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1. Introduction

Morel–Voevodsky’s A1-homotopy theory transports tools from algebraic topology into arithmetic

and algebraic geometry, allowing us to draw arithmetic conclusions from topological arguments.

Comparison results between classical and A1-homotopy theories can also be used in the reverse

direction, allowing us to infer topological results from algebraic calculations. For example, see the

article by Isaksen and Østvær on Motivic Stable Homotopy Groups [IØstvær18]. The present article

will introduce unstable A1-homotopy theory and give several applications.

Underlying all A1-homotopy theories is some category of schemes. A special case of a scheme is

that of an affine scheme, SpecR, which is a topological space, the points of which are the prime

ideals of a ring R and on which the there is a sheaf of rings essentially provided by R itself. For

example, when R is a finitely generated k-algebra, R can be written as k[x1, . . . , xn]/〈f1, . . . , fm〉,
and SpecR can be thought of as the common zero locus of the polynomials f1,f2,...,fm, that is to

say, {(x1, . . . , xn) : fi(x1, . . . , xn) = 0 for i = 1, . . . ,m}. Indeed, for a k-algebra S, the set

(SpecR)(S) := {(x1, . . . , xn) ∈ Sn : fi(x1, . . . , xn) = 0 for i = 1, . . . ,m}

is the set of S-points of SpecR, where an S-point is a map SpecS → SpecR. We remind the

reader that a scheme X is a locally ringed space that is locally isomorphic to affine schemes. So

heuristically, a scheme is formed by gluing together pieces, each of which is the common zero locus of

a set of polynomials. The topology on a scheme X is called the Zariski topology, with basis given by

subsets U of affines SpecR of the form U = {p ∈ SpecR : g /∈ p} for some g in R. It is too coarse to

be of use for classical homotopy theory; for instance, the topological space of an irreducible scheme

is contractible, having the generic point as a deformation retract. Standard references for the theory

of schemes include [Har77], [Vak15], and for the geometric view that motivates the theory [EH00].

Both to avoid certain pathologies and to make use of technical theorems that can be proved under

certain assumptions, A1-homotopy theory restricts itself to considering subcategories of the category

of all schemes. In the seminal [MV99] the restriction is already made to SmS , the full subcategory of

smooth schemes of finite type over a finite dimensional noetherian base scheme S. The smoothness

condition, while technical, is geometrically intuitive. For example, when S = SpecC, the smooth

S-schemes are precisely those whose C-points form a manifold. The “finite-type” condition is most

easily understood if S = SpecR is affine, in which case the finite-type S-schemes are those covered

by finitely many affine schemes, each of which is determined by the vanishing of finitely many
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polynomials in finitely many variables over the ring R. The most important case, and the best

understood, is when S = Spec k is the spectrum of a field. In this case Smk is the category of

smooth k-varieties.

In this article, we will use the notation S to indicate a base scheme, always assumed noetherian and

finite dimensional. For the more sophisticated results in the sequel, it will be necessary to assume

S = Spec k for some field. We have not made efforts to be precise about the maximal generality of

base scheme S for which a particular result is known to hold.

To see the applicability of A1-homotopy theory, consider the following example. The topological

Brouwer degree map

deg : [Sn, Sn]→ Z
from pointed homotopy classes of maps of the n-sphere to itself can be evaluated on a smooth map

f : Sn → Sn

in the following manner. Choose a regular value p in Sn and consider its finitely many preimages

f−1(p) = {q1, . . . , qm}. At each point qi, choose local coordinates compatible with a fixed orienta-

tion on Sn. The induced map on tangent spaces can then be viewed as an R-linear isomorphism

Tqif : Rn → Rn, with an associated Jacobian determinant Jac f(qi) = det(
∂(Tqi

f)j
xk

)j,k. The as-

sumption that p is a regular value implies that Jac f(qi) 6= 0, and therefore there is a local degree

degqi f of f at qi such that

degqi f =

{
+1 if Jac f(qi) > 0,

−1 if Jac f(qi) < 0.

The degree deg f of f is then given

deg f =
∑

q∈f−1(p)

degq f,

as the appropriate sum of +1’s and −1’s.

Lannes and Morel suggested the following modification of this formula to give a degree for an

algebraic function f : P1 → P1 valued in nondegenerate symmetric bilinear forms. Namely, let k be

a field and let GW(k) denote the Grothendieck–Witt group, whose elements are formal differences

of k-valued, non-degenerate, symmetric, bilinear forms on finite dimensional k-vector spaces. We

will say more about this group in Section 4. For a in k×/(k×)2, denote by 〈a〉 the element of GW(k)

determined by the isomorphism class of the bilinear form (x, y) 7→ axy. For simplicity, assume that

p is a k-point of P1, i.e., p is an element of k or∞, and that the points q of f−1(p) are also k-points

such that Jac f(q) 6= 0. Then the A1-degree of f in GW(k) is given by

deg f =
∑

q∈f−1(p)

〈Jac f(q)〉.

In other words, the A1-degree counts the points of the inverse image weighted by their Jacobians,

instead of weighting only by the signs of their Jacobians.
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Morel shows that this definition extends to an A1-degree homomorphism

(1) deg : [Pnk/P
n−1
k ,Pnk/P

n−1
k ]→ GW(k)

from A1-homotopy classes of endomorphisms of the quotient Pnk/P
n−1
k to the Grothendieck–Witt

group. We will use this degree to enrich results in classical enumerative geometry over C to equalities

in GW(k) in section 4.5. For (1) to make sense, we must define the quotient Pnk/P
n−1
k . It is not a

scheme; it is a space in the sense of Morel–Voevodsky. In section 2, we sketch the construction of the

homotopy theory of spaces, including Thom spaces and the Purity Theorem. In section 3, we discuss

realization functors to topological spaces, which allow us to see how A1-homotopy theory combines

phenomena associated to the real and complex points of a variety. An example of this is the degree,

discussed in the follow section, along with Euler classes. The Milnor–Witt K-theory groups are

also introduced in section 4. These are the global sections of certain unstable homotopy sheaves

of spheres. The following section, section 5, discusses homotopy sheaves of spaces, characterizing

important properties. It also states the unstable connectivity theorem. The last section describes

some beautiful applications to the study of algebraic vector bundles.

Some things we do not do in this article include Voevodsky’s groundbreaking work on the Bloch-

Kato and Milnor conjectures. A superb overview of this is given [Mor98]. We also do not deal with

any stable results, which have their own article in this handbook [IØstvær18].

In our presentation, we concentrate on those aspects and applications of the theory that relate to

the calculation of the unstable homotopy sheaves of spheres. The most notable of the applications,

at present, is the formation of an A1 obstruction theory of BGLn, and from there, the proof of

strong results about the existence and classification of vector bundles on smooth affine varieties.

These can be found in Section 6.

1.1. Acknowledgements. We wish to thank Aravind Asok, Jean Fasel, Raman Parimala and

Joseph Rabinoff, as well as the organizers of Homotopy Theory Summer Berlin 2018, the Newton

Institute and the organizers of the Homotopy Harnessing Higher Structures programme. The first-

named author was partially supported by National Science Foundation Award DMS-1552730.

2. Overview of the construction of unstable A1-homotopy theory

2.1. Homotopy theory of Spaces. Morel and Voevodsky [MV99] constructed a “homotopy the-

ory of schemes,” in a category sufficiently general to include both schemes and simplicial sets.

By convention, the objects in such a category may be called a “motivic space” or an “A1-space”

or, most commonly, simply a “space”. The underlying category of spaces is a category of sim-

plicial presheaves on a category of schemes, where schemes themselves are embedded by means

of a Yoneda functor. Two localizations are then performed: a Nisnevich localization and an A1-

localization. Before describing these, we clarify the notion of “a homotopy theory” that we use.

Two standard choices are that a homotopy theory is a simplicial model category or a homotopy

theory is an ∞-category, a.k.a., a quasi-category. Background on simplicial model categories can

be found in [Hir03] and [Rie14]. Lurie’s Higher Topos Theory [Lur09] contains many tools used
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for doing A1-homotopy theory with ∞-categories. In the present case, either the model-categorical

or the ∞-categorical approach can be chosen, and once this choice has been made, presheaves of

simplicial sets and the resulting localizations take on two different, although compatible, meanings,

either of which produces a homotopy theory of schemes as described below.

