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ABSTRACT. We construct splitting varieties for triple Massey products. For a, b, c ∈ F∗
the triple Massey product 〈a, b, c〉 of the corresponding elements of H1(F, µ2) contains 0
if and only if there is x ∈ F∗ and y ∈ F[

√
a,
√
c]∗ such that bx2 = NF[

√
a,
√
c]/F(y), where

NF[
√
a,
√
c]/F denotes the norm, and F is a field of characteristic different from 2. These

varieties satisfy the Hasse principle by a result of D.B. Leep and A.R. Wadsworth. This
shows that triple Massey products for global fields of characteristic different from 2 always
contain 0.

1. INTRODUCTION

Massey products measure information contained in a differential graded algebra which
is lost by passing to its homology ring. For instance, the singular cochains of the comple-
ment of the Borromean rings have non-trivial Massey products, whence the differential
graded algebra of cochains contains more information than the cohomology ring, and the
Borromean rings are not equivalent to three unconnected circles. There are number theo-
retic analogues of this example, giving non-trivial Massey products in Galois cohomology
[Mor00] [Vog04, 2.1.17] [Gär11, 3.2-3.4].

Let η be a functorial assignment of a set of cohomology classes ηF ⊆ H∗(Gal(Fs/F),M) to
fields F over a base field, where H∗(Gal(Fs/F),M) denotes continuous group cohomology
and Fs denotes a separable closure of F. A splitting variety for η is a scheme X over the
base field which has F-points if and only if there is an element of ηF which vanishes.

This paper constructs a splitting variety for triple Massey products of elements of
H1(Gal(Fs/F),Z/2) when F is a field of characteristic 6= 2. Let κ : F∗ → H1(Gal(Fs/F),Z/2)
denote the Kummer map, given by applying H∗(Gal(Fs/F),−) to the short exact sequence

1→ µ2 → Gm
z7→z2→ Gm → 1,

and identifying µ2 with Z/2. For a,b,c in F∗, let 〈κ(a), κ(b), κ(c)〉 denote the triple Massey
product, when it is defined – see 2.1. 〈κ(a), κ(b), κ(c)〉 is a subset of H2(Gal(Fs/F),Z/2)
which is a coset of a certain ideal called the indeterminacy, described in 2.2. Let X(a, b, c)
be the closed subscheme of Gm × A4 determined by the equation

bx2 = (y21 − ay
2
2 + cy

2
3 − acy

2
4)
2 − c(2y1y3 − 2ay2y4)
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where x and (y1, y2, y3, y4) are the coordinates on Gm and A4 respectively. The polynomial
on the right hand side is the norm of y1 + y2

√
a+ y3

√
c+ y4

√
a
√
c.

1.1. Theorem. — X(a, b, c) has an F-point if and only if 〈κ(a), κ(b), κ(c)〉 is defined and
contains 0.

Moreover, an R-point of X(a, b, c) for a, b, c in R∗ implies that 〈κ(a), κ(b), κ(c)〉 is de-
fined and contains 0, for R a ring with 2 invertible and κ taking values in the étale coho-
mology group H1(SpecR, µ2) – see Corollary 2.8.

Theorem 1.1 (= Theorem 2.10 below) is a special case of a more general construc-
tion, which could produce splitting varieties for order-n Massey products of elements
of H1(Gal(Fs/F),Z/2).

To describe this procedure, we first describe Massey products in a little more detail.
The simplest Massey product is the cup product. The next simplest is the triple Massey
product of elements of H1, defined as follows: suppose C∗ is a differential graded algebra
with differential δ : C∗ → C∗+1 and homology H∗. Suppose that a, b, c ∈ H1 are such
that ab = bc = 0. We can choose A,B,C in C1 representing a, b, c respectively. Since
ab = 0, we can choose Eab such that δEab = AB, and similarly we can choose Ebc such
that δEbc = BC. Note that δ(EabC − AEbc) = 0, whence EabC − AEbc represents an ele-
ment of H2. The set of all EabC + AEbc obtained in this manner is defined to be the triple
Massey product 〈a, b, c〉 ⊆ H2. Massey products arise naturally when attempting to clas-
sify differential graded algebras with a given cohomology ring. For instance, suppose
H∗ ∼= Z/2[a, b, c]/〈ab, bc〉, where a, b, c ∈ H1 are in degree 1. Then EabC + AEbc repre-
sents an element of H2. Note that H2 is a Z/2-vector space with basis {a2, b2, c2, ac}. By
adjusting the choice of Eab and Ebc, one can arrange EabC + AEbc to be cohomologous to
0 or b2, but not both, and this dichotomy changes the isomorphism class of C∗.

If C∗ is the differential graded algebra of cochains on a space or pro-space S, say with
Z/2 coefficients, elements of H1 correspond to Z/2-torsors, which are equivalent to ho-
momorphisms π1(S) → Z/2. Any function π1(S) → Z/2 gives a 1-cochain on K(π1(S), 1)
and therefore determines an element of C1 by pulling back along the natural map from a
pro-space to its Postnikov tower.

Let Un be the group of unipotent n × n-matrices with coefficients in Z/2 , and let aij :
Un → Z/2 denote the function taking a matrix to its (i, j)-entry. AUn-torsor P over S gives
rise to a homomorphism φP : π1(S) → Un. Composing with aij yields aijφP in C1 whose
boundary is computed by

aijφP(γ1γ2) − aijφP(γ1) − aijφP(γ2) =
∑
i<k<j

aikφP(γ1)ajkφP(γ2)

for γ1, γ2 in π1(S). Thus

δaijφP =
∑
i<k<j

aikφP ∪ akjφP.
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Thus a U3-torsor over S such that a12φP = a and a23φP = b provides Eab as above by
setting Eab = a13φP. Similarly, a U4-torsor such that

(1) a12φP = a, a23φP = b, a34φP = c

produces the equation
δa14φP = Eabc+ aEbc

in C2 where Eab = a13φP and Ebc = a24φP, from which it follows that 〈a, b, c〉 contains 0.

This algebraic manipulation is reversible and shows that the existence of a U4-torsor
satisfying (1) is equivalent to 〈a, b, c〉 being defined and containing 0 in the Z/2-cochains
on K(π1(S), 1). Since

H2(π1(S),Z/2) → H2(S,Z/2)
is injective and the indeterminacy of any triple Massey product is contained in its image
(see 2.2), this is equivalent to 〈a, b, c〉 being defined and containing 0 in the Z/2-cochains
on S. The analogous statement holds for order-n Massey products of elements of H1 and
Un+1-torsors – this is [Dwy75, Thm 2.4]. In particular, U4-torsors imply the vanishing of
associated Massey products in C∗, and more generally, unipotent representations of the
fundamental group give information about the differential graded algebra of cochains.

To a scheme S, we can associate the étale topological type Et(S) and the ind-differential
graded algebra of Z/2-cochains on Et(S). The associated cohomology ring is H∗(S,Z/2),
where H∗ denotes étale cohomology by [Fri82, Prop 5.9]. By the above, to every U4-torsor
over S, there is an associated Massey product which vanishes. Note that in this context,
U4 is considered as a constant group scheme. Furthermore, for any triple a,b,c of elements
of H1(S,Z/2), the vanishing of 〈a, b, c〉 is equivalent to the existence of a U4-torsor whose
push-forward along

a12 × a23 × a34 : U4 → Z/2× Z/2× Z/2
is classified by a× b× c. Thus a universal U4-torsor with prescribed push-forward gives
a splitting variety for a triple Massey product. More generally, a universal Un+1-torsor
with prescribed push-forward gives a splitting variety for an order-n Massey product of
elements of H1.

In topological spaces, a universal Un+1-torsor is produced by the quotient of a con-
tractible space by a free action of Un+1. In schemes, there are Un+1-torsors which are
universal for Un+1-torsors over Spec F, where F ranges over all field extensions of some
base field, in the sense that a Un+1-torsor V → X is universal when the map from X (F)
to isomorphism classes of Un+1-torsors over Spec F is surjective. To emphasize the dif-
ference between requiring surjectivity and bijectivity, one could call such a torsor versal,
instead of universal, but we won’t use this convention here. A universal torsor can be
constructed from a linear action with trivial stabilizers on an open subscheme of affine
space. This uses Hilbert 90 and an understanding of points over a field. See for instance
[GMS03, Ex 5.4 p 12] [BF03, Prop 4.11].

A universal Un+1-torsor with controlled push-forward along

q = a12 × a23 × . . .× an,n+1
can be constructed from a universal Un+1-torsor and a universal (Z/2)n-torsor. Let V →
V/Un+1 and L→ L/(Z/2)n be universal Un+1 and (Z/2)n-torsors respectively. Endowing
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V ×Lwith the diagonal action of Un+1, form X = (V ×L)/Un+1. The quotient V ×L→ X
is then a universal Un+1-torsor, and there is a tautological map of (Z/2)n-torsors

q∗(V × L) //

��

L

��
X // L/(Z/2)n

.

For a chosen (Z/2)n-torsor over Spec F, the universality of L → L/(Z/2)n gives an F-
point x of L/(Z/2)n such that pull-back along x is the chosen torsor. The restriction of
V × L to the fiber X (x) of X over x is a universal Un+1-torsor with prescribed push-
forward. For x such that the corresponding (Z/2)n-torsor is classified by κ(a1)× κ(a2)×
. . . × κ(an), the resulting X (x) has the property that S-points imply the vanishing of
〈κ(a1), κ(a2), . . . , κ(an)〉 in H2(S,Z/2), and this implication becomes an equivalence for
S = Spec F, for F a field.

One can obtain defining equations for universal G-torsors (with or without controlled
push-forward) for G a finite 2-group as follows: if R is a ring with 2 ∈ R∗, then an
R-module A with an action of (Z/2)m decomposes into a direct sum of simultaneous
eigenspaces, allowing us to compute the fixed elements A(Z/2)m . Filtering G as

1 ⊂ G0 ⊂ G1 ⊂ . . . ⊂ G

such that Gn/Gn−1 ∼= Z/2mn and successively computing fixed elements of AGn−1 under
the action of Gn/Gn−1 ∼= Z/2mn , where A is a ring of functions, produces the ring of
functions of a universal torsor X = (V × L)/G.

For G = U3, the Brauer-Severi variety av2 + bw2 = u2 is obtained in this manner as a
splitting variety for the cup-product 〈κ(a), κ(b)〉 = κ(a) ∪ κ(b). To see this: consider the
subgroup of U3 of matrices with a12 = 0. The rank 1 representation of this subgroup de-
fined by a matrix g acting by (−1)a13(g) gives a rank 2 representation ofU3 by coinduction.
Let V be A2− {0} whereU4 acts via the coinduced representation. More explicitly, identify
A2 with A2 = SpecR[x, y]. For i < j, let Eij ∈ U3 be the matrix such that aij = 1 and the
other non-diagonal entries are 0. Then E13 acts by E13(x) = −x and E13(y) = −y, E12 acts
by switching x and y, and E23 acts by E23(x) = −x and E23(y) = y. Let L be Gm × Gm =
SpecR[α,α−1, β, β−1]. Let e12 and e23 be a basis for Z/2 × Z/2 and let Z/2 × Z/2 act on L
by e12(α) = −α, e12(β) = β, e23(α) = α, and e23(β) = −β. The quotient (A2 × L)/〈E14〉 is
Sym2A2×L, which has ring of functions R[x2, y2, xy, α, α−1, β, β−1]. The symmetric square
Sym2A2 with its action ofU3/〈E14〉 ∼= (Z/2)E12×(Z/2)E23 has simultaneous eigenfunctions
x2−y2, x2+y2, xywith eigenvalues (−1, 1), (1, 1), and (1,−1) respectively. It follows that
the ring of functions of (A2 × L)/U3 is R[(x2 − y2)/α, x2 + y2, xy/β, α2, α−2, β2, β−2]. The
splitting variety X(a, b) is defined as the pullback of (A2×L)/U3 → L/(Z/2×Z/2) by an
R-point of L/(Z/2 × Z/2) classifying κ(a) ∪ κ(b). The quotient L/(Z/2 × Z/2) has func-
tion ring R[α2, α−2, β2, β−2] and κ(a)∪κ(b) corresponds to the R-point obtained by letting
a = α2 and b = β2. We see that v 7→ (x2 − y2)/α, w 7→ 2xy/β, and u 7→ x2 + y2 defines an
isomorphism from X(a, b) to the Brauer-Severi variety.

For G = U4 and the triple Massey product, there is a choice of V , L described in the
proof of Theorem 2.7. Strictly speaking, V → V/U4 is not aU4-torsor there, but V×L→ X
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is a universalU4-torsor, and it is this latter fact which matters. The result of this procedure
is then X(a, b, c) as defined above.

X(a, b, c) is the twist {x× y ∈ Gm × ResGm : bx2 = Norm(y)} of the group scheme

T = {x× y ∈ Gm × ResGm : x2 = Norm(y)},

where Res denotes the restriction of scalars from R[α, γ]/〈α2 − a, γ2 − c〉 to R discussed in
Section 2. ResGm is isomorphic to the open subset of A4 = SpecR[y1, y2, y3, y4] where

Norm(y1, y2, y3, y4) =
∏
i,j=0,1

(y1 + (−1)iy2α+ (−1)jy3γ+ (−1)i+jy4αγ)

= (y21 − ay
2
2 + cy

2
3 − acy

2
4)
2 − c(2y1y3 − 2ay2y4)

2

is invertible. T is an extension

1→ µ2 → T → ResGm → 1

of the torus ResGm by µ2. The F-points ofX(a, b, c) control the vanishing of 〈κ(a), κ(b), κ(c)〉,
so we have that 〈κ(a), κ(b), κ(c)〉 contains 0 if and only if there is x ∈ F∗ and y ∈ F[α, γ]/〈α2−
a, γ2 − c〉 such that bx2 = Norm(y). Let L = F[

√
a,
√
c] be the field extension of F obtained

by adjoining square roots of a and c in Fs. The previous condition is equivalent to the
existence of x ∈ F∗ and y ∈ L∗ such that bx2 = NL/F(y) where NL/F denotes the norm
(Corollary 3.2).

We then use the computed X(a, b, c) to study triple Massey products. For instance, the
equation for X(a, b, c) gives another proof of the fact that the symmetric Massey product
〈κ(a), κ(b), κ(a)〉 contains 0 whenever it is defined (Corollary 3.3). More interestingly,
we show the vanishing of all triple Massey products which are defined on elements of
H1(Spec F,Z/2) for F a global field. This is done as follows.

By the Hasse–Brauer–Noether local-global principle

0→ H2(Spec F,Z/2) →⊕
ν

H2(Spec Fν,Z/2Z)
∑
v invv−−−−→ 1

2
Z/Z → 0,

H2(−,Z/2) of a global field injects into the direct sum of H2(−,Z/2) of its places. This
shows the local-global principle for cup products and thus the Hasse principle for their
splitting varieties.

The situation for higher Massey products is more subtle. Suppose 〈κ(a), κ(b), κ(c)〉
vanshes in C∗(Spec Fν,Z/2Z) for all places ν, where C∗(Spec Fν,Z/2Z) denotes the differ-
ential graded algebra of continuous Galois cochains. This means that for all ν, there exist
Eνab and Eνbc in C1(Spec Fν,Z/2Z) such that δEνab = κ(a) ∪ κ(b), δEνbc = κ(b) ∪ κ(c), and
Eνab ∪ κ(c) + κ(a) ∪ Eνbc vanishes in H2(Spec Fν,Z/2Z). If the Eνab and Eνbc can be chosen
compatibly, we could conclude the vanishing of 〈κ(a), κ(b), κ(c)〉 for F by the local-global
principle for H2(−,Z/2). For instance, if the map

(2) H1(Spec F,U3) → ⊕νH1(Spec Fν, U3)
is surjective, we could choose the Eνab and Eνbc compatibly and conclude vanishing. A 2-
nilpotent version of Poitou-Tate duality (see [Sti12, Ch 18] for a non-abelian Poitou-Tate
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duality result) would give information about (2), however we do not know of an argu-
ment along these lines which shows that 〈κ(a), κ(b), κ(c)〉 contains 0 in H2(Spec F,Z/2Z)
when it is defined and contains 0 at all places.

Instead of directly using Galois cohomology to study local-global properties for triple
Massey products, we use the computed equation for X(a, b, c). The Hasse norm theorem
mod squares of David Leep and Adrian Wadsworth [LW89] [LW92] shows that X(a, b, c)
satisfies the Hasse principle (Theorem 3.4), and it follows that triple Massey products
vanish globally if and only if they vanish everywhere locally. Furthermore, an alternate
proof that triple Massey products satisfy the local-global principle would give an alter-
nate proof of [LW89, Thm 4.5] for n=2 which says that the Hasse norm theorem mod
squares holds for extensions F(

√
a,
√
c)/F. In other words, the Hasse norm theorem mod

squares for extensions F(
√
a,
√
c)/F can be interpreted as the local-global principle for

triple Massey products of elements of H1 with Z/2-coefficients. The Hasse norm theorem
mod squares does not hold for all extensions of global fields.

By direct computation in Galois cohomology, one sees that triple Massey products van-
ish in Z/2-cohomology of local fields (Lemma 3.5). This shows:

1.2. Theorem. — Let F be a global field of characteristic 6= 2 and a, b, c ∈ F∗. The triple Massey
product 〈κ(a), κ(b), κ(c)〉 contains 0 whenever it is defined.

We end with a question. The Milnor conjecture proved by Voevodsky [Mor98, Thm 2.2]
[Voe96] says that the cohomology ring of Spec F is

H∗(Spec F,Z/2) ∼= ⊕m ⊗mi=1 F∗/〈2, x⊗ (1− x)〉.

It was shown in [Wic12b] that many Massey products of x and 1−x vanish in H2(Spec F,Z`),
see loc. cit. Corollary 3.14. Theorem 1.2 shows the vanishing of many triple Massey prod-
ucts with Z/2-coefficients. We raise the question:

1.3. Question. Is C∗(Spec F,Z/2) formal?

Since posting this paper on the arXiv, Ján Mináč and Nguyen Duy Tan realized that
joint work of Wengeng Gao, Leep, Mináč, and Tara Smith [GLMS03] implies that for any
a, b, c such that 〈κ(a), κ(b), κ(c)〉 is defined, X(a, b, c) has an F-point over any field F of
characteristic different from 2. Moreover, they found an explicit simple rational point on
these X(a, b, c). Suresh Venapally independently observed this result as well. This greatly
generalizes Theorem 1.2.

Jochen Gärtner can construct relevant Massey products which do not vanish. Let (l1, l2, l3) =
(313, 457, 521) and consider Massey products in the differential graded algebra C∗(π1(SpecR),Z/2)
of Z/2-cochains in continuous group cohomology of π1(SpecR), where R = SpecZ[ 1

l1
, 1
l2
, 1
l3
, 1
2
]

and π1 denotes the étale fundamental group. Gärtner can show that the Massey prod-
uct 〈κ(l1), κ(l2), κ(l3)〉 does not contain zero, and it follows that X(313, 457, 521) has no
Z[ 1

313
, 1
457
, 1
512
, 1
2
]-points. See Example 2.9.

6



Acknowledgements It is a pleasure to thank Bjorn Poonen and Burt Totaro for very
useful discussions. Bjorn Poonen sent us [LW89] and work on Theorem 3.4. Burt Totaro
sent [BF03], and we thank them both. We also wish to thank Jochen Gärtner for Example
2.9 and interesting correspondence, Ján Mináč for interesting correspondence, and Ar-
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2. SPLITTING VARIETY

2.1. Definition. Let C∗ be a differential graded associative algebra with product ∪, differ-
ential δ : C∗ → C∗+1, and homology H∗ = ker δ/ Image δ. Choose an integer n ≥ 2. A set
aij of elements of C1 for 1 ≤ i < j ≤ n+ 1 and (i, j) 6= (1, n+ 1) such that

δaij =

j−1∑
k=i+1

aik ∪ akj

is called a defining system for the order-n Massey product of the cohomology classes, de-
noted a1, a2, . . . , an respectively, represented by a12, a23, ..., an,n+1. The order-n Massey
product of a1, a2, . . . , an is defined if there exists a defining system. The order-n Massey
product 〈a1, a2, . . . , an〉 of a1, a2, . . . , an with respect to the defining system aij is

〈a1, a2, . . . , an〉{aij} =
n∑
k=2

a1k ∪ ak,n+1,

and when no defining system is specified, 〈a1, a2, . . . , an〉 denotes the subset of H2 consist-
ing of the order-n Massey products of a1, a2, . . . , an with respect to all defining systems.
The order-3Massey product will be called the triple Massey product.

2.2. Remark. Choose a1, a2, and a3 in C∗. Suppose that aij for 1 ≤ i < j ≤ 4 and (i, j) 6=
(1, 4) is a defining system for the triple Massey product of a1, a2, a3. It is straightforward
to check that 〈a1, a2, a3〉 is the subset of H2 given by

〈a1, a2, a3〉 = 〈a1, a2, a3〉{aij} + a1H
1 + H1a3.

The ideal a1H1 + H1a3 ⊆ H2 is called the indeterminacy.

Let aij : Mat4(Z/2) → Z/2 be the function taking a 4× 4matrix with coefficients in Z/2
to its (i, j)-entry. Let

U4 = {U ∈ Mat4(Z/2) : aii(U) = 1, aij(U) = 0 for all i > j}

be the group of unipotent 4× 4matrices with coefficients in Z/2.

2.3. Remark. Let G be a group or a profinite group and let C∗ denote the differen-
tial graded algebra of Z/2-cochains in continuous group cohomology – see for instance
[NSW08, p. 14-15] for the definition of inhomogeneous chains in continuous group coho-
mology. For homomorphisms

ai : G→ Z/2
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in C1 for i = 1, 2, 3, the triple Massey product 〈a1, a2, a3〉 contains 0 if and only if there
exists a homomorphism G→ U4 such that the composition

G // U4
a12×a23×a34 // (Z/2)3

is a1 × a2 × a3 : G→ (Z/2)3 by a result of Dwyer [Dwy75, Thm 2.4].

Let R be a ring such that 2 is invertible in R.

Let κ : R∗ → H1(SpecR, µ2) denote the Kummer map obtained by applying H∗(SpecR,−)
to

1→ µ2 → Gm
z7→z2→ Gm → 1,

where H∗ denotes étale cohomology.

We will use multiple copies of Gm,R. For notational convenience, let Lx = SpecR[x, x−1] ∼=
Gm,R denote a copy of Gm,R with distinguished function x. Let

S = La × Lc = SpecR[a, c, a−1, c−1]

S ′ = Lα × Lγ = SpecR[α, γ, α−1, γ−1]

and S ′ → S be the degree 4 finite étale cover

a 7→ α2, c 7→ γ2.

Let ResS ′/SGm,S ′ denote the restriction of scalars [BLR90, §7.6]. Form the La× Lb× Lc =
SpecR[a, b, c, a−1, b−1, c−1]-scheme

ResS ′/SGm,S ′ ×Gm,Lb

obtained by taking the product over SpecR of ResS ′/SGm,S ′ and Gm,Lb . Let x denote a
function on Gm,Lb such that Gm,Lb = SpecR[b, b−1, x, x−1]. Let NS ′/S denote the norm on
ResS ′/SGm,S ′

NS ′/S(y) =
∏
i,j=0,1

(y1 + (−1)iyαα+ (−1)jyγγ+ (−1)i+jyαγαγ),

where
y = y1 + yαα+ yγγ+ yαγαγ.

2.4. Definition. Let X ⊂ ResS ′/SGm,S ′ ×Gm,Lb be the closed subscheme determined by

bx2 = NS ′/S(y).

Let π : X → La × Lb × Lc = SpecR[a, c, b, a−1, b−1, c−1] denote the structure map.

2.5. Definition. For (a, b, c) ∈ (La × Lb × Lc)(R), let X(a, b, c) denote the R-scheme ob-
tained by pulling-back X along (a, b, c). So X(a, b, c) is the affine scheme with coordinate
ring

R[x, x−1, y1, yα, yγ, yαγ]/〈bx2 −NS ′/S(y1 + yαα+ yγγ+ yαγαγ)〉,
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where we note that

NS ′/S(y1 + yαα+ yγγ+ yαγαγ) = (y21 − ay
2
α + cy

2
γ − acy

2
αγ)

2 − c(2y1yγ − 2ayαyαγ)
2

is indeed an element of R[x, x−1, y1, yα, yγ, yαγ].

Let q : U4 → (Z/2)3 be the quotient group homomorphism q = a12 × a23 × a34. Adopt
the convention that a group also denotes the corresponding constant group scheme over
R.

For P a U4-torsor over a scheme X, the homomorphism q determines a (Z/2)3-torsor
over X

q∗P = P ×U4 (Z/2)3 := P × (Z/2)3/U4
or equivalently q∗ : H1(−, U4) → H1(−, (Z/2)3) is the map induced by q.

Let L = Lα × Lβ × Lγ, and let L→ La × Lb × Lc be the (Z/2)3-torsor given by

a 7→ α2, b 7→ β2, c 7→ γ2.

Let U4 act on L by g∗α = (−1)a12(g)α, g∗β = (−1)a23(g)β, and g∗γ = (−1)a34(g)γ for g in
U4.

For i < j, let Eij in U4 denote the matrix such that aij(Eij) = 1 and akl(Eij) = 0 for k 6= l.

Consider the following representation V of U4: let H̃ denote the subgroup of U4 of
matrices such that a12 = 0 and a13 = 0. Note that H̃ decomposes as the product H̃ = Z×H
of Z = {E14, 1} and H = Ker(a14 : H̃ → Z/2). The notation is chosen to recall that H is
isomorphic to the Heisenberg group.

The homomorphism a14 gives a 1-dimensional representation σ14 of H̃, where h ∈ H̃
acts on R by multiplication by (−1)a14(h). Let V denote the coinduced representation

V = IndU4
H̃
σ14 = R[U4]⊗R[H̃] σ14.

Let V → SpecR be the vector bundle associated to the representation V . Namely, let
V∗ = HomR(V, R) denote the linear dual of V and let V = Spec SymV∗. We specify coor-
dinates on V as follows. V is a free R module of rank 4 with a basis corresponding to the
cosets H̃, E12H̃, E13H̃, E12E13H̃ of H̃ in U4. Let {u1, u2, u3, u4} denote the basis of V defined
by u1 = H̃ + E13H̃, u2 = H̃ − E13H̃, u3 = E12H̃ + E12E13H̃, and u4 = E12H̃ − E12E13H̃. We
use here that 2 is invertible in R. For i = 1, 2, 3, 4, let u∗i : V → R denote the basis dual to
{u1, u2, u3, u4}, i.e. the functions such that v = u∗1(v)u1+u

∗
2(v)u2+u

∗
3(v)u3+u

∗
4(v)u4 for all

v in V . Then V = SpecR[u∗1, u
∗
2, u

∗
3, u

∗
4]. Note that U4 acts on V through the representation

V .

Let (V × L)/U4 denote the quotient scheme of V × L by U4 as in [SGAI, V Prop. 1.1].
Other quotient schemes will be denoted similarly.

By a slight abuse of notation, let NS ′/S(y1 + yαα+ yγγ+ yαγαγ) denote the element of

R[a, b, c, y1, yα, yγ, yαγ]
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given by setting a = α2, b = β2, c = γ2 and expanding∏
i,j=0,1

(y1+(−1)iyαα+(−1)jyγγ+(−1)i+jyαγαγ) = (y21−ay
2
α+cy

2
γ−acy

2
αγ)

2−c(2y1yγ−2ayαyαγ)
2.

2.6. Lemma. — There is an isomorphism

(V×L)/U4 ∼= SpecR[a, a−1, b, b−1, c, c−1, y1, yα, yγ, yαγ, x]/〈bx2−NS ′/S(y1+yαα+yγγ+yαγαγ)〉

sending
x 7→ 24u∗1u

∗
2u
∗
3u
∗
4/(β),

Proof. It is straightforward to verify that

(1) {u1, u2, u3, u4} are simultaneous eigenvectors for (E13, E24, E14) with eigenvalues
(1, 1,−1), (−1, 1,−1), (1,−1,−1), (−1,−1,−1) respectively.

(2) E12 acts on {u1, u2, u3, u4} by the permutation (u1, u3)(u2, u4).
(3) {u1, u2, u3, u4} are eigenvectors for E23 with eigenvalues 1, 1, 1,−1 respectively.
(4) E34 acts on {u1, u2, u3, u4} by the permutation (u1, u2)(u3, u4).

Since 〈E13, E24, E14〉 acts trivially on L,

(V × L)/〈E13, E24, E14〉 = SpecR[u∗1, u
∗
2, u

∗
3, u

∗
4]
〈E13,E24,E14〉 × L.

R[u∗1, u
∗
2, u

∗
3, u

∗
4] decomposes into simultaneous eigenspaces for 〈E13, E24, E14〉 ∼= (Z/2)3.

The (1, 1, 1)-eigenspace is equal to the subalgebra R[(u∗1)
2, (u∗2)

2, (u∗3)
2, (u∗4)

2, u∗1u
∗
2u
∗
3u
∗
4] by

(1).

R[u∗1, u
∗
2, u

∗
3, u

∗
4]
〈E13,E24,E14〉 = R[(u∗1)

2, (u∗2)
2, (u∗3)

2, (u∗4)
2, u∗1u

∗
2u
∗
3u
∗
4] decomposes into si-

multaneous eigenspaces for U4/〈E13, E24, E14〉 ∼= (Z/2)3. A Z/2 basis for U4/〈E13, E24, E14〉
is {E12, E23, E34}.

By (2) (3) (4), d1,d2,d3,d4 defined by

d1 = (u∗1)
2 + (u∗2)

2 + (u∗3)
2 + (u∗4)

2

d2 = (u∗1)
2 + (u∗2)

2 − (u∗3)
2 − (u∗4)

2

d3 = (u∗1)
2 − (u∗2)

2 + (u∗3)
2 − (u∗4)

2

d4 = (u∗1)
2 − (u∗2)

2 − (u∗3)
2 + (u∗4)

2

are simultaneous eigenvectors for {E12, E23, E34} with eigenvalues (1, 1, 1), (−1, 1, 1), (1, 1,−1),
(−1, 1,−1) respectively. Since d1,d2,d3,d4, and u∗1u

∗
2u
∗
3u
∗
4 are algebra generators and simul-

taneous eigenvectors, they determine the eigenspace decomposition of

R[u∗1, u
∗
2, u

∗
3, u

∗
4]
〈E13,E24,E14〉.
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The eigenspace decomposition of R[α,α−1, β, β−1, γ, γ−1] is apparent, giving the eigenspace
decomposition of

R[(u∗1)
2, (u∗2)

2, (u∗3)
2, (u∗4)

2, u∗1u
∗
2u
∗
3u
∗
4, α, α

−1, β, β−1, γ, γ−1].

It follows that

(V × L)/U4 ∼= SpecR[α2, α−2, β2, β−2, γ2, γ−2, d1, d2/α, d3/γ, d4/(αγ), u
∗
1u
∗
2u
∗
3u
∗
4/(β)],

where the ring on the right hand side denotes the subalgebra of

R[u∗1, u
∗
2, u

∗
3, u

∗
4, α, α

−1, β, β−1, γ, γ−1]

generated by the listed elements.

It follows that sending
x 7→ 24u∗1u

∗
2u
∗
3u
∗
4/(β),

y1 7→ d1,

yα 7→ d2/α,

yγ 7→ d3/γ,

yαγ 7→ d4/(αγ),

and a 7→ α2, b 7→ β2, c 7→ γ2 defines the required isomorphism.

�

2.7. Theorem. — There is a U4-torsor G4
m,R × L → X and an isomorphism of (Z/2)3-torsors

q∗(G4
m,R × L) → π∗L.

Proof. Let G4
m,R → V be the open immersion onto the complement of the zero locus of

u∗1u
∗
2u
∗
3u
∗
4. By Lemma 2.6 and [SGAI, V Cor1.4],

(G4
m,R × L)/U4 ∼= X .

The resulting map f : (G4
m,R × L) → X will be shown to be the claimed U4-torsor.

Note that f is finite-type. Thus by [SGAI, V Prop 1.1(i)], f is finite.

Let x be a point of G4
m,R × L, and let I(x) be the inertia group of x i.e. the subgroup of

U4 of elements which stabilize x and which act trivially on the residue field k(x). Note
that α, β, and γ are non-zero elements of k(x). Since g∗α = (−1)a12(g)α for g in U4, we
have that a12(g) = 0 for g in I(x). Similarly, a23(g) = a34(g) = 0. The elements of
U4 such that a12(g) = a23(g) = a34(g) = 0 form the subgroup 〈E13, E14, E24〉 ∼= (Z/2)3.
Since u∗1 determines a non-zero element of k(x) and for all g in 〈E13, E14, E24〉 the action
of g on u∗1 is g∗u∗1 = (−1)a14(g)u∗1 by (1), we have that a14(g) = 0 for g in I(x). Since u∗2
determines a non-zero element of k(x), we have by (1) that a13(g) + a14(g) = 0, whence
a13(g) = 0 for g in I(x). Since u∗3 determines a non-zero element of k(x), we have by (1)
that a24(g) + a14(g) = 0, whence a24(g) = 0 for g in I(x). Thus I(x) is {1}.

11



Since the inertia groups at all points of G4
m,R×L are trivial and f is finite, it follows that

f is a U4-torsor by [SGAI, V Prop 2.6 (i) (ii)].

The map G4
m,R × L × (Z/2)3 → L defined by projecting to L × (Z/2)3 and composing

with the right multiplication L × (Z/2)3 → L determines a well-defined map

q∗f = (G4
m,R × L)×U4 (Z/2)3 → L

over La × Lb × Lc, which determines in turn a map

q∗f→ π∗L.
Since a map of (Z/2)3-torsors is always an isomorphism,

q∗f ∼= π
∗L.

�

2.8. Corollary. — For all a, b, c in R∗, if X(a, b, c)(R) 6= ∅, then 〈κ(a), κ(b), κ(c)〉 contains 0.

Proof. The map Et(SpecR) → Bπét
1 (R) induces an isomorphism

H1(πét
1 (SpecR),Z/2) → H1(SpecR,Z/2).

Thus it suffices (in fact it is equivalent) to show that 〈κ(a), κ(b), κ(c)〉 contains 0 in H2(πét
1 (SpecR),Z/2).

Choose SpecR→ X(a, b, c), and let E denote the pull back of theU4 torsor G4
m,R×L→ X

of Theorem 2.7 to SpecR via

SpecR→ X(a, b, c) → X .
By Theorem 2.7, q∗E is isomorphic to the pullback of L along

(a, b, c) : SpecR→ SpecR[a, c, b, a−1, b−1, c−1].

Viewing E as an element of H1(SpecR,U4) ∼= Hom(πét
1 (SpecR), U4), we have a homomor-

phism
πét
1 (SpecR) → U4

such that the composition
πét
1 (SpecR) → U4 → (Z/2)3

is (κ(a), κ(b), κ(c)). Thus 〈κ(a), κ(b), κ(c)〉 contains 0 in H2(πét
1 (SpecR),Z/2) by 2.3. �

2.9. Example. The following example is work of Jochen Gärtner. Let T = {l1, l2, . . . , ln, 2,∞}

be a set of odd primes union {2,∞}, QT(2) denote the maximal 2-extension of Q unram-
ified outside T and let GT(2) = Gal(QT(2)/Q). For an appropriate choice of topological
generators for GT(2) (similar to [Vog04, 2.1.3 p 47 τi] and [Gär11, 3.2.5 τi]), the dual basis
for H1(GT(2),Z/2) ([Vog04, p 49 χi] [Gär11, 3.3.5]) contains the κ(li). For li such that the
Legendre symbols satisfy (

li

lj

)
= 1 for i 6= j

li ≡ 1 mod 8,
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taking the cup product with κ(li) produces the 0 map H1(GT(2),Z/2) → H2(GT(2),Z/2).
This gives a uniquely defined Massey product

〈−,−,−〉 : {κ(l1), κ(l2), . . . , κ(ln)}3 → H2(GT(2),Z/2).
With results of Vogel and Morishita computing the triple Massey product in terms of
Rédei symbols [Vog04, Th. 2.1.16], Gärtner can show using MAGMA that for n = 3 and
(l1, l2, l3) = (313, 457, 521), the Massey product 〈κ(l1), κ(l2), κ(l3)〉 is not zero. It follows
that there is no homomorphism GT(2) → U4 such that composing with a12 × a23 × a34
represents (κ(l1), κ(l2), κ(l3)). Since U4 is a 2-group and GT(2) is the maximal 2-quotient
of π1(SpecZ[ 1l1 ,

1
l2
, 1
l3
, 1
2
]), this implies that there is no such homomorphism

π1(SpecZ[
1

l1
,
1

l2
,
1

l3
,
1

2
]) → U4.

It follows by Corollary 2.8 that X(313, 457, 521) has no Z[ 1
313
, 1
457
, 1
512
, 1
2
]-points.

Now consider the case where R is a field F.

2.10. Theorem. — Let F be a field of characteristic 6= 2. For all a, b, c in F∗, the scheme X(a, b, c)
has an F-point if and only if 〈κ(a), κ(b), κ(c)〉 contains 0.

So X(a, b, c) is a splitting variety for 〈κ(a), κ(b), κ(c)〉. The following proof is similar to
[BF03, Prop. 4.11], and we thank Burt Totaro for sending us this reference.

Proof. Assume that 〈κ(a), κ(b), κ(c)〉 contains 0. We show that X(a, b, c) has an F-point,
and this is sufficient by Corollary 2.8.

The triple Massey product 〈κ(a), κ(b), κ(c)〉 in continuous group cohomology of πét
1 (Spec F)

∼=
Gal(Fs/F) contains 0, where Fs denotes a separable closure of F. By Remark 2.3, we have
an element of H1(Spec F,U4) whose image under q∗ : H1(Spec F,U4) → H1(Spec F,Z/2)3 is
(κ(a), κ(b), κ(c)). Let

σ : Gal(Fs/F) → U4

be a homomorphism representing this element.

Choose square roots α, β, and γ of a, b, and c respectively in Fs. Then

a12σ(g) = (gα)/α ∈ µ2(Fs) ∼= Z/2
for all g in Gal(Fs/F). Similarly a23σ(g) = (gβ)/β, and a34σ(g) = (gγ)/γ.

Let ρ : U4 → GL4 be the homomorphism corresponding to the representation V =

IndU4
H̃
σ14 from the proof of Theorem 2.7. The image of σ under ρ∗ : H1(Spec F,U4) →

H1(Spec F,GL4) is trivial since H1(Spec F,GL4) is the pointed set with one element. Thus
we have a matrix A in GL4 F

s such that

ρσ(g) = A−1(gA),

for all g in Gal(Fs/F).

The kernel of a non-zero F-linear map F4 → Fs has dimension < 4. For F an infinite
field, the F-vector space F4 is not contained in a union of finitely many dimension < 4

13



sub-vector spaces. Thus there exists µ = (µ∗1, µ
∗
2, µ

∗
3, µ

∗
4) in F4 such that A−1µ is in (Fs∗)4. If

F is a finite field of characteristic > 2, there also exists such a µ. To see this:

If F is a finite field of q > 4 elements, then the number of elements in the union of four
positive codimension sub-vector spaces of F4 is less than 4q3 < q4, whence there exists µ.

Otherwise F has q = 3 elements.

For S ⊂ {1, 2, 3, 4}, let uS : (Fs)4 → (Fs)|S| denote the projection onto the coordinate axes
contained in S.

First suppose that dimFKeruiA
−1 < 3 for some i. The number of elements of∪j 6=iKerujA

−1

is less than or equal to q3+(q3−q2)+(q3−q2) because two dimension-3 sub-vector-spaces
must intersect in a plane, and any positive codimension sub-vector-space can be enlarged
to be dimension 3. Thus the number of elements of ∪jKerujA

−1 is less than or equal to
q3 + (q3 − q2) + (q3 − q2) + q2 = 3q3 − q2 < q4, so there exists µ.

We can thus suppose that dimFKeruiA
−1 = 3 for all i. Since KeruSA

−1 = ∩i∈SKeruiA
−1,

the dimension of KeruSA
−1 is ≥ 4− |S|.

TakeN ≤ 4. An F-linear map L : F4 → (Fs)N determines an Fs-linear map L⊗Fs : (Fs)4 →
(Fs)N, and dimF L(F

4) ≥ dimFs(L⊗ Fs)((Fs)4). Thus

uSA
−1 : F4 → (Fs)|S|

has rank ≥ |S| and kernel of dimension ≤ 4− |S|. Thus dimKeruSA
−1 = 4− |S|, and

| ∪4i=1 KeruiA
−1| = 4q3 −

(
4

2

)
q2 +

(
4

3

)
q− 1 < q4.

Thus there exists µ = (µ∗1, µ
∗
2, µ

∗
3, µ

∗
4) in F4 such that A−1µ is in (Fs∗)4.

A−1µ× (α,β, γ) determines an Fs-point of G4
m × L. Furthermore,

g−1(A−1µ× (α,β, γ)) = ρσ(g)A−1µ× (g−1α, g−1β, g−1γ) = ρσ(g)A−1µ× (κ(a)α, κ(b)β, κ(c)γ)

= ρσ(g)A−1µ× qσ(g)(α,β, γ)

for all g in Gal(Fs/F), so A−1µ× (α,β, γ) determines an F-point of X(a, b, c).

�

3. VANISHING FOR GLOBAL FIELDS

Let F be a field of characteristic 6= 2, and choose a, c in F∗. Let N : F4 → F be defined

N(y1, y2, y3, y4) = (y21 − ay
2
2 + cy

2
3 − acy

2
4)
2 − c(2y1y3 − 2ay2y4)

2.

Let µ be any prime of F[α, γ]/〈α2−a, γ2−c〉, and let F(µ) ∼= F[
√
a,
√
c] denote the residue

field at µ. Let NF(µ)/F : F(µ)
∗ → F denote the norm map.

14



3.1. Proposition. — The subsets N(F4 − {0}) and NF(µ)/F(F(µ)
∗) of F∗ are equal.

Proof. In F(µ), we have the equality

N(y1, y2, y3, y4) =
∏
i,j∈{0,1}

(y1 + (−1)iy2
√
a+ (−1)jy3

√
c+ (−1)i+jy4

√
a
√
c).

If the extension F ⊆ F(µ) has degree 4, thenN(y1, y2, y3, y4) = NF(µ)/F(y1+y2
√
a+y3

√
c+

y4
√
a
√
c), giving the result immediately.

If F ⊆ F(µ) has degree 2, then we may assume F(µ) ∼= F[
√
a] for a 6= 1 in F∗/F∗2, so

N(y1, y2, y3, y4) =

NF(µ)/F(y1 + y2
√
a+ y3

√
c+ y4

√
a
√
c)NF(µ)/F(y1 + y2

√
a− y3

√
c− y4

√
a
√
c).

Since the map F4 → F(µ)2 given by

(y1, y2, y3, y4) 7→ (y1 + y2
√
a+ y3

√
c+ y4

√
a
√
c, y1 + y2

√
a− y3

√
c− y4

√
a
√
c)

is surjective and NF(µ)/F(1) = 1 , we have that N(F4 − {0}) ⊇ NF(µ)/F(F(µ)
∗). Since NF(µ)/F is

multiplicative, N(F4 − {0}) ⊆ NF(µ)/F(F(µ)
∗), giving the result.

If F ⊆ F(µ) has degree 1, then NF(µ)/F is the identity map and NF(µ)/F(F(µ)
∗) = F∗. Since

the linear map F4 → F4 determined by
1
√
a

√
c

√
a
√
c

1
√
a −

√
c −

√
a
√
c

1 −
√
a
√
c −

√
a
√
c

1 −
√
a −

√
c
√
a
√
c


is an isomorphism, N(F4 − {0}) = F∗ as well. �

From the definition of X(a, b, c) and Proposition 3.1 we obtain:

3.2. Corollary. — X(a, b, c)(F) 6= ∅ if and only if for any prime µ of F[α, γ]/〈α2 − a, γ2 − c〉,
there exists x ∈ F∗ and y ∈ F(µ)∗ such that

bx2 = NF(µ)/F(y).

The following corollary can also be shown directly, using for instance [Wic12a, Lemma
16] , but we include a proof using the splitting variety X(a, b, a).

3.3. Corollary. — Let F be a field of characteristic 6= 2, and a, b ∈ F∗. The triple Massey product
〈κ(a), κ(b), κ(a)〉 contains 0 whenever it is defined.

Proof. Let L = F[
√
a]. When 〈κ(a), κ(b), κ(a)〉 is defined, a ∪ b = 0 which implies that b

is trivial in F∗/((NL/FF
∗)F∗2), for instance because ax2 + by2 = z2 is a splitting variety for

the cup-product. By Corollary 3.2, this implies that X(a, b, a) 6= ∅. Thus 〈κ(a), κ(b), κ(a)〉
contains 0 by Theorem 2.10. �
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The splitting variety X(a, b, c) satisfies the Hasse principle.

3.4. Theorem. — Let F be a global field of characteristic 6= 2 and a, b, c ∈ F∗. If X(a, b, c)(Fν) 6=
∅ for all places ν of F, then X(a, b, c)(F) 6= ∅.

Proof. Let L = F[
√
a,
√
c].

Choose a place ν of F. By Corollary 3.2, we have that b is in F2νNLµ/Fν(L
∗
µ) for every place

µ of L above ν.

By the Hasse norm theorem mod squares of Leep and Wadsworth [LW89, Thm 4.5],

{b ∈ F∗ : b ∈ F∗ν
2NLµ/Fν(L

∗
µ) ∀µ|ν} ⊂ {b ∈ F∗ : b ∈ F∗2NL/F(L

∗)},

showing that X(a, b, c)(F) 6= ∅ by Corollary 3.2. �

3.5. Lemma. — Let F be a local field of characteristic 6= 2 and a, b, c ∈ F∗. The triple Massey
product 〈κ(a), κ(b), κ(c)〉 contains 0 whenever it is defined.

Proof. It is sufficient to show that

κ(a) ∪ (−) : H1(Spec F,Z/2) → H2(Spec F,Z/2)

is surjective by 2.2. The 2-torsion Br(F)[2] of the Brauer group of F is isomorphic to
H2(Spec F, µ2) by Hilbert 90 and the short exact sequence

1→ µ2 → Gm
z7→z2→ Gm → 1.

Since F is a local field, Br(F) ∼= Q/Z, whence H2(Spec F, µ2) ∼= Z/2 (see [CF67, VI], for
instance), so H2(Spec F,Z/2) ∼= Z/2. It thus suffices to see that the cup-product pairing

H1(Spec F,Z/2)⊗ H1(Spec F,Z/2) → H2(Spec F,Z/2) ∼= Z/2

is non-degenerate. This is true by Tate duality [NSW08, Thm 7.2.6] [Tat63].

�

3.6. Theorem. — Let F be a global field of characteristic 6= 2 and a, b, c ∈ F∗. The triple Massey
product 〈κ(a), κ(b), κ(c)〉 contains 0 whenever it is defined.

Proof. Suppose κ(a) ∪ κ(b) = κ(b) ∪ κ(c) = 0, so that 〈κ(a), κ(b), κ(c)〉 is defined. By
Lemma 3.5 and Theorem 2.10, we have X(a, b, c)(Fν) 6= ∅. By Theorem 3.4, we have
X(a, b, c)(F) 6= ∅, so 〈κ(a), κ(b), κ(c)〉 contains 0 by another application of Theorem 2.10.

�
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