∗gi − fi is in p2m.
Then we may define g ′i by (g ′1, . . . , g

′
r) = (Tϕ)−1(ϕ∗g1, . . . , ϕ

∗gr) and have that (φ ′)∗g ′i− f
′
i

is in p2m as required. By [SS79, Satz 1.5 and 1.1], it follows that η = η ′. We have thus
reduced to the case where φ = φ ′, completing the proof.

�

Definition 30. The local index of σ at p is defined to be the element indp σ of GW(k)
represented by the symmetric bilinear form

β(x, y) = η(xy),

where x and y are in OZ,p.

Corollary 31. Suppose r > 0. The local index indp σ exists at any isolated zero p of σ, and
indp σ is independent of the choice of

• φ : U→ Ar
k = Spec k[x1, . . . , xr]

• The chosen compatible trivialization of E|U.
• g1, . . . , gr

Proof. By Remark 20, Nisnevich coordinates exist around p. By Lemma 27 and the con-
struction of Scheja-Storch ([SS75, Section 3]) discussed immediately after, indp σ exists.
The independence of the choice of g1, . . . , gr follows from Lemma 28. The independence
of the choice of Nisnevich coordinates and compatible trivialization of E|U follows from
Lemma 29. �

The local index is moreover straightforward to compute. For example, if p is a simple
zero of σ with a neighborhood isomorphic to the affine space Spec k[x1, . . . , xr] and k ⊆
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k(p) is separable, then
indp σ = 〈Trk(p)/k J〉,

where Trk(p)/k : k(p) → k is the field trace and J is the Jacobian determinant of σ, i.e., J =

det
(
∂fj
∂xi

)
(p) where σ is identified with the function (f1, . . . , fr) : A

r
k → Ar

k in a compatible
local trivialization of E.

In general, one may reduce the computation of the local index to the case where p is a
k-point using descent. (In the case where the residue field extension k ⊆ k(p) is separable,
one can also base change to k(p) and then apply the trace: See Proposition 34.) When p is
a k-point, one may then replace η by any k-linear homomorphism ηnew : OZ,p → k which
takes the distinguished socle element to 1. Under appropriate circumstances, for instance
when k is characteristic 0, choosing such a homomorphism is equivalent to choosing a
homomorphism which takes the Jacobian determinant J(p) = det(∂gi

∂xj
(p)) to dimkOZ,p.

See [Eis78, p. 764] [EL77] [Khi77]. Then indp σ is represented by the bilinear form on OZ,p
taking (x, y) to ηnew(xy). Below are some examples. The η of Scheja-Storch is used here to
show invariance in families below (Lemma 36).

Example 32. The most fundamental example is where X = Ar
k, p = 0, and E = Or, with

E given the canonical relative orientation. In this case, σ can be viewed as a function σ :
Ar
k → Ar

k and indp σ is the Grothendieck-Witt class of Eisenbud-Khimshiashvili-Levine,
or equivalently the local A1-Brouwer degree of σ as shown in [KW19]. Specifically, let
(f1, . . . , fr) denote the coordinate projections of σ. We may choose ai,j ∈ k[x1, . . . , xr] such
that

fi =

r∑
j=1

ai,jxj.

The distinguished socle element is det
(
ai,j
)
. Choose η sending det

(
ai,j
)

to 1. Then indp σ
is represented by the bilinear form β on k[x1, . . . , xr]0/〈f1, . . . , fr〉 defined β(x, y) = η(xy).

Example 33. Let X = P1
k = Proj k[x, y], and let p be the point p = [0, 1]. Consider the

Cartier divisor (2n)p and its associated line bundle E = O((2n)p) for 2n ≥ 1. Let σ be the
global section σ = 1 in Γ(P1

k,O((2n)p)). We specify a relative orientation

Hom(T (P1
k),O((2n)p)) ∼= O((n− 1)p)⊗2

as follows. On U = Speck[x/y] → P1
k, the tangent bundle T (P1

k) is trivialized by ∂x/y
andO((2n)p)) is trivialized by (x/y)−2n. Similarly, onW = Speck[y/x]→ P1

k, the tangent
bundle T (P1

k) is trivialized by ∂y/x andO((2n)p)) is trivialized by 1. Thus Hom(T (P1
k),O((2n)p))

is trivialized on U by αU, where αU(∂x/y) = (x/y)−2n, and onW by αW , where αW(∂y/x) =
1. On Speck[x/y] ∩ Spec k[y/x] we have the equality − x2

y2
∂x/y = ∂y/x, whence αU =

−y2n−2

x2n−2αW . We give E a relative orientation

Hom(T (P1
k),O((2n)p))

∼=→ O((n− 1)p)⊗2

defined by sending αU to −(y
n−1

xn−1 )
⊗2 and sending αW to 1⊗2. We use this relative orien-

tation to compute indp σ for all n. In fact, we’ll use two different choices of Nisnevich
coordinates around 0 for n = 1 and see directly that we compute the same local index, as
we must.
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First, use the Nisnevich coordinates around 0 given by φ : U → Spec[x1] where φ∗x1 =
x/y. The trivialization ψ : E|U → OU defined by ψ((x/y)−2n) = −1 is compatible with
φ. Then σ corresponds to f1 = −x2n1 , and we may define g1 = f1 = −x2n1 . We obtain the
presentation of OZ,p given by

OZ,p ∼= k[x1]/〈−x2n1 〉.
We may choose η : OZ,p → k to be defined by η(−x2n−11 ) = 1, η(xi1) = 0 for i = 0, 1, . . . , 2n.
Then

indp σ = n(〈1〉+ 〈−1〉).

For comparison, assume that the characteristic of k is not 3 and use the Nisnevich coor-
dinates around 0 given by φ : U − {1}→ Spec[x1] where φ∗x1 = (x/y − 1)3. For computa-
tional simplicity, let n = 1. Note that the distinguished basis element of T0U determined
by φ is then 1

3(x/y−1)2
∂x/y, from which it follows that the trivialization ψ : E|U−{1} → OU

defined by ψ(y2n/x2n) = −3(x/y− 1)2 is compatible with φ. Then f1 =
−x2n3(x/y−1)2

y2n
, and

OZ,p ∼= (k[x/y]/〈x
2n

y2n
(x/y− 1)2〉)p ∼= k[x/y]/〈

x2n

y2n
〉.

The integer m from Lemma 24 can be taken to be m = 2n. Using the assumption that
n = 1, we compute that −3( 1

3
(x1+ 1))

2 ∼= f1 mod x4

y4
, whence the function g1 can be taken

to be g1 = −1
3
(x1 + 1)

2. We obtain the presentation of OZ,p given by

OZ,p ∼= k[x1]/〈
−1

3
(x1 + 1)

2〉.

We may choose η : OZ,p → k to be defined by η(−1
3
(x1 + 1)) = 1 and η(1) = 0. Then

indp σ = 〈1〉+ 〈−1〉,

and we recover the previous computation as desired.

For a separable field extension k ⊆ L, let TrL/k : GW(L) → GW(k) denote the trace
which takes a bilinear form β : V ⊗ V → L over L to the composition of β with the
field trace L → k, now viewing V as a vector space over k. This is sometimes called
the Scharlau transfer, as in earlier versions of the present paper and [Hoy14], although
we caution the reader the term Scharlau transfer may also refer to different but related
maps, as in [Fas20, Remark 1.16] [Sch72, Theorem 4.1]. When k ⊆ k(p) is separable, the
trace reduces the computation of indp σ to the case where p is rational. Namely, let p be
an isolated zero of σ such that k ⊆ k(p) is a separable extension. Let Xk(p) denote the
base change of X to k(p) and let pk(p) denote the canonical point of Xk(p) determined by
p : Spec k(p)→ X. Let σk(p) denote the base change of σ.

Proposition 34. indp σ = Trk(p)/k indpk(p) σk(p).

Proof. Let k(p) ⊆ L be an extension such that k ⊆ L is Galois. Let β denote the bilinear
form representing indp σ and βk(p) denote the bilinear form representing indp σk(p) as in
Definition 30. We identify the bilinear forms L⊗ β and L⊗ Trk(p)/k βk(p) together with the
associated descent data.
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The bilinear form L ⊗ β has underlying vector space L ⊗ OZ,p. The bilinear form
Trk(p)/k βk(p) has underlying vector space given by OZk(p),p, so L ⊗ Trk(p)/k βk(p) has un-
derlying vector space given by L⊗k OZk(p),p.

For each coset gGalL/k(p) of GalL/k, there is a point gp in X(L), and a corresponding local
ring OZL,gp. The ring L ⊗ OZ,p decomposes into idempotents corresponding to the gp,
giving rise to an isomorphism

(10) L⊗OZ,p ∼=
∏

g∈GalL/k /GalL/k(p)

OZL,gp.

It follows from the construction on [SS75, p. 182] that the restriction of the map L⊗ ηk,p :
L⊗OZ,p → L to an idempotent OZL,gp is the corresponding ηL,gp.

The map g : OZk(p),p → OgZk(p),gp determines a quotient map

L⊗k OZk(p),p → L⊗gk(p) OZgk(p),gp.

These maps determine an isomorphism

L⊗k OZk(p),p
∼=

∏
g∈GalL/k /GalL/k(p)

L⊗gk(p) OZgk(p),gp.

We have L⊗gk(p)OZgk(p),gp
∼= OZL,gp. We therefore have constructed a k-linear isomorphism

(11) L⊗k OZk(p),p
∼=

∏
g∈GalL/k /GalL/k(p)

OZL,gp.

By the functoriality of η, the pullback of ηL,gp by g : OZL,p → OZL,gp is ηL,p. By the proof
of [Lam05, VII Theorem 6.1], it follows that the isomorphism (11) takes L ⊗ Trk(p)/k βk(p)
from the left hand side to the orthogonal direct sum ⊕g∈GalL/k /GalL/k(p)βL,gp.

Combining with the previous ((10) and (11)) we have an isomorphism

L⊗OZ,p ∼= L⊗k OZk(p),p

taking L⊗ β on the left to L⊗ Trk(p)/k βk(p) on the right.

There are canonical Gal(L/k) actions on L⊗OZ,p, L⊗kOZk(p),p, and
∏

g∈GalL/k /GalL/k(p)
OZL,gp.

Unwinding definitions shows that the isomorphisms (10) and (11) are equivariant, iden-
tifying the appropriate descent data.

�

Definition 35. Let π : E → X be a rank r relatively oriented vector bundle on a smooth
dimension r scheme X over k, and let σ be a section with isolated zeros. Define the Euler
number e(E, σ) of E relative to σ to be e(E, σ) =

∑
p∈Z indp σ.

Let π : E → X be as in Definition 35. Consider the pullback E of E to X × A1
k, and

note that E inherits a relative orientation. For any closed point t of A1, let Et denote the
pullback of E to X⊗ k(t). Similarly, given a section s of E , let st denote the pullback of s.
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Lemma 36. Let π : E → X be as in Definition 35, and let E denote the pullback of E
to X × A1

k. Suppose that X is proper. Let s be a section of E such that st has isolated
zeros for all closed points t of A1

k. Then there is a finite O(A1
k)-module equipped with a

nondegenerate symmetric bilinear form β such that for any closed point t of A1
k, there is

an equality βt = e(Et, st) in k(t).

Proof. Let L → X and L⊗2 ∼= Hom(∧rT (X),∧rE) be the relative orientation of E. Let X =
X×A1

k, and letL be the pullback of L by the projectionX → X. The canonical isomorphism
∧r+1T (X × A1

k)
∼= ∧rT (X) and the isomorphism L⊗2 ∼= Hom(∧rT (X),∧rE) give rise to a

canonical isomorphism L⊗2 ∼= Hom(∧r+1T (X ),∧rE), which is the relative orientation of
E .

Let Z ↪→ X be the closed immersion defined by s = 0. Since X is proper over Speck, it
follows that X → A1

k is proper, whence p : Z → A1
k is proper. For any closed point t of

A1
k, the fiber Zt → A1

k(t) is the zero locus of the section st, which is finite by hypotheses.
Thus Z → A1

k has finite fibers and is therefore finite because it was also seen to be proper.
We construct β on the finite O(A1

k)-module p∗L.

Let z be a closed point of Z and let t be its image in A1
k = Spec k[τ]. By Remark 20, we

may choose Nisnevich coordinates around z in Xt. Therefore we have functions x1, . . . , xr
in OXt such that the xi generate k(z) over k(t) and dx1, . . . , dxr are a basis of ΩXt/k(t)

at z. Let xi be an element of OX lifting xi. It follows that dx1, . . . , dxr form a basis of
the fiber of ΩX/A1

k
at z. Furthermore, τ, x1, . . . , xr generate k(z) over k. Thus φ : U →

Spec k[τ, x1, . . . , xr] define Nisnevich coordinates around z.

It follows from Lemma 24 that OZ,z is generated as a k[τ]t-algebra by x1, . . . , xr.

Let I ⊂ k[τ]t[x1, . . . , xr] denote the kernel of the surjection k[τ]t[x1, . . . , xr]→ OZ,z. Since
the tensor product is right exact, the sequence

k(t)⊗k[τ]t I→ k(t)[x1, . . . , xr]→ OZt,z

is exact. Since k[τ]t → k(t) is surjective, so is I → k(t) ⊗k[τ]t I. Thus we may choose
g1, . . . , gr in I lifting elements of k(t)[x1, . . . , xr] as in the construction of indz st.

Let q ⊂ k[τ][x1, . . . , xr] be the prime ideal determined by φ(z). By Nakayama’s Lemma
and Lemma 27, g1, . . . , gr generate the kernel of k[τ][x1, . . . , xr]q → OZ,z. Thus

OZ,z ∼= k[τ][x1, . . . , xr]q/〈g1, . . . , gr〉,

expressing k[τ]t → OZ,z as a relative finite complete intersection. The morphism k[τ]t →
OZ,z is furthermore flat by [Sta17, Lemma 10.98.3 Tag 00MD]. Repeating this process for
each z in p−1(p(z)), we have expressed OA1,t → OZ,z ⊗OA1

OA1,t as a relative finite com-
plete intersection. It follows that there is an open affine neighborhood W of t such that
p−1W →W is a flat relative finite complete intersection.

Let ηW denote the element in HomOW
(Op−1W,OW) corresponding to 1 under the canon-

ical isomorphism
HomOW

(Op−1W,OW) ∼= Op−1W
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of Op−1W-modules of [SS75, Section 3]. Let βW,t denote the nondegenerate bilinear form

βW,t(x, y) = ηW,t(xy)

OZ(p−1(W))⊗OZ(p−1(W))→ OW,
specializing at t to e(Et, st).

LetW denote the set of those neighborhoodsW. By Lemma 29, we may define elements
rW in p∗L(W) for eachW inW such that for allW,W ′ inW , we have that

ηW(y) = ηW ′((rW/rW ′)
2y)

for all y inOZ(p−1(W ∩W ′)). The rW therefore define a descent datum on the βW,t, which
defines the bilinear form β as claimed.

�

Nondegenerate symmetric bilinear forms over A1
k satisfy the property that their re-

strictions to any two k-rational points are stably isomorphic by a form of Harder’s the-
orem (See [KW19, Lemma 31]). Indeed, when chark 6= 2, such a bilinear form is pulled
back from Spec k ([Lam06, VII Theorem 3.13]). This implies that Lemma 36 shows that
e(Et, st) = e(Et ′ , st ′), motivating the following definition.

Definition 37. Say that two sections σ and σ ′ of Ewith isolated zeros can be connected by
sections with isolated zeros if there exist sections si for i = 0, 1, . . . ,N of E and rational
points t−i and t+i of A1

k for i = 1, 2, . . . ,N such that

(1) for i = 0, . . . ,N, and all closed points t of A1
k, the section (si)t of E has isolated

zeros.
(2) (s0)t−0 is isomorphic to σ
(3) (sN)t+N is isomorphic to σ ′

(4) for i = 0, . . . ,N− 1, we have that (si)t+i is isomorphic to (si+1)t−i+1
.

Corollary 38. Let π : E → X be a rank r relatively oriented vector bundle on a smooth,
proper dimension r scheme X over k.

(1) The Euler numbers of Ewith respect to sections σ and σ ′ with isolated zeros which
after base change by an odd degree field extension L of k can be connected by
sections with isolated zeros are equal:

e(E, σ) = e(E, σ ′).

(2) Suppose there is a non-empty open subset U of the affine space Γ(X, E) of sections
of E such that any section in U has isolated zeros, and such that any two sections
in U can be connected by sections with isolated zeros after base change by an odd
degree field extension of k. Then the equality from the previous point holds for all
sections σ and σ ′ in U.

Proof. It suffices to prove the first claim. For k ⊆ L a field extension of finite odd di-
mension, tensoring with L is an injective map GW(k) → GW(L). It follows that we may
assume that σ and σ ′ can be connected by sections with isolated zeros (over k). Since
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σ and σ ′ can be connected by sections with isolated zeros, it suffices to show that for a
section s of E such that st has isolated zeros for all closed points t, then

e(E, st) = e(E, st ′)

for k-rational points t and t ′ of A1
k. By Lemma 36, there is a finiteO(A1

k)-module equipped
with a nondegenerate symmetric bilinear formβ such thatβt = e(E, st) andβt ′ = e(E, st ′).
It therefore suffices to show that βt = βt ′ in GW(k), which is true by the Serre problem for
bilinear forms or Harder’s theorem, for instance the version in [KW19, Lemma 31]. �

Note that ifU andU ′ are two open sets of Γ(X, E) satisfying the hypotheses of condition
(2) in Corollary 38, then U ∩ U ′ is nonempty and e(E, σ) = e(E, σ ′) for any σ and σ ′ in
(U ∪U ′)(k).

Definition 39. If condition (2) in Corollary 38 is satisfied, define the Euler number e(E) of
E by e(E) = e(E, σ) for any section σ in U.

Example 40. Let X = P1
k and E = O(2n), with E oriented as in Example 33. Then

e(O(2n)) = n(〈1〉+ 〈−1〉) by Example 33.

5. COUNTING LINES ON THE CUBIC SURFACE

We now apply the results from the previous sections to count the lines on a smooth cu-
bic surface, i.e. to prove Theorem 2. Recall our approach is to identify the arithmetic count
of lines (the expression in (4)) with the Euler number of a vector bundle on the Grassman-
nian G := Gr(4, 2) of lines in projective space P3

k. As before, we let x1, x2, x3, x4 ∈ (k⊕4)∨

denote the basis dual to the standard basis for k⊕4. Given any basis e = {e1, e2, e3, e4} of
k⊕4, let φ1, φ2, φ3, φ4 denote the dual basis.

We begin by orienting the relevant vector bundle.

Definition 41. Let S and Q respectively denote the tautological subbundle and quotient
bundle on Gr(4, 2). Set

E := Sym3(S∨).

Given a degree 3 homogeneous polynomial f ∈ Sym3((k⊕4)∨), we define the global sec-
tion σf to be the image of f under the homomorphism Sym3((O)⊕4) → E induced by the
inclusion S ⊂ O⊕4.

Intuitively, the fiber of E at a 2-dimensional subspace S ⊂ k⊕4 is the space Sym3(S∨) of
homogeneous degree 3 polynomials on S, and the image of σf in the fiber is the restriction
f|S.

The tangent bundle to G admits a natural description in terms of tautological bundles:

T (G) =Hom(S,Q)
=S∨ ⊗Q.

We now exhibit an explicit relative orientation of E using the standard open cover con-
structed using the following definition and lemma.
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Definition 42. If e = {e1, e2, e3, e4} is a basis for k⊕4, then define the following elements of
(k[x, x ′, y, y ′])⊕4

ẽ1 := e1, ẽ2 := e2,

ẽ3 := xe1 + ye2 + e3 and ẽ4 := x ′e1 + y ′e2 + e4.

This is a basis, and we define φ̃1, φ̃2, φ̃3, φ̃4 to be the dual basis.

Lemma 43. If e = {e1, e2, e3, e4} is a basis for k⊕4, then the morphism

(12) Spec(k[x, x ′, y, y ′]) = A4
k → G

with the property that S pulls back to the subspace

(13) k[x, x ′, y, y ′] · ẽ3 + k[x, x ′, y, y ′] · ẽ4 ⊂ (k[x, x ′, y, y ′])⊕4.

is an open immersion.

Proof. Given a surjection q : O⊕4G → Q, we can form the composite O⊕2G → O⊕4G q−→ Q
with the homomorphism O⊕2G → O⊕4G defined by (a, b) 7→ ae1 + be2. The morphism
Spec(k[x, x ′, y, y ′]) = A4

k → G represents the subfunctor ofG parameterizing surjections q
such that this composition is an isomorphism. The subfunctor is open by [GD71, 9.7.4.4].

�

The morphism (12) alternatively can be described in terms of projective geometry. If
H ⊂ P3

k is the hyperplane that corresponds to the span of e1, e2, e4 and H ′ to the span of
e1, e2, e3, then (12) is the (restriction of) the rational mapH×kH ′ 99K G that sends a pair of
points to the line they span. Indeed, when e is the standard basis, the line corresponding
to the subspace in (13) is the line parameterized by [S, T ] 7→ [xS+ x ′T, yS+ y ′T, S, T ]. This
is a general line that meets the hyperplanes {x3 = 0} and {x4 = 0}.

Definition 44. Given a basis e for k⊕4, define U(e) ⊂ G to be the image of (12).

The collection {U(e)} is the desired standard affine open cover. Over U(e), S∨ is trivial-
ized by the basis {φ̃3, φ̃4}. Let ẽ1 denote the image of ẽ1 in Q(U). Then Q is trivialized by
{ẽ1, ẽ2} over this same open set.

Proposition 45. As {e1, e2, e3, e4} varies among all basis of k4, the local trivializations given
by the sections {φ̃3 ⊗ ẽ1, φ̃3 ⊗ ẽ2, φ̃4 ⊗ ẽ1, φ̃4 ⊗ ẽ2} are compatible with an orientation of
T Gr(4, 2).

We make explicit the change of basis. Let {b1, b2, b3, b4} be a basis of k4 and use the local
coordinates

V = U({b1, b2, b3, b4}) = Spec k[w,w ′, z, z ′]→ Gr(4, 2)

of Gr(4, 2) described above (12), so (w,w ′, z, z ′) corresponds to the span of {b̃3, b̃4}, where
{b̃1, . . . , b̃4} is the basis of k4 defined by

b̃i =


bi for i = 1, 2
wb1 + zb2 + b3 for i = 3
w ′b1 + z

′b2 + b4 for i = 4.

24



Let {θ̃1, . . . , θ̃4} and {θ1, . . . , θ4} denote the dual bases of {b̃1, . . . , b̃4} and {b1, b2, b3, b4} re-
spectively.

On V ∩U, the trivializations of T Gr(4, 2) corresponding to the bases

{θ̃3 ⊗ b̃1, θ̃3 ⊗ b̃2, θ̃4 ⊗ b̃1, θ̃4 ⊗ b̃2}
and

{φ̃3 ⊗ ẽ1, φ̃3 ⊗ ẽ2, φ̃4 ⊗ ẽ1, φ̃4 ⊗ ẽ2}
give rise to clutching functionsMbe =M

−1
eb in GL4 V ∩U.

Lemma 46. detMbe is a square of an element of O(U ∩ V).

Proof. For any i and j in {1, 2, 3, 4}, the sections φ̃i and θ̃i are in (O4)∨(U ∩ V), and the
sections b̃j and ẽj are in O4(U ∩ V). The expressions φ̃i(b̃j) and θ̃i(ẽj) thus determine
regular functions, i.e. elements of O(U ∩ V).

The change of basis matrix relating the bases {φ̃3, φ̃4} and {θ̃3, θ̃4} of S∨(U ∩ V) is

A =

[
θ̃3(ẽ3) θ̃4(ẽ3)

θ̃3(ẽ4) θ̃4(ẽ4)

]

Note that detA is a regular function. Similarly, we have a 2 by 2 matrix B relating the
bases {b̃1, b̃2} and {ẽ1, ẽ2} of Q(U ∩ V)

B =

[
φ̃1(b̃1) φ̃1(b̃2)

φ̃2(b̃1) φ̃2(b̃2)

]
and detB is a regular function.

By definition,Mbe is the change of basis matrix relating {θ̃3, θ̃4}⊗ {b̃1, b̃2} and {φ̃3, φ̃4}⊗
{ẽ1, ẽ2} . ThereforeMbe is the tensor productMbe = A⊗ B, and detMbe = (detA)2(detB)2

becauseA and B are both 2 by 2matrices. It follows that detMbe is the square of a regular
function as desired. �

Proof. (of Proposition 45) The cocycle associating U ∩ V to detA detB in O∗(U ∩ V) de-
termines a line bundle L with distinguished triaivalizations on the open cover {U(e)}. (
Here U = U(e) and V = U({b1, b2, b3, b4}) as above.) Under these trivializations, sending
the wedge product φ̃3 ⊗ ẽ1 ∧ φ̃3 ⊗ ẽ2 ∧ φ̃4 ⊗ ẽ1 ∧ φ̃4 ⊗ ẽ2 to 1⊗ 1 determines the desired
isomorphism between det T Gr(4, 2) and L⊗2. �

One shows similarly that:

Proposition 47. As {e1, e2, e3, e4} varies among all basis of k4, the local trivializations given
by the sections {φ̃33, φ̃

2
3φ̃4, φ̃3φ̃

2
4, φ̃

3
4} are compatible with an orientation of E .

Let v(e) denote the section of Hom(∧4T (G),∧4E)|U(e) that maps the wedge product
of the sections in Proposition 45 to the wedge product of the sections in Proposition 47.
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Corollary 48. There is a unique orientation (up to isomorphism) of Hom(∧4T (G),∧4E)
such that v(e) is a square for all e.

Remark 49. Let L = ∧2S∨. It can be shown that the map

(14) j : Hom(∧4T (G),∧4E)→ L⊗2
such that the restriction to U(e) sends v(e) to (φ̃3 ∧ φ̃4) ⊗ (φ̃3 ∧ φ̃4) for all bases e is an
isomorphism defining the distinguished relative orientation of Lemma 48.

A remark about this choice of orientation. The line bundle L is the unique square root
of Hom(∧4T (G),∧4E), as Pic(G) is torsion-free, so there is no other possible choice of
line bundle. There are other choices of isomorphism Hom(∧4T (G),∧4E) ∼= L⊗2, namely
the isomorphisms a · j for a ∈ k∗. The isomorphism j is distinguished by the property
that the local index of σf at a zero equals the type of the corresponding line (as defined in
Section 3), i.e. j makes Corollary 52 hold. The isomorphism j also has the property that it
is defined over Z, and these two properties uniquely characterize j.

Having defined a relative orientation of E , we now identify the local index of σf at a
zero with the type of line.

Lemma 50. Let f ∈ k[x1, x2, x3, x4] be a cubic homogeneous polynomial. If S ⊂ k⊕4 has the
property that f|S = 0, then the differential of σf at the corresponding k-point of G is the
map

S∨ ⊗Q→ Sym3(S∨)

defined by

(15) φ⊗ (v+ S) 7→ (
∂f

∂v
)|S · φ.

Here ∂f
∂v

is the directional derivative of f in the direction of v. (The derivative depends
on v, but its restriction to S depends only on the coset v+ S.)

Proof. When k = R, this is [OT14a, Lemma 26]. Rather than adapting that proof to the
present setting, we prove the lemma by computing everything in terms of a trivialization.
Given S, pick a standard open neighborhood U(e) associated to some basis such that
S = k · e3+ k · e4 and then write f =

∑
aiφ

i1
1 φ

i2
2 φ

i3
3 φ

i4
4 . Computing partial derivatives, we

see that the map defined by (15) is characterized by

φ3 ⊗ e1 7→ (a1,0,2,0φ
2
3 + a1,0,1,1φ3φ4 + a1,0,0,2φ

2
4) · φ3(16)

φ4 ⊗ e1 7→ (a1,0,2,0φ
2
3 + a1,0,1,1φ3φ4 + a1,0,0,2φ

2
4) · φ4

φ3 ⊗ e2 7→ (a0,1,2,0φ
2
3 + a0,1,1,1φ3φ4 + a0,1,0,2φ

2
4) · φ3

φ4 ⊗ e2 7→ (a0,1,2,0φ
2
3 + a0,1,1,1φ3φ4 + a0,1,0,2φ

2
4) · φ4.

We compare this function to the derivative of σf by computing as follows. Trivializing
the restriction of E using the sections φ̃33, φ̃

2
3φ̃4, φ̃3φ̃

2
4, φ̃

3
4, the section σf gets identified
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with the function Spec(k[x, x ′, y, y ′]) = A4
k → A4

k whose components are the coefficients
of φ̃33, φ̃

2
3φ̃4, φ̃3φ̃

2
4, φ̃

3
4 in

f|S =
∑

aiφ
i1
1 φ

i2
2 φ

i3
3 φ

i4
4

=
∑

ai(xφ̃3 + x
′φ̃4)

i1(yφ̃3 + y
′φ̃4)

i2φ̃i33 φ̃
i4
4 .

The partial derivative of this function with respect to x at (x, x ′, y, y ′) = (0, 0, 0, 0) is

∂f|S

∂x
(0) =

∑
aii1(0 · φ̃3 + 0 · φ̃4)i1−1 · φ̃3 · (0 · φ̃3 + 0 · φ̃4)i2φ̃i33 φ̃

i4
4

=a1,0,2,0φ̃
3
3 + a1,0,1,1φ̃

2
3φ̃4 + a1,0,0,2φ̃3φ̃

2
4,

which is the image of φ3 ⊗ e1 under (16) and similarly with the other derivatives.

�

We now relate the Euler number of E to the lines on a smooth cubic surface. Observe
that, by construction, the zero locus of σf is the set of lines contained in the cubic surface
{f = 0}.

Lemma 51. Let f ∈ k[x1, x2, x3, x4] be a cubic homogeneous polynomial. Then the deriva-
tive of σf at a zero defined by a subspace S = k · e3 + k · e4 ⊂ k⊕4 equals

Res(
∂f

∂e1
(xe3 + ye4),

∂f

e2
(xe3 + ye4)) in k/(k∗)2

for e1, e2 ∈ k⊕4 such that e1, e2, e3, e4 forms a basis.

Proof. The matrix of the differential Hom(S,Q) → Sym3(S∨) with respect to the bases
φ3 ⊗ e1, . . . , φ4 ⊗ e2 and φ33, . . . , φ

3
4 (notation as in Definition 42) is

a1,0,2,0 0 a0,1,2,0 0
a1,0,1,1 a1,0,2,0 a0,1,1,1 a0,1,2,0
a1,0,0,2 a1,0,1,1 a0,1,0,2 a0,1,1,1
0 a1,0,0,2 0 a0,1,0,2

 .
By definition of the distinguished orientation, the derivative is the class of the determi-
nant of this matrix. The matrix, however, is the Sylvester matrix of ∂f

∂e1
(xe3 + ye4) and

∂f
∂e2

(xe3 + ye4) (considered as polynomials in φ3 and φ4), and so its determinant is the
resultant by definition. �

Corollary 52. The type of a line on a smooth cubic surface V = {f = 0} equals the index of
σf at the corresponding zero.

In particular, the line is hyperbolic if and only if the corresponding index is 〈1〉.

Proof. This is a restatement of Lemma 51 combined with Proposition 14. �

Corollary 53. The vector field σf defined by the equation of a smooth cubic surface has
only simple zeros.
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More generally, a line on a possibly singular cubic surface {f = 0} that is disjoint from
the singular locus corresponds to a simple zero of σf.

Proof. It is enough to verify the claim after extending scalars to k, in which case, with
notation as in Lemma 51, it is enough to show that Res( ∂f

∂e1
(xe4 + ye4),

∂f
e2
(xe4 + ye4)) is

nonzero. If not, there is a nonzero vector v ∈ k⊕4 such that ∂f
∂e1

(v) = ∂f
∂e2

(v) = 0. Since
f|S = 0, we also have ∂f

∂e3
(v) = ∂f

∂e4
(v) = 0, so k ·v ⊂ k⊕4 defines a point of P3

k that lies in the
singular locus of V . This contradicts the hypothesis that V is smooth along the line. �

Corollary 54. The field of definition of a line contained in a smooth cubic surface is a
separable extension of k.

Proof. We conclude from Corollary 53 that the zero locus {σf = 0} is geometrically re-
duced. If L is the field of definition of a line, then the natural inclusion Spec(L)→ {σf = 0}
is a connected component, so Spec(L) itself is geometrically reduced or equivalently L/k
is separable. �

We now show that the conditions of Definition 39 are satisfied so that eA1
(E) is well-

defined. Recall that we need to show that there are many affine lines in H0(G, E) that
avoid the locus of sections with nonisolated zeros. We begin by introducing some schemes
related to that locus, such as the universal cubic surface V over the moduli space of cubic
surfaces P19

k .

Definition 55. Denote the basis of (k⊕20)∨ dual to the standard basis by {ai,j,k,l : i+j+k+l =
3}, and define

V :=

{ ∑
i+j+k+l=3

ai,j,k,lx
i
1x
j
2x
k
3x
l
4 = 0

}
⊂ P19

k ×k P3
k.

Define

Vsing ⊂ V to be the nonsmooth locus of V → P19
k ,

I1 ⊂ V to be Vsing ∩ {Hessian of f = 0}, and
I2 to be the closure of the complement of the diagonal in Vsing ×P19

k
Vsing.

Informally, I1 is the moduli space of pairs consisting of a cubic surface and a singularity
of the surface that is worse than a node, and I2 is the Zariski closure of the moduli space
of triples consisting of a cubic surface and a pair of distinct singularities.

The following dimension estimates of I1 and I2 will be used to bound the locus of sec-
tions with nonisolated zeros.

Lemma 56. The images of I1 and I2 under the projections onto P19
k are closed subsets of

dimension 17.

Proof. In proving the lemma, the key point is to show that I1 and I2 are irreducible of
dimension 17, and we prove this by analyzing the projections I1 → P3

k and I2 → P3
k×kP3

k.
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We can assume k = k since it is enough to prove the lemma after extending scalars.
Consider first the projection I1 → P3

k. The fiber of the point corresponding to the subspace
k · (0, 0, 0, 1) is defined by the equations

a1,0,0,2 = a0,1,0,2 = a0,0,1,2 = a0,0,0,3 = 0,

a2,0,0,1a
2
0,1,1,1 − a1,0,1,1a1,1,0,1a0,1,1,1 + a0,2,0,1a

2
1,0,1,1 + a0,0,2,1a

2
1,1,0,1 − 4a0,0,2,1a0,2,0,1a2,0,0,1 = 0,

and these equations define an irreducible subvariety of P19
k of dimension 19−5 = 14. The

same must be true for all other fibers of I1 → P3
k, so we conclude that I1 is irreducible of

dimension 14+ 3 = 17.

The image of I1 under the projection I1 → P19
k is closed since it is the image of a closed

subset under a projective morphism. The projection is also generically finite. Indeed,
since I1 is irreducible, it is enough to exhibit one point in the image with finite preimage,
and the preimage of e.g. the point defined by x4x21+x

3
2+x

3
4 consists of 1 point. We conclude

that I1 and its image have the same dimension, proving the lemma for I1.

The proof for I2 proceeds analogously. In showing that the projection I2 → P19
k is gener-

ically finite onto its image, replace the polynomial x4x21 + x
3
2 + x

3
3 with x1x2x3 + x1x2x4 +

x1x3x4 + x2x3x4. �

We now relate I1 and I2 to the subset of global sections with nonisolated zeros.

Definition 57. Define D0 ⊂ H0(G, E) to be the subset of f’s such that {f = 0} ⊗ k either
has a singularity at which the Hessian of f vanishes or has at least two singularities. (We
include 0 ∈ H0(G, E) in D0.)

In other words, D0 is the k-points of the affine cone over the union of the projections of
I1 and I2.

The following lemma shows that D0 contains the subset of global sections with a non-
isolated zero.

Lemma 58. If f ∈ H0(G, E) −D0, then σf has only isolated zeros.

Proof. When {f = 0} is smooth, the claim is Corollary 53. Otherwise {f = 0} has a unique
singularity at which the Hessian does not vanish. It is enough to verify the claim after ex-
tending scalars to k, and after extending scalars and changing coordinates, we can assume
that k = k and f has form

f = (x1x3 + x
2
2)x4 + f3(x1, x2, x3) for f3 homogeneous of degree 3.

(Change coordinates so that the singularity is [0, 0, 0, 1]. Then the coefficients of x34 and
x24 must vanish and the coefficient of x4 is a nondegenerate quadratic form, since the
Hessian is nonvanishing. Transform the quadratic form into x1x3+x22 by a second change
of variables.)

Corollary 53 states that the zeros of σf corresponding to lines disjoint from the singu-
lar locus are isolated (in fact simple). The lines that pass through the singular locus are
described as follows. The lines passing through the singularity (but possibly not lying
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on {f = 0}) are in bijection with P1
k(k) with the 1-dimensional subspace k · (α,β) corre-

sponding to the line defined by the subspace k · (0, 0, 0, 1) + k · (α2, αβ, β2, 0). Such a line
is contained in {f = 0} precisely when f3(α2, αβ, β2) = 0. The polynomial f3 is not identi-
cally zero (for otherwise {f = 0} has positive dimensional singular locus), so there are at
most 6 lines on {f = 0} that pass through the origin. In particular, there are only finitely
many zeros of σf that correspond to lines that meet the singular locus, so these zeros must
be isolated as well. �

We can now show that Euler number of E is well-defined.

Lemma 59. The vector bundle E satisfies the hypotheses to Definition 39.

Proof. By Lemma 58, it is enough to prove that, after possibly passing to an odd degree
field extension, any two elements ofH0(G, E)−D0 can be connected by affine lines that do
not meetD0. We will deduce the claim from the fact thatD0 is the k-points of a subvariety
of codimension at least 2 (i.e. from Lemmas 56 and 58).

Let f, g ∈ H0(G, E) − D0 be given. A dimension count shows that, after possibly pass-
ing to an odd degree extension when k is finite, there exists a 3-dimensional subspace
S ⊂ H0(G, E) such that S ∩ D0 is the k-points of the cone over a 0-dimensional sub-
scheme. In other words, D0 is a union of finitely many 1-dimensional subspaces. After
possibly further passing to a larger odd degree extension of k, there are strictly fewer
1-dimensional subspaces contained in D0 than there are 2-dimensional subspaces of S
containing f, so we can pick a 2-dimensional subspace Tf ⊂ S that contains f and is not
contained in D0 as well as an analogous subspace Tg containing g. By another dimension
count, the intersection Tf∩Tg is nonzero, so we can pick a nonzero vector h ∈ Tf∩Tg. Both
the line joining f to h and the line joining h to g are disjoint from D0 by construction. �

Proof of Main Theorem. The A1-Euler number of E is well-defined by Lemma 59, and Lemma 51
identifies the left-hand side of (4) with the Euler number eA1

(E , σf), where f is a degree
3 homogeneous polynomial whose zero locus is V . By Lemma 59, this expression is in-
dependent of the choice of smooth surface. We complete the proof by computing the
expression for two especially simple surfaces.

Consider first the surface V defined by f = x31 + x
3
2 + x

3
3 + x

3
4 over a field k that has

characteristic not equal to 3 and does not contain a primitive third root of unity ζ3. This
is a smooth surface that contains 3 lines with field of definition k and 12 lines with fields
of definition L = k(ζ3). The lines are described as follows. For i1, i2 = 0, 1, 2, the subspace

(17) k(ζ3) · (−1, ζi13 , 0, 0) + k(ζ3) · (0, 0,−1, ζ
i2
3 ) ⊂ L

⊕4

defines a morphism Spec(L) → G with image a line contained in V . Permuting the coor-
dinates of k⊕4, we obtain 2 more morphisms. Varying over all 32 = 9 choices of i1, i2, we
obtain in this manner 27 = 3 · 9 morphisms Spec(L)→ G, and the images are the desired
lines. Since the weighted count (with weight given by the degree of the field of definition)
of these lines is 27, these lines must be all the lines on V .
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Every line on V is hyperbolic. Indeed, a line defined by (17) is hyperbolic by Proposi-
tion 14 since Res( ∂f

∂e1
|S, ∂f

∂e2
|S) = 9 for e1 = (1, 0, 0, 0), e2 = (0, 0, 1, 0). All other lines can be

obtained from these lines by acting by automorphisms, so we conclude that all lines are
hyperbolic and

eA
1

(E) =3 · 〈1〉+ 12 · Trk(ζ3))/k(〈1〉)
=3 · 〈1〉+ 12 · (〈2〉+ 〈2 · (−3)〉).(18)

If k contains a primitive 3rd root of unity, then the above argument remains valid except
all the lines on V are defined over k, so

(19) eA
1

(E) = 27 · 〈1〉.

Next we turn our attention to the case where chark 6= 5. In this case, we consider the

smooth cubic surface defined by f =
4∑

i,j=1
i 6=j

x2ixj + 2
4∑
i=1

x1x2x3x4x
−1
i . (The equation f equals

((x1 + x2 + x3 + x4)
3 − x31 − x

3
2 − x

3
3 − x

3
4)/3 when chark 6= 3.) As an aid for analyzing the

lines on V , we introduce the action of the symmetric group S5 on 5 letters defined by

σ(xi) =

{
−x1 − x2 − x3 − x4 if σ(i) = 5;
xσ(i) otherwise

for σ ∈ S5. This equation leaves f invariant, so it induces an action on V .

Consider first the case where k does not contain
√
5. The subspaces

k · (1,−1, 0, 0) + k · (0, 0, 1,−1) ⊂ k⊕4 and

k(
√
5) · (2, α, α, α) + k(

√
5) · (α,α, α, α) ⊂ k(

√
5)⊕4 for α =

−1+
√
5

2
, α =

−1−
√
5

2
.

define lines on V with fields of definition respectively equal to k and k(
√
5). Comput-

ing the type of the first line using the partial derivatives with respect to (1, 0, 0, 0) and
(0, 0, 1, 0), we see that the line is hyperbolic, and for the second line, computing with
respect to (0, 1, 0, 0) and (0, 0, 0, 1) shows that the type is −25/2 · (5+

√
5).

Under the action of S5, the orbit of the first line has 15 elements, while the second has
6 elements, so have found all the lines. Furthermore, the type is preserved by automor-
phisms so

eA
1

(E) =15 · 〈1〉+ 6 · Trk(√5)/k(〈−25/2 · (5+
√
5)〉)

=15 · 〈1〉+ 12 · 〈−5〉.(20)

When k contains
√
5, the same argument remains valid except the 6 lines with field of

definition k(
√
5) are replaced by 12 lines defined over k: six with type −(5 +

√
5)/2 and

six with type −(5−
√
5)/2. We deduce

(21) eA
1

(E) = 15 · 〈1〉+ 6 · 〈−(5+
√
5)/2〉+ 6 · 〈−(5−

√
5)/2〉.
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To complete the proof, we need to show that all the classes we just computed equal

(22) 15 · 〈1〉+ 12 · 〈−1〉.
The expressions in (18), (20), and (22) are all defined over the prime field, so it is enough
to show equality when k = Fp or Q. When k = Fp, two elements in GW(Fp) are equal
provided they have the same rank and discriminant, and all three classes have rank 27
and discriminant 1 ∈ F∗p/(F∗p)2, hence are equal. When k = Q, one can either apply
[Lam05, VI §4Theorem 4.1] (it is enough to show that (18), (20), and (22) are equal in the
Witt group) or note that all three classes have rank 27, signature 3, discriminant 1, and
trivial Hasse–Witt invariant, so they are equal by the Hasse–Minkowski theorem.

When k contains a primitive third root of unity ζ3, (19) equals the class (18) because
Trk(ζ3)/k(〈1〉)⊗k k(ζ3) = 2〈1〉 by [Lam05, Theorem 6.1] (or a direct computation) and simi-
larly with (20) and (21) when k contains

√
5. �

We now deduce Theorem 1 from the Main Theorem.

Proof of Theorem 1. Take the discriminant of (4). The right-hand side is 1 ∈ F∗q/(F∗q)2. The
left-hand side evaluates to

#elliptic lines on V with field of definition Fqa for a odd
+#hyperbolic lines on V with field of definition Fqa for a even = 0 (mod 2)

because

(23) Disc(TrFqa/Fq(〈u〉)) =


a square if a is odd, u is a square;
a square if a is even, u is a nonsquare;
a nonsquare if a is even, u is a square;
a nonsquare if a is odd, u is a nonsquare.

Equation (23) is e.g. [CP84, (II.2.3) Theorem]. One argument is to reduce to the case where
u = 1 by showing that

Disc(TrFqa/Fq(〈u〉)) =Norm(u) ·Disc(TrFqa/Fq(〈1〉))
and using Hilbert’s Theorem 90 to show that Norm(u) is a perfect square in Fqa if and only
if u is a perfect square in Fq. When u = 1, use the alternative description of the discrim-
inant as the square of the product of the differences of Galois conjugates of a primitive
element. By Galois theory, this square is a perfect square in Fq if and only if the Frobenius
element acts on the conjugates x as an even permutation, which is the case if and only if
a is odd because the Frobenius element acts as a cyclic permutation of length a. �
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