To fix ideas, we use simplicial model categories. Let S be a noetherian scheme of finite dimension,

and let SmS denote the category of smooth schemes of finite type over S, defined as a full subcate-

gory of schemes over S. Let sPre(SmS) denote the category of functors from the opposite category

of SmS to simplicial sets, i.e., sPre(SmS) = Fun(Smop
S , sSet). Objects of sPre(SmS) are called

simplicial presheaves. The properties of sPre(SmS) that make it desirable for homotopy theoretic

purposes are the following:

• There is a Yoneda embedding η : SmS → sPre(SmS), sending a scheme X to the simplicial

presheaf U 7→ SmS(U,X), where the set of maps is understood as a 0-dimensional simplicial

set.

• The category sPre(SmS) has all small limits and colimits. In this it is different from the

category SmS itself, which is far from containing all the colimits one might wish for in

doing homotopy theory. The Yoneda embedding is continuous, but not cocontinuous.

• The category sPre(SmS) is simplicial.

The Yoneda embedding will be tacitly used throughout to identify a smooth scheme X with the

presheaf it represents, a 0-dimensional object of sPre(SmS). We remark in passing that S itself

represents a terminal object of sPre(SmS).

One can put several, Quillen equivalent, model structures on sPre(SmS) such that weak equiv-

alences are detected objectwise, meaning that a map X → Y of simplicial presheaves is a weak

equivalence if and only if the map X(U)→ Y (U) of simplicial sets is a weak equivalence for all U in

SmS . Some standard choices for such a model structure are the injective [Jar87], projective [Bla01]

and flasque [Isa05] [DHI04]. We then carry out two left Bousfield localizations. One can learn about

Bousfield localization in [Hir03].

The first localization is analogous to the passage from presheaves to sheaves and depends on a

choice of Grothendieck topology on SmS . We remind the reader that a Grothendieck topology is

not a topology in the point–set sense, rather it is sufficient data to allow one to speak meaningfully

about locality and sheaves. We refer to [MLM92] for generalities on sheaves.

The standard choice of Grothendieck topology for A1-homotopy theory is the Nisnevich topology,

although the étale topology is also used, producing a different homotopy theory of spaces. If

one wishes to study possibly nonsmooth schemes, then different topologies, for instance the cdh

topology, can be used. The theory in the nonsmooth case is less well developed, but [Voe10b]

establishes that the theory for all schemes and the cdh topology is a localization of the theory

for smooth schemes and the Nisnevich topology, so that there is a localization functor L from one

homotopy category to the other. Strikingly, the same paper proves that that for a map f : X → Y
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in the smooth, Nisnevich theory, Lf is a weak equivalence if and only if Σf , the suspension, is a

weak equivalence.

In order to describe the Nisnevich topology, it is first necessary to describe étale maps: A map

Y → X in SmS is étale if for every point y of Y , the induced map on tangent spaces is an

isomorphism [BLR90, 2.2 Proposition 8 and Corollary 10]. Many other characterizations of étale

morphisms can be found in [Gro67, §17] . A finite collection of maps {Ui → X} is a Nisnevich cover

if the maps Ui → X are étale and for every point x ∈ X, there is a point u in some Ui mapping

to x such that the induced map on residue fields κ(x) → κ(u) is an isomorphism. The topology

generated by this pretopology is the Nisnevich topology on SmS . We remark that the additional

constraint imposed by the Nisnevich condition is not vacuous even when S = Spec k̄ is the spectrum

of an algebraically closed field. For instance, when |n| > 1, the n-th power map C× → C×—or

more correctly Gm,C → Gm,C—is an étale cover but not a Nisnevich cover because the map on the

residue fields of the generic points is the homomorphism C(x)→ C(x) sending x 7→ xn, which is not

an isomorphism. One sees that given Nisnevich cover f :
∐
Ui → X, there must be a dense open

subset V0 of X on which f admits a section, and a dense open subset V1 of the complement of V0

on which f admits a (possibly different) section and so on, so that X has a stratification such that

f admits sections on the open complements of the strata; this definition is used in [Del01, Section

3.1].

A hypercover is a generalization of the Čech cover

. . .→→→
∐
i

(Ui ∩ Uj) ⇒
∐
i

Ui → X

associated to the cover {Ui → X}. See, for example [Fri82, Chapter 3] or [DHI04, §4]. One may

therefore define hypercovers for the Nisnevich topology. The first localization we carry out forces

the maps hocolimn Un → X to be weak equivalences for every hypercover U → X. This localization

is called Nisnevich localization when the corresponding topology is the Nisnevich topology. The

resulting simplicial model structures are referred to as the local model structures, and they are

all Quillen equivalent via identity functors. The local injective model structure on presheaves was

originally constructed by Jardine in [Jar87, Theorem 2.3], in a slight generalization of a construction

due to Joyal [Joy83] who considered only sheaves rather than presheaves. What we call the “local

injective” model structure is notably referred to the “simplicial model structure” in [MV99].

The theory constructed by Joyal and Jardine is very general, applying to all sites. We refer to [JSS15]

for more about local homotopy theory per se. In the cases called for by A1-homotopy, there is a

more elementary approach to the theory. Building on ideas of Brown & Gersten [BG73], one defines

a distinguished square of schemes to be a diagram

U ×X V //

��

V

p

��
U

i // X
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of schemes where i is an open immersion, p is an étale morphism and p restricts to an isomorphism

on the closed complements p−1(X−U)→ X−U (given the reduced induced subscheme structures).

Then a functor F : Smop
S → Set is a Nisnevich sheaf if F takes distinguished squares to cartesian

squares of sets, and a functor X : Smop
S → sSet is, loosely speaking, suitable for A1-homotopy

theory if it takes distinguished squares to homotopy cartesian diagrams of simplicial sets. The

following result, [Bla01, Lemma 4.1]is the simplest in a family of many such results.

Proposition 2.1. A simplicial presheaf X : Smop
S → sSet is fibrant in the projective local model

structure if X (·) takes values in Kan complexes and X takes distinguished squares to homotopy

cartesian squares.

Variations on this idea are considered in [Isa05, Section 4.2], [AHW17a, Section 3.2] and [Voe10a],

where we have listed the references in order from least to most general.

The second localization makes the projection maps X × A11 → X into weak equivalences for all

smooth schemes X in SmS . Any resulting simplicial model structure is an A1-model structure. A

pleasant overview of the relationships between the various model categories appearing in this story

can be found in [Isa05].

Definition 2.2. Let RA1 denote a fibrant replacement functor in the injective A1 model structure.

We will say that an object X is A1-local if the map X → RA1X is a weak equivalence in a local

model structure.

That is A1-local objects are the objects for which the local homotopy type already recovers the

A1-homotopy type.

These simplicial model categories of spaces allows us to carry out homotopy theory on schemes. For

example, we can form limits and colimits, in particular smash products of schemes or of schemes

and simplicial sets, and give meaning to the spaces in (1). Many results from the classical homotopy

theory of simplicial sets carry over. For example, we have excision: suppose that Z → X is a closed

immersion in Smk and Y → X is an open subset of X. Then there is a pushout square of schemes

(2) Y − Z //

��

X − Z

��
Y // X

corresponding to a Nisnevich cover of X. The Nisnevich localization procedure guarantees that

Nisnevich covers give rise to pushouts in spaces, causing (2) to be a homotopy pushout, giving the

excision weak-equivalence

X/(X − Z) ' Y/(Y − Z).

We also can take any vector bundle p : E → X, where X is a smooth scheme, and decompose X

as an open cover of subschemes Ui such that the induced maps p−1(Ui)→ Ui is isomorphic to the

projection An × Ui → Ui, which is a weak equivalence. A colimiting argument then shows that

p : E → X is itself an A1-weak equivalence. This works for any sort of Nisnevich-locally-trivial
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fibration with A1-contractible fibres, and in particular, for quasiprojective varieties over a field k,

the Jouanolou trick [Wei89, Proposition 4.3] produces a map p : SpecR → X which is an A1-

equivalence having affine source. Any quasiprojective smooth k-variety is therefore A1-equivalent

to an affine variety.

2.2. Homotopy Sheaves. An inconvenience in A1-homotopy theory is varying availability of base-

points. By a “basepoint” we might mean a map p : S → X over S, viz., a morphism from the

terminal object of the category sPre(SmS). Unfortunately, since X amounts to a family of simpli-

cial sets, parametrized by Smop
S , for certain objects U → S of Smop

S , there may be path components

of X (U) that are not in the image of the map π0X (S)→ π0X (U). For instance, if V is the closed

subscheme of A2 over R determined by the vanishing of x2 + y2 + 1, then V (R) is empty, while

V (C) is a discrete set of uncountably many points.

In order to handle this technicality, one must allow “basepoints” x0 ∈ X (U) that are not in the

image of X (S) → X (U). That is, for any object U of SmS , and any x0 ∈ (X (U))0 one defines a

sequence of presheaves on the slice category SmS/U by

(3) (V
f→ U) 7→ πn(|X (V )|, f∗(x0)).

Here |X (V )| denotes the geometric realization of the simplicial set.

The Nisnevich sheaves associated to the functors of (3) are the homotopy sheaves of X for the

basepoint x0, and will be denoted πn(X , x0). If n ≥ 1, then the sheaves are sheaves of groups, and

they are abelian if n ≥ 2. One may define an unpointed π0(X ) similarly.

We define πA1
n , the A1-homotopy sheaves, by first replacing X by an A1 local object—for instance,

RA1X , then calculating πn of the resulting object. Both the homotopy sheaves and the A1-homotopy

sheaves satisfy a Whitehead theorem (in fact, this is taken as the definition of local weak equivalence

in [Jar87]).

Proposition 2.3. If f : X → Y is a morphism in sPre(SmS), then f is an A1-weak equivalence

if and only if the morphisms

f∗ : πA1
0 (X )→ πA1

0 (F)

and

f∗ : πA1
n (X , x0)→ πA1

n (Y, f(x0))

are isomorphisms for all choices of basepoint x0 ∈ (X (U))0.

The story is much simpler in the case where X is A1-connected, i.e., when πA1
0 (X ) is a singleton. In

this case, non-globally-defined basepoints need not be considered. This version appears as [MV99,

Proposition 2.14 , §3].

One can define homotopy groups of X by taking sections of the homotopy sheaves. One has the

following
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Proposition 2.4. Let k be a field and let X be an object of sPre(Smk). Choose a basepoint

x0 ∈ (X (k))0. Then

πA1
n (X , x0)(k) = [Sn ∧ (Spec k)+,X ]A1

2.3. Spheres. Let Gm denote the punctured affine line Gm = A1−{0}, given the basepoint 1, and

let S1 denote the pointed simplicial circle. The role of the spheres Sn in classical algebraic topology

is now played by smash products of the spaces S1 and Gm. We use the notation

Sp+qα = Sp+q,q := (S1)∧p ∧G∧qm ,

and such spaces will be called spheres. The presence of two different indexing conventions for

spheres in A1-homotopy theory can be confusing, but both appear in the literature, so we give both

as well. The notation ΣX (or ΣS1X if there is possible confusion) denotes X ∧S1. The question of

which schemes have the A1-homotopy type of spheres has been studied in [ADF17], and the most

common examples are the following.

Example 2.5. The scheme P1 is A1-homotopy equivalent to S1+α = S2,1. Specifically, the pushout

diagram

Gm //

��

A1

��
A1 // P1

and the weak equivalence A1 ' ∗, induce a weak equivalence

P1 ' ΣGm.

Example 2.6. The scheme An − {0} is A1-homotopy equivalent to Sn−1+nα = S2n−1,n. The case

n = 1 is immediate, and then one may proceed by induction on n: the pushout diagram

Gm × (An−1 − {0}) //

��

A1 × (An−1 − {0})

��
Gm × An // An − {0}

and the weak equivalences Gm × An ' Gm and A1 × (An−1 − {0}) ' An−1 − {0}, induce a weak

equivalence between An − {0} and the homotopy pushout of the diagram Y ← X × Y → X of

projection maps for X = Gm and Y = An−1−{0}. Since this latter homotopy pushout is identified

with Σ(X ∧ Y ) by pushing out the rows of the diagram

X

��

X ∨ Yoo

��

// Y

��
X

��

X × Yoo

��

// Y

��
∗ X ∧ Yoo // ∗,
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the result follows.

An important related example is the identification of the A1-homotopy type of Pnk/P
n−1
k with

Sn+nα = S2n,n.

Example 2.7. There is a standard closed immersion1 Pn−1 ↪→ Pn sending homogeneous coordinates

[x0 : . . . : xn] to [0;x0 : . . . : xn]. The homotopy type of the quotient space Pn/Pn−1 is identified by

the chain of weak equivalences

Pn/Pn−1 ' Pn/(Pn − {0}) ' An/(An − {0}) ' Σ(An − {0})

with Σ(An − {0}). Therefore, by example 2.6, we have Pn/Pn−1 ' Sn+nα.

2.4. Thom spaces and purity. Let V → X be a vector bundle and let X ↪→ V be the zero

section.

Definition 2.8. The Thom space, denoted Th(V ) or XV , of V is defined

Th(V ) := V/(V −X).

A parametrized version of Example 2.7 shows that the A1-homotopy type of the Thom space over a

scheme can be alternatively described as the cofiber of a closed immersion. Namely, let 1 denote the

trivial bundle on X. For any vector bundle V on X, let P(V ) denote the projective space bundle

given by the fiberwise projectivization. As in Example 2.7, there is a standard closed immersion

P(V ) ↪→ P(V ⊕ 1). The complementary open subscheme is isomorphic to V .

Proposition 2.9. There is an A1-weak equivalence Th(V ) ' P(V ⊕ 1)/P(V ).

Proof. By excision, there is an A1-weak equivalence Th(V ) ' P(V ⊕ 1)/(P(V ⊕ 1) − X). The

scheme P(V ⊕ 1) − X is the total space of the vector bundle O(1) over P(V ), giving the claimed

weak equivalence. �

The analogue of the tubular neighborhood theorem from classical topology is Morel–Voevodsky’s

Purity theorem.

Purity Theorem 2.10 (Morel, Voevodsky). Let Z ↪→ X be a closed immersion in SmS. Then

there is a natural A1-weak equivalence

Th(NZX) ' X/(X − Z)

where NZX → Z denotes the normal bundle.

The original proof is [MV99, Section 3 Theorem 2.23 p.115], and a particularly accessible exposition,

done over an algebraically closed field, may be found in [AE17, Section 7], using unpublished notes

of A. Asok and [Hoy17].

1We use the algebre-geometric term “closed immersion” for a map isomorphic to the inclusion of a closed subscheme.

The usual term in topology is “closed embedding”, which is also used in [MV99], but is not widespread in the
literature on A1-homotopy theory.
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Here, we will give an outline of a proof and draw some pictures in the case where Z ↪→ X is the

inclusion of the point into the affine line {0} ↪→ A1
k.

First, we explain the concept of “blow up” in algebraic geometry briefly. For a detailed treatment,

we refer to [Har77]. Given a closed immersion Z ↪→ X, the blow-up π : BlZ X → X of X along

Z is a map satisfying the property that the restriction of π to BlZ X − π−1(X) is an isomorphism

and the inverse image of Z, called the exceptional divisor, is π−1Z ∼= PNZX the projectivization

of the normal bundle. In other words, we cut out Z and glue in a projectivization of the normal

bundle. In the topology of manifolds, this can be accomplished by first removing an open tubular

neighborhood of Z from X, so that one has introduced a boundary component S homeomorphic

to a sphere bundle in the normal bundle NZX, and then taking a fibrewise quotient of S to

replace it by a projectivization of NzX. Algebraically, one takes the sheaf of ideals I determining

the closed immersion Z → X, forms the sheaf of graded algebras ⊕∞i=0Ii and takes the relative

Proj construction, i.e., BlZ X → X is the canonical map Proj
X
⊕∞i=0 Ii → X. The morphism

π : BlZ X → X satisfies the property that the sheaf of ideals (π−1I)OBlZ X associated to π−1Z is

the sheaf of sections of a line bundle, and any other morphism Y → X with this property factors

through π, [Har77, II 7.14].

Example 2.11. The blow-up Bl0 An of affine n-space An at the origin is the closed subscheme of

An×Pn−1 determined by 〈xiyj−xjyi〉 where (x1, . . . , xn) are the coordinates on An and [y1, . . . , yn]

are homogeneous coordinates on Pn. The restriction to Bl0 An of the projection An×Pn−1 → Pn−1

is the projection of the tautological bundle, denoted O(−1), on Pn−1 to Pn−1. See Figure 1 for the

case n = 2. The green line is the exceptional divisor P1, and the red and blue lines are both fibers

of the line bundle O(−1). Blow-ups of A2 are sometimes used as jungle gyms. See Figure 2.

An essential component of the proof of the Purity Theorem 2.10 is the “deformation to the normal

bundle”, a pre-existing idea in intersection theory [Ful84, Chapter 5]. The input to this construction

is a closed immersion Z ↪→ X in Smk and the output is a family of closed immersions over A1:

(4) Z × A1

##

// DZX

||
A1

such that over t = 1, the fiber of the family is the original closed immersion Z ↪→ X, and over

t = 0, the fiber of the family inclusion of the zero section into NZX.

To form this family, first consider BlZ×0(X × A1)
π→ X × A1 → A1. The inverse image of t = 0

under the composition is π−1(X×{0}). It is the union of the exceptional divisor P(NZ×0(X×A1))

and a copy of BlZ×0(X × 0). These are glued by identifying the copy of PNZX embedded in

BlZ×0(X×0) as the exceptional divisor, and the following copy of PNZX in P(NZ×0(X×A1)): the

bundle NZ×0(X ×A1) is canonically isomorphic to NZX ⊕ 1. Thus P(NZ×0(X ×A1)) is the union

of NZX and PNZX, and the latter PNZX is the copy we seek. Then let

DZX := BlZ×0(X × A1)− BlZ×0(X × 0).
10



Bl0(A2)

line slope ∞

line slope 0

π−1(0)

π

A2

Figure 1.
Blow-up

Since the copy of Z ×A1-in BlZ×0(X ×A1) intersects the exceptional divisor as the zero section of

NZX in P(NZ×0(X ×A1)), the scheme DZX provides the claimed family. D0A1 is shown in Figure

3.

To prove purity, one shows that the fibers of (4) above t = 0 and t = 1 induce A1-weak equivalences

i0 : NZX/(NZX − Z)→ DZX/(DZX − Z × A1
k)

11



Figure 2. Bl0 A2 Jungle Gym

and

i1 : X/(X − Z)→ DZX/(DZX − Z × A1),

respectively. Like the étale topology, the Nisnevich topology is fine enough to reduce many argu-

ments about closed immersions in SmS to arguments for the standard inclusion An ↪→ An+c. A

precise theorem enabling such reductions may be found in [GR71, II 4.10].

In the case where Z ↪→ X is 0 ↪→ An, the deformation to the normal bundle

DZX = Bl0(An × A1)− Bl0(An × 0) ∼= OPn
k
(−1)−OPn−1

k
(−1) ∼= OPn

k
(−1)|An

k

is the restriction of the total space of the tautological bundle on Pnk restricted to the standard copy

of An. The fiber above 0 is the zero-section of this bundle. The fiber above 1 also defines a section.

We can see directly that i0 and i1 are A1-weak equivalences.

3. Realizations

3.1. Complex Realization. Suppose k ⊂ C is a subfield of the complex numbers, then one may

view the category Smk of smooth k-schemes as a category of complex varieties. Let us abuse

notation and write X(C) for the complex manifold determined by a smooth k-scheme Smk. The

object X(C), being a manifold, is the sort of thing to which classical homotopy theory is well

adapted. One therefore might hope for a functor | · | : sPre(Smk)→ Top with good homotopical

properties. Such a functor can be constructed in the most obvious way: for a smooth k-scheme X,

one defines |X| = X(C), as discussed above. The functor

| · | : sPre(Smk)→ Top
12



BlZ×0(X × A1)

BlZ×0(X × 0)

exceptional divisor
P(Nz ⊕ 1)

A1

XZ × A1 → X × A1

t = 0
A1

f

Dz(X) = BlZ×0(X × A1)− BlZ×0(X × 0)

Figure 3.
Deformation to the normal bundle

is then extended to all simplicial presheaves in such a way as to preserve (homotopy) colimits. For

formal reasons, if K is a simplicial set, viewed as a constant simplicial presheaf in sPre(Smk), then

this realization |K| agrees with the usual topological realization of the simplicial set K.

The technical details in showing that this realization procedure works out is to be found in

[Dug01], [DHI04] and [DI04]. The first paper shows that the motivic projective model structure on

sPre(Smk) is an A1-localization of a “universal” model structure, and then the last two show that

the relations imposed in the motivic projective model structure, namely making hypercovers and
13



trivial line bundles into weak equivalences, are relations that yield ordinary homotopy equivalences

after realization. The upshot is a Quillen adjunction

| · | : sPre(Smk) � Top : S,

when the left hand side is endowed with the motivic projective model structure. The approach

outlined above is an improvement on a result of [MV99] where a functor tC : H(C)→ H is produced,

but only on the level of homotopy categories.

Being a left adjoint, the realization functor constructed in this way is not compatible with fiber

sequences, but one sees that it is compatible with products, in that |X × Y | ≈ |X| × |Y |, [PPR09,

Section A.4] and as a consequence, one may deduce

|B(X,G, Y )| ≈ B(|X|, |G|, |Y |)

for two-sided bar constructions. This may suffice in certain cases.

Since realization is homotopically well behaved, one obtains maps [X,Y ]A1
C
→ [|X|, |Y |]. This map

is understood when X = Sn+mα and Y = Sn+jα, assuming n ≥ 2 and j ≥ 1, in which case one has

maps

(5) KMW
j−m(C)→ πn+m(Sn+j).

For dimensional reasons, this map vanishes when j > m. When j = m, the identity map generates

both source and target, and one has an isomorphism Z = GW(C) → Z = πn+m(Sn+m). In the

cases where j < m, one knows from [Mor12] that KMW
j−m(C) = W (C) contains a single nontrivial

class, that of ηj−m, the iterated Hopf map, and so the image of the realization map (5) is the group

generated by ηj−mtop , which vanishes if j −m is sufficiently large.

3.2. Real Realization. Suppose now that k = R. Take X(C) = MorR(SpecC, X) and recall that

the Galois action C2 = Gal(C/R) endows this manifold with a C2 action. Extending the functor

X 7→ X(C) in such a way as to preserve homotopy colimits, one produces an adjunction:

| · |equi : sPre(Smk) � C2 −Top : SR.

A map f : X → Y of C2-spaces is a weak equivalence if and only if it induces weak equivalences

after taking H fixed points fH : XH → Y H for both H = C2 and H = {e}. With this definition,

the functor | · |equi is compatible with the homotopy—specifically [DI04, Section 5.3] establishes

that | · |equi is a left Quillen functor when the source is endowed with the motivic projective model

structure, the arguments being largely the same as in the complex case.

Composing | · |equi with the functor taking C2 fixed points, which is a right adjoint, one arrives at a

functor X 7→ |X|C2

equi := |X|R, and if X is a scheme, then |X|R is the analytic space X(R) endowed

with the obvious topology. The functor | · |R cannot be a left adjoint, since it involves the taking

of fixed points, it does not preserve all colimits, but it does preserve smash products. Notably,

|Sn+mα|R ' Sn ∧ |G∧mm |R ' Sn, and so the induced maps

πn+mα(Sn+jα)(R) = KMW
j−n(R)→ πn(Sn) = Z

14



are quite different in character from those in the complex case of (5) above. The ring KMW
∗ (R)

is generated by classes [a] ∈ KMW
1 where a ∈ R× and η ∈ KMW

−1 . Under R-realization, [a] 7→ 0 if

a > 0, and [a] 7→ 1 if a < 0, and η 7→ −2, for a proof, see [AFW18][Proposition 3.1.3].

3.3. Étale realization. In the case of an arbitrary Noetherian base scheme, S, there is an étale

realization functor, constructed in [Isa04], operating along similar lines to the above two functors.

In this case, one begins with a functor SmS → pro-sPre(Smk), taking a smooth S-scheme X

to the étale topological type of X, as defined in [Fri82]. One then extends this functor to all of

sPre(SmS) by requiring it to commute with homotopy colimits. The result is again a left Quillen

functor

| · |ét : sPre(SmS) � pro-Top : S

with a certain extra complication since the target category is a category of pro-objects.

It might be hoped that if S = Spec k is a field, then Gal(k̄/k) should act on |X|ét and the target

category might be enriched to Gal(k̄/k)-equivariant-pro-spaces. The extent to which this can be

done is not known, owing in part to the technical difficulty of working with equivariant pro-spaces,

and in part because it is known that not all desirable properties for such a functor are attainable:

[KW18].

4. Degree

4.1. The Grothendieck–Witt group. Equipped with definitions of spheres and A1-homotopy

classes of maps, we consider again Morel’s A1-degree homomorphism

deg : [Sn ∧G∧nm , Sn ∧G∧nm ]→ GW(k)

where the target is the Grothendieck–Witt group.

The Grothendieck–Witt group GW(k) is both complicated enough to support interesting invariants

and simple enough to allow explicit computations. It is defined to be the group completion of the

semi-ring of isomorphism classes of k-valued, non-degenerate, symmetric, bilinear forms on finite

dimensional k-vector spaces. In more detail: The isomorphism classes of non-degenerate, symmetric,

bilinear forms β : V × V → k over k, where V is a finite dimensional k-vector space, admit the

operations of perpendicular direct sum ⊕ and tensor product ⊗. These operations give the set of

such isomorphism classes the structure of a semi-ring. Taking the group completion, i.e., introducing

formal differences of isomorphism classes, defines the ring GW(k).

GW(k) has a presentation [Lam05, II Theorem 4.1 pg 39] given by generators 〈a〉 for a in k× and

the relations

(1) 〈a〉 = 〈ab2〉 for all a, b ∈ k×.

(2) 〈a〉〈b〉 = 〈ab〉 for all a, b ∈ k×/(k×)2

(3) 〈a〉+ 〈b〉 = 〈a+ b〉+ 〈ab(a+ b)〉 for all a, b ∈ k× such that a+ b 6= 0.
15



The relations (2) and (3) imply that

〈a〉+ 〈−a〉 = 〈1〉+ 〈−1〉 =: h

for all a ∈ k×/(k×)2, where h is the hyperbolic form, defined h = 〈1〉+ 〈−1〉.

As mentioned above, the generator 〈a〉 corresponds to the bilinear form k × k → k taking (x, y) to

axy. The fact that {〈a〉 : a ∈ k×/(k×)2} is a set of generators is thus equivalent to the statement

from bilinear algebra that a symmetric bilinear form can be stably diagonalized, meaning that after

potentially adding another form (which is only necessary in characteristic 2), the original form is a

perpendicular direct sum of bilinear forms on 1-dimensional vector spaces.

The rank of the bilinear form β : V × V → k is the dimension of V as a k-vector space. So for

example, the generators 〈a〉 for a in k×/(k×)2 are the isomorphism classes of all non-degenerate

rank one forms. The rank defines a ring homomorphism

rank : GW(k)→ Z.

The kernel of the rank homomorphism

I := Ker(rank)

is called the fundamental ideal and gives rise to a filtration of GW

GW ⊇ I ⊇ I2 ⊇ . . .

related to étale cohomology and Milnor K-theory by the Milnor Conjecture [Mil70], which is now

a theorem of Voevodsky proven using A1-homotopy theory [Voe03a] [Voe03b]. Specifically, assume

that the characteristic of k is not 2 and let Hn(k,Z/2) denote the étale cohomology of Spec k with

Z/2 coefficients, or equivalently, the (continuous) cohomology of the Galois group of the separable

closure of k with Z/2 coefficients. Let KM
n (k) denote the degree-n summand of the Milnor K-theory

of k, [Mil70]. For present purposes, we only state that KM
n (k) is the quotient of the n-fold tensor

product k× ⊗ k× ⊗ . . . ⊗ k× by the group generated by tensors a1 ⊗ a2 ⊗ . . . ⊗ an where there is

some i such that ai+ai+1 = 1. In degrees 0, 1 one has KM
0 (k) = Z and KM

1 (k) = k×. The Kummer

map k× → H1(k,Z/2) is the first boundary map obtained by taking the Galois cohomology of the

exact sequence

1→ {±1} → k×s
z 7→z2−→ k×s → 1,

where ks denotes the separable closure of k. It extends to a ring homomorphism KM
∗ (k) ⊗ Z/2 →

H∗(k,Z/2). The Milnor conjecture says there are isomorphisms

In/In+1 ∼= KM
n (k)⊗ Z/2 ∼= Hn(k,Z/2),

where the second isomorphism is induced by the map just discussed coming from the Kummer map

and the first sends

a1 ⊗ a2 ⊗ . . .⊗ an
in KM

n (k) to

(〈a1〉 − 〈1〉)(〈a2〉 − 〈1〉) · · · (〈an〉 − 〈1〉)
in In/In+1.
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The maps In → In/In+1 → Hn(k,Z/2) define invariants on bilinear forms in In. The 0th of these

is by definition the rank. The first is the discriminant

Disc : GW(k)→ H1(k,Z/2) ∼= k×/(k×)2,

which sends the bilinear form β : V × V → k to the determinant of a Gram matrix for β

Disc(β) = (β(vi, vj))i,j

where {v1, . . . vn} is a basis of V . The second is the Hasse–Witt invariant

γ : GW(k)→ H2(k,Z/2) ∼= KM
2 (k)⊗ Z/2,

which takes 〈a1〉+ 〈a2〉+ . . .+ 〈am〉 to the image of∑
i<j

ai ⊗ aj

in KM
2 (k) ⊗ Z/2. If we identify H2(k,Z/2) with the 2-torsion subgroup of the Brauer group of

equivalence classes of central simple k-algebras, the class γ(〈a1〉+ 〈a2〉+ . . .+ 〈am〉) is that of the

tensor product of the quaternion algebras (ai, aj) as (i, j) runs over pairs of integers from 1 to m

with i < j. The third is the Arason invariant. The higher invariants are not explicitly named, but do

not vanish in general. For example, in the Grothendieck–Witt group of the field C((x1, x2, . . . , xn)),

the nth quotient In/In+1 is not 0.

For many fields k, there are explicit computations of GW(k) and algorithms for deciding when two

sums of the given generators represent the same element. See [Lam05].

Example 4.1. When k = C or any algebraically closed field, k×/(k×)2 is the one element group, so

by the previously given presentation of GW(k), we see that rank : GW(k)→ Z is an isomorphism,

e.g., GW(C) ∼= Z.

Example 4.2. For a bilinear form β : V × V → R over the real numbers, Sylvester’s law of inertia

states that there is a basis of V so that β is diagonal with only 1’s, −1’s and 0’s on the diagonal.

The signature of β is the number of 1’s minus the number of −1’s. The signature determines a

homomorphism sign : GW(k) → Z. Non-degenerate bilinear forms over R are classified by their

rank and signature, and thus the homomorphism

rank× sign : GW(R)→ Z× Z

determines an isomorphism from GW(R) onto its image GW(R) ∼= Z× Z.

Example 4.3. For a finite field Fq, the rank and the discriminant define a group isomorphism

GW(Fq) ∼= Z× F∗q/(F∗q)2. When q is odd, note that this means that the Grothendieck–Witt group

is isomorphic to Z× Z/2.

Springer’s theorem [Lam05, VI Theorem 1.4] computes the Grothendieck–Witt group of Qp and

C((x1, x2, . . . , xn)). A theorem of Milnor gives the analogous computation for function fields [Mil70,

Theorem 5.3]. For GW(Q), see [Lam05, VI 4]. In summary, the Grothendieck–Witt group is

interesting and computable.
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Morel’s degree has the agreeable feature that for subfields k of R, it records the ordinary topological

degrees of both the complex and real realizations. Namely, the following diagram commutes.

Top

deg

��

sPre(Smk)

deg

��

|·|Roo |·| // Top

deg

��
Z GW(k)

rankoo sign // Z

4.2. Local Degree. As in the case of the degree morphism from classical algebraic topology, there

is an associated notion of “local degree”, defined as follows. Let U and W be Zariski open subsets

of Ank , and let f : U → W be a map. Suppose x is a closed point of U such that y = f(x) is a

k-point (meaning that the coordinates of y are elements of k), and such that x is isolated in f−1(y).

By possibly shrinking U , we may assume that f maps U −{x} to W −{y}, and therefore f induces

a map

f : U/(U − {x})→W/(W − {y}).
The Purity Theorem identifies the quotients W/(W −{y}) and U/(U−{x}) with the sphere (P1)∧n

and the smash product (P1)∧n ∧ Spec k(x)+, respectively. The local degree degx f of f at x is the

degree of the composite

Pn/Pn−1 → Pn/(Pn − {x}) ∼= U/(U − {x}) f−→W/(W − {y}) ∼= (P1)∧n ∼= Pn/Pn−1

in GW(k). If x is also a k-point, it is more natural to take the degree of the composite

(P1)∧n → U/(U − {x}) f−→W/(W − {y})→ (P1)∧n.

These definitions are equivalent [KW16, Proposition 11]. In the presence of Nisnevich local coor-

dinates (see [KW17, Definition 17]) and appropriate orientations, the definition of local degree can

be generalized.

There is an explicit algorithm to compute the local degree [EL77] [Eis78] [KW16], which can be

implemented with a computer algebra package, or even by hand in good circumstances. Namely,

consider a map f : U →W , and a point x in U as above. Since W is a subset of Ank , we can express

f as an n-tuple of functions f = (f1, . . . , fn) defined on U . Since U is an open subset of Ank , the

point x corresponds to a prime ideal p in k[x1, . . . , xn]. The fi can be viewed as elements of the

localization k[x1, . . . , xn]p. The assumption that x is isolated in f−1(y) implies that the quotient

Q =
k[x1, . . . , xn]p
〈f1, . . . , fn〉

is finite dimensional as a k-vector space. The A1-local degree of f at p is represented by the following

bilinear form on Q. The Jacobian

J = det
( ∂fi
∂xj

)
i,j

determines an element of Q. For simplicity, we assume that p is a k-point, and that rankkQ is not

divisible by the characteristic of k. Choose any k-linear function

η : Q→ k
18



such that

η(J) = rankkQ.

Then define the bilinear form ωEKL : Q×Q→ k by

ωEKL(g, h) = η(gh).

It can be shown that the isomorphism class of ωEKL does not depend on the choice of η [EL77,

Proposition 3.5] and that the class of ωEKL in GW(k) is the A1-local degree [KW16]. For the

analogous algorithm without the two assumptions, see the work of Scheja and Storch [SS75, Section

3].

As in classical algebraic topology, the degree of a map can be expressed as a sum of local degrees.

For example, let f : Pnk → Pnk be a finite map. Let Ank denote the Zariski open subset of Pnk which is

the complement of the standard closed immersion Pn−1
k ↪→ Pnk described in Example 2.7. Suppose

that f−1(Ank ) = Ank , so there is an induced map

F : Pnk/P
n−1
k → Pnk/P

n−1
k .

Then, for any k-point y of Ank ,

degF =
∑

x∈f−1(y)

degx f.

This is well-known and the proof is very similar to a classical argument. A reference is [KW16,

Proposition 13].

4.3. Milnor–Witt groups. The ring GW(k) is the degree 0 subring of a graded ring KMW
∗ (k)

developed by Morel and M. J. Hopkins [Mor12] to describe part of the motivic homotopy groups

of spheres. For a field k, the ring KMW
∗ (k) is the associative, graded ring with the following

presentation. The generators consist of one element η of degree −1 and elements [a] of degree 1 for

each a in k×. The hyperbolic element h is defined h := η[−1] + 2. These generators are subject to

the relations

• (Steinberg relation) [a][1− a] = 0 for each a in k − {0, 1}.
• [ab] = [a] + [b] + η[a][b] for every a, b in k×.

• [a]η = η[a] for every a in k×.

• ηh = 0.

One can identify GW(k) with KMW
0 (k) by identifying 〈a〉 with 1 + η[a],

〈a〉 = 1 + η[a],

and it follows that the two definitions h = η[−1] + 2 and h = 〈1〉 + 〈−1〉 agree. Morel proves an

isomorphism between P1-stable A1-homotopy classes of maps and KMW
∗ (k)

[S0,G∧nm ]Spt(Smk)
∼= KMW

n (k).

Moreover, there is an analogous unstable result:

[Sn ∧G∧rm , Sn ∧G∧jm ] ∼= KMW
j−r (k)
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for n ≥ 2, which extends to an isomorphism of sheaves discussed in Section 5. For n = 1, we are

lead to consider the unstable A1-homotopy classes of maps P1
k → P1

k, also discussed in Section 5;

see Equation (14).

The fact that GW(k) and KMW
∗ (k) are global sections of stable A1-homotopy sheaves πA1,s

∗ im-

plies the existence of extra structure, for example residue maps, which are closely related to the

unramified sheaves discussed in more detail in the next section, and transfer maps, which exist for

2-fold Gm-loop sheaves of A1-homotopy sheaves πA1

∗ for ∗ ≥ 2, and in particular exist for stable

A1-homotopy sheaves [Mor12, Chapter 4]). We discuss these residue and transfer maps in more

detail now.

We have a residue map in the following situation. Let v : K → Z ∪ ∞ be a valuation on a field

K containing k, and let Ov denote the corresponding valuation ring of elements of non-negative

valuation. The residue field k(v) is the quotient of Ov by its maximal ideal consisting of the elements

of K of positive valuation. Let π be a uniformizer (i.e., an element such that v(π) = 1). Then there

is a unique homomorphism ∂πv called a residue map

∂πv : KMW
∗ (K)→ KMW

∗−1 (k(v))

commuting with η and such that

∂πv ([π][a1][a2] . . . [an]) = [a1][a2] . . . [an],

∂πv ([a0][a1][a2] . . . [an]) = 0,

where ai ∈ O∗v and ai denotes the image of ai in k(v)∗. The kernel of the residue maps define the

sections of the sheaf KMW
∗ over SpecOv, see the discussion following [Mor12][Lemma 3.19].

We have a transfer map in the following situation. Let K ⊆ L be a field extension of finite rank,

where K is finite type over k.

We first note that the inclusion K ⊆ L corresponds to a map of schemes (or spaces) SpecL →
SpecK in the opposite direction. The sheaf property (which comes from pullback of maps) gives

restriction maps KMW
∗ (K) → KMW

∗ (L). These restriction maps are, not surprisingly, [a] 7→ [a],

η 7→ η, and correspond to pullback of bilinear forms when restricted to GW.

Transfer maps for such field extensions can be constructed by producing a stable map

SpecK → SpecL

in the direction opposite to the map of spaces, closely analogous to the Becker–Gottlieb transfer

[Mor12, 4.2]. Namely, when L is generated by a single element over K, we can choose a closed point

z of P1
K with residue field L, or equivalently, the data of a closed immersion

z : SpecL ↪→ P1
K .

Using Purity, we then have the cofiber sequence

(P1
K − {z})→ P1

K → P1
K/(P1

K − {z}) ∼= Th(NzP1
K) ∼= P1

k ∧ (SpecL)+.
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The quotient map, or Thom collapse map, in this sequence

P1
K
∼= P1

k ∧ (SpecK)+ → P1
k ∧ (SpecL)+

is the desired stable map SpecK → SpecL, and induces a transfer map

τzL/K : KMW
∗ (L)→ KMW

∗ (K),

called the geometric transfer. This transfer depends on the chosen generator of L over K. Although

L may not be generated over K by a single element, we can always choose a finite list of generators.

Given an ordered such list, we define a transfer KMW
∗ (L)→ KMW

∗ (K) by composing the transfers

just constructed.

For simplicity, assume that the characteristic of k is not 2. The dependency of the transfer map

on the chosen generators can be eliminated by modifying the definition in the following manner:

Suppose z is a generator of L over K. The monic minimal polynomial of z can be expressed in

a canonical manner as P (xp
m

) where P is a separable polynomial. The derivative P ′(zp
m

) of P

evaluated at zp
m

is an element of L∗. The cohomological transfer

(6) TrL/K : KMW
∗ (L)→ KMW

∗ (K)

is then defined

TrL/K(β) = τzL/K(〈P ′(zp
m

)〉β),

and this map is independent of the chosen generator [Mor12, Theorem 4.27]. More generally, for

any finite extension K ⊆ L, one has a cohomological transfer (6) by composing the the transfers

just defined for a sequence of generators, and the resulting map is again independent of the chosen

sequence. This independence of the choice of generators is more naturally understood terms of

twisted Milnor–Witt K-theory, where the twist is by the canonical sheaf.

From the algebraic perspective, there are many possible transfers GW(L) → GW(K) for [L :

K] ≤ ∞ as follows: for any nonzero K-linear map f : L → K, and non-degenerate bilinear form

β : V × V → L, the composite

f ◦ β : V × V β→ L
f→ K

is a non-degenerate bilinear form. Thus we may define a map Trf : GW(L)→ GW(K) which takes

the isomorphism class of an appropriate β to the isomorphism class of f ◦ β, where in the former

case, V is viewed as an L-vector space, and in the latter case, V is viewed as a K-vector space.

This abundance of transfers for GW also implies the same for KMW
∗ as the latter can be expressed

as the fiber product

KMW
∗ (K) //

��

I(K)n

��
KM
n (K) // I(K)n/I(K)n+1,

and there is a canonical transfer on Milnor K-theory.
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When K ⊂ L is a finite separable extension, there is a canonical choice of such an f , namely, the

trace map L → K from Galois theory, given by summing the Galois conjugates of an element of

L. The resulting transfer map is the cohomological transfer (6) defined above. This transfer arises

naturally when studying the local degree at non-k-rational points. For example, let f : U →W be

a map between open subsets of Ank . Suppose that x in U maps to a k-point y of W and that x is

an isolated in f−1(y), so the local degree degA1

x f exists. If the extension k ⊆ k(x) is separable and

f is étale at x, then

degA1

x f = Trk(x)/k〈J(x)〉,
where J denotes the Jacobian of f . A proof of this is in [KW16, Proposition 14], and this proof

relies on Hoyois’s work in [Hoy14].

Example 4.4. TrC/R〈1〉 =

[
2 0

0 −2

]
= 〈1〉 + 〈−1〉 = h, where the central expression is the Gram

matrix with respect to the R-basis {1, i} of C.

4.4. Euler class. Given an oriented vector bundle of rank r on an oriented R-manifold of dimension

r, one can define an Euler number. It is an element of Z that counts the number of zeros of a section

in the following sense: Given a section σ with an isolated zero x, we can define a local index (or

degree) of σ at x by the following procedure. First, choose local coordinates around x and a local

trivialization of the vector bundle such that both are compatible with the appropriate orientations.

With these choices, the section can be viewed as a function Rr → Rr. The index indx σ is then the

local degree of this function at x, where x is viewed as a point of Rr, by a slight abuse of notation.

The Euler number e is then

(7) e =
∑

x:σ(x)=0

indx σ,

when σ has only isolated zeros.

With Morel’s GW(k)-valued degree, this Euler number can be enriched to an element of GW(k).

Namely, one can again define a local index using the local degree and then use (7) to define

the Euler number, now an element of GW(k) [KW17]. There are subtleties involved in choosing

coordinates and identifying σ with a function, due to difficulties in defining algebraic functions.

One must then show that the Euler number is well-defined. There are other approaches avoiding

these difficulties, using oriented Chow or Chow–Witt groups of Barge and Morel [BM00]. Barge

and Morel construct an Euler class (loc. cit.) in oriented Chow and it can be pushed forward under

certain conditions to land in GW(k). See the work of Jean Fasel [Fas08] and Marc Levine [Lev17].

Morel gives an alternate construction of an Euler class using obstruction theory [Mor12, Section

8.2]. This Euler class lies in the same oriented Chow group, and will be discussed further in

Section 6.3. Some comparison results are available between these two Euler classes [AF16a] [Lev17,

Proposition 11.6]. Further approaches to defining an Euler class using A1-homotopy theory are

found in [DJK18] [LR18].
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Figure 4.
TpX ∩X ⊂ TpX

4.5. Applications to enumerative geometry. Questions in enumerative geometry ask to count

a set of algebro-geometric objects satisfying certain conditions, or more generally, to describe this

set. A classical example is the question “How many lines intersect four general lines in three

dimensional space?” The questions are typically posed so there is a fixed answer, such as “2,” as

opposed to “sometimes 2 and sometimes 0,” and to get such “invariance of number,” one needs to

work over an algebraically closed field; the number of solutions to a polynomial equation of degree n

is always n if one works over C, but not over R, and the same phenomenon appears in the classical

question quoted above about the number of lines. However, a feature of A1-homotopy theory is its

applicability to general fields k. Moreover, there are classical theorems in enumerative geometry

where a count of geometric objects is identified with an Euler number, which is then computed using

characteristic class techniques. Equipped with an enriched Euler class in GW(k), as in Section 4.4,

we may thus take these theorems and hope to perform the analogous counts over other fields.

What sorts of results appear? Here is an example taken from [KW17]. A cubic surface X is the zero

locus in P3
k of a degree 3 homogenous polynomial f in k[x0, x1, x2, x3]. It is a lovely 19th century

result of Salmon and Cayley that when k = C and X is smooth, the number of lines in X is exactly

27. Over the real numbers, the number of real lines is either 3, 7, 15, or 27, and in particular,

the number depends on the surface. A classification was obtained by Segre [Seg42], but it is a

recent observation of Benedetti–Silhol [BS95], Finashin–Kharlamov [FK13], Horev–Solomon [HS12]

and Okonek–Teleman [OT14] that a certain signed count of lines is always 3. Specifically, Segre

distinguished between two types of real lines on X = {[x0, x1, x2, x3] ∈ RP3 : f(x0, x1, x2, x3) = 0},
called hyperbolic and elliptic. The distinction is as follows. Let L be a real line on X. For every

point p of L, consider the intersection TpX ∩X of the tangent plane to the cubic surface at p with

the cubic surface itself. Since TpX is a plane, the intersection is a curve in the plane, which by

BB́ezout’s theorem has degree 3 ·1 = 3. The line L must be contained in this plane curve. Algebraic

curves can be decomposed into irreducible components, and it follows that we can express TpX ∩X
as a union TpX ∩ X = L ∪ Q, where Q is a plane curve of degree 3 − 1 = 2. Applying Bézout’s

theorem again shows that the intersection L ∩ Q of the plane curves L and Q is degree 2, or in

other words, generically consists of two points, which we call {p, q}. See Figure 4. We may thus

define an involution I : L→ L by sending p to the unique point q.

The points of the intersection L∩Q = {p, q} are precisely the points x on L such that TxX = TpX.

To see this, note that TqX contains the span of a vector along L and a vector along Q. At
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least generically, it follows that TqX contains a 2-dimensional subspace of TpX. Since TqX is 2-

dimensional (X is smooth), it follows that TqX = TpX. Similar reasoning applies in the reverse

direction as well. So we can characterize the involution I as the unique map exchanging points on

L with the same tangent space to X.

An automorphism of L ∼= RP1 is a conjugacy class of element of PGL2 R, and the elements of

PGL2 R are classified as elliptic, hyperbolic, or parabolic by the behavior of the fixed points. If

I has a complex conjugate pair of fixed points, I is elliptic, if I has two real fixed points, it is

hyperbolic, and if I has one fixed point, it is parabolic. Involutions are never parabolic. Segre

classified the line L as elliptic (respectively hyperbolic) if I is.

Another description of this distinction involves (S)pin structures. The tangent plane TpX rotates

around L as p travels along L, describing a loop in the frame bundle of P3. L is hyperbolic if this

loop lifts to the double cover, and hyperbolic if it does not.

The signed count referred to above is that

(8) #{hyperbolic lines} −#{elliptic lines} = 3.

Results which are true over C and R may be realizations of a more general result in A1-homotopy

theory. In the case of the count of lines on cubic surface, this is indeed the case: Consider a cubic

surface X over a field k. Suppose L is a line in P3
k

which lies in X. The coefficients of L determine

a field extension k(L). Moreover, the previously given definition of the involution I carries over

in this generalized situation, determining an involution I of the line, and thus a conjugacy class

in PGL2 k(L). Such a conjugacy class has a well-defined determinant det I in k(L)∗/(k(L)∗)2.

The Type of L is Type(L) = 〈det I〉 in GW(k(L)). Alternatively, the type of L may be described

as Type(L) = 〈D〉, where D is the unique element of k(L)∗/(k(L)∗)2 so that the fixed points of

the involution I are a conjugate pair of points defined over the field k(L)[
√
D]. There is a third

description of the type as Type(L) = 〈−1〉deg I the multiplication of the A1-degree of I and 〈−1〉
in GW(k(L)). The theorem of Salmon and Cayley and (8) then are realizations of the following

theorem [KW17, Theorem 1].

Theorem 4.5. Let X be a smooth cubic surface over a field k of characteristic not 2. Then∑
lines L in X

Trk(L)/k Type(L) = 15〈1〉+ 12〈−1〉.

This is proven by identifying the left hand side with the Euler class of the third symmetric power

of the dual tautological bundle on the Grassmannian of lines in P3.

Other results along these lines include [Hoy14], [Lev17], [Lev18a], [Lev18b], [Wen18], [SW18],

[BKW18], and this is an active area of research.
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5. Homotopy sheaves and the connectivity theorem

In the monograph [Mor12], Morel establishes a number of extremely strong results describing the

A1-homotopy sheaves of objects of sPre(Smk) when k is an infinite perfect field. These are sheaves

on the big Nisnevich site Smk. The assumptions on the field are probably both unnecessary, but the

literature does not currently contain proofs of certain necessary statements for finite or imperfect

fields.

The A1-homotopy sheaves πA1
i (X)—when i ≥ 1—must satisfy a strong A1-invariance property. For

all smooth k-schemes U , the map on cohomology

(9) Hn(U,πA1
i (X))→ Hn(U × A1

k,π
A1
i (X))

must be an isomorphism for all applicable n, to wit, n ∈ {0, 1} for all sheaves of groups, and

n ∈ {0, 1 . . . , } if the group is abelian. This condition is known as strong A1-invariance in the general

case, and strict A1-invariance in the case of an abelian sheaf of groups. Over an infinite perfect

field, a strongly A1-invariant sheaf of abelian groups is strictly A1-invariant, [Mor12, Theorem 5.46],

so for us the distinction is chiefly useful for defining a category of “strictly A1-invariant sheaves”,

which necessarily consist of abelian groups.

We remark that the case of n = 0 in (9) is merely A1-invariance. It is possible to give an example

of an (abelian) group that is A1-invariant but not strongly A1-invariant—for instance, if one defines

Z̃[Gm] to be the abelian group generated by the sheaf of sets Gm, modulo the relation that 1 ∈ Gm
is identified with the 0 element, then Z̃[Gm] is A1-invariant—since Gm itself is A1 invariant—but the

free strongly A1-invariant sheaf of abelian groups generated by Z̃[Gm] is KMW
1 by [Mor12, Theorem

3.37].

A sheaf of groups, G, is strongly A1-invariant if and only if it appears as an A1-homotopy sheaf

πA1
1 , since it appears as the A1-fundamental sheaf of BG. The strongly A1-invariant sheaves G are

unramified sheaves, which is to say, briefly, that G(X) is the product of G(Xα) as Xα range over the

irreducible components, and that for any dense open U ⊂ X, G(X) → G(U) is an injection which

is even an isomorphism if X −U is everywhere of codimension at least 2 in X, see [Mor12, Section

2.1]. A feature of unramified sheaves G in this sense is that G can be recovered from the values G(F )

where F ranges over fields of finite transcendence degree over k, along with subsets G(Ov) ⊂ G(F )

associated to any discrete valuation v on F , and specialization maps G(Ov)→ G(κ(v)) mapping to

the residue fields, all satisfying certain compatibility axioms, [Mor12, Section 2.1]. Most strikingly,

if G(F ) vanishes for all field extensions of k, then G = 0.

The category of strictly A1-invariant sheaves forms a full abelian subcategory of the category of

sheaves of abelian groups on Smk, being the heart of a t-structure—this appears as [Mor12, Corol-

lary 6.24].

One can rephrase the statement that the sheaves πA1
i (X) are strongly A1-invariant for i ≥ 1 as

follows: if the A1-localization map X → LA1X is a simplicial equivalence, i.e., if X is A1-local, then

the sheaves πi(X) for i ≥ 1 are strongly A1-invariant. There is a partial converse:
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Theorem 5.1. Suppose X is a pointed connected object of sPre(Smk). Then X is A1-local if and

only if πi(X) is strongly A1-invariant for all i ≥ 1.

This holds, loosely speaking, because X is A1-local if the functor Map(·, X) does not distinguish

between U and U × A1 up to homotopy. For a connected X, the calculation of maps Map(·, X)

can be reduced to the calculation of Map(·,K(πi(X), j)) for varying i, j by means of the Postnikov

tower, and strong A1-invariance of πi(X) amounts to the same thing as A1-locality of K(πi(X), j).

The result is stated as [Mor12, Corollary 6.3].

The assumption of connectivity, while it may seem mild at first, is a great inconvenience. In contrast

to classical homotopy theory, where one can generally work component-by-component, it is a feature

of the homotopy of sheaves that π0, a sheaf of sets, can be extremely complicated.

In fact, the difficulties at π0 are substantial. If X is a discrete sheaf of groups, viewed as a

space in dimension 0, then X is A1-local if and only if X is A1-invariant. If X is A1-invariant

without being strongly A1-invariant, then LA1BX cannot be (simplicially) equivalent to BX, and

so π0ΩLA1BX 6∼= π0X. In particular, BX does not have the A1-homotopy type of a delooping

of X. It follows from this that A1-homotopy theory does correspond to an ∞–topos in the sense

of [Lur09, Section 6.1]. This observation, due to J. Lurie, appears as [SO12, Remark 3.5].

As a heuristic, aside from problems at π0, results that hold in ∞-topoi (or in the “model topoi” of

C. Rezk [TV05]) can generally be expected to hold in A1-homotopy theory. For instance:

Theorem 5.2. Suppose

(10) F → E → B

is a simplicial homotopy fiber sequence in sPre(Smk) where π0(B) is A1-invariant. Then (10) is

an A1-homotopy fiber sequence.

This is a corollary of [AHW18, Theorem 2.1.5] (see also Remark 2.1.6), a development of [Mor12,

Theorem 6.53].

5.1. Contractions. The following construction appears originally in [Voe00], but applied there

only to “presheaves with transfers”. In the current context, it is due to [Mor12][Section 2.2, pp.

33–36]. Given a presheaf of groups G, define

G−1(U) = ker(G(Gm × U)
ev1−→ G(U).

Here the map is induced inclusion of U ×{1} in U ×Gm; when the presheaf is applied, this appears

as a kind of “evaluation at 1”, hence the notation. This construction is functorial in G.

The functor G 7→ G−1 is sometimes called contraction. It may be iterated, in which case one writes

G−n. The functor (·)−1 has a number of excellent properties. It restricts to give a functor of

(Nisnevich) sheaves, for instance, and it preserves the property of being abelian. It is also left exact

in general. When applied to A1-homotopy sheaves, it has the following striking description, which

appears as [Mor12, Theorem 6.13]
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Theorem 5.3 (Morel). If X is a pointed, connected A1-local space, then the (derived) mapping space

ΩGm
:= Map(Gm, X) is also pointed, connected and A1-local, and there is a canonical isomorphism

πA1
n (ΩGm

X)→ πA1
n (X)−1.

This theorem, of course, is known only for homotopy sheaves over Smk where k is a field satisfying

the running assumptions of [Mor12].

Any short exact sequence of strictly A1-invariant sheaves may be realized as the homotopy sheaves

of an A1 homotopy fiber sequence, for instance

0→ πA1
2 (K(A, 2))→ πA1

2 (K(B, 2))→ πA1
2 (K(C, 2))→ 0

and since the (derived) mapping space Map(Gm, ·) preserves homotopy fibre sequences, one deduces

that the functor A 7→ A−1 is exact on the category of strictly A1-invariant sheaves.

It is immediate that if C is a constant presheaf of abelian groups, then C−1 = 0. One might fantasize

that if G is strictly A1-invariant, then G−1 = 0 should imply that G is constant, but this is far from

the case. In fact, from the analysis furnished by [Mor12, Chapter 2] of (·)−1, one can deduce that

G−1 = 0 if and only if G is birational in the sense of converting dense open inclusions of schemes

U → X into isomorphisms G(X) → G(U). In [AM11, Section 6], a study is made of such sheaves,

and the category of all such sheaves over Smk is seen to be equivalent to a very large category of

functors on the category of field extensions of k.

5.2. Unramified K-theories. Certain groups that were previously known to be functors of fields

and field extensions are known to extend to give strictly A1-invariant sheaves on the Nisnevich site of

Smk. For instance, there is a strictly A1-invariant sheaf KQ
n such that KQ

n (F ) = KQ
n (F ), Quillen’s

K-theory—here the field extension F/k is supposed to be a separable extension of an extension

of finite transcendence degree. The sheaf KQ
n arises as πA1

n (BGLN ) for N ≥ n + 2, this being a

consequence of the representability of K-theory for smooth schemes as proved in [MV99, Theorem

3.13, p140]. Analogous constructions for hermitian K-groups are made in [ST15].

Another notable sheaf is KM
n , which can be recovered as a quotient of KMW

n , the unramified Milnor–

Witt K-theory sheaf as constructed by Morel in [Mor12, Section 3.2]. In this case, the group of

sections for a field is KM
n (F ), as defined in Section 4.

In the cases of KQ
n , KMW

n and KM
n , the phenomenon of P1-stability for the associated theories

implies (KQ
n ))−1 = KQ

n−1 and similarly for the other two theories; a proof is outlined in [AF14a,

Lemma 2.7, Proposition 2.9].

One may define Kind
3 , the cokernel of a natural map φ : KM

3 → KQ
3 . By virtue of Matsumoto’s

theorem, one knows that

(φ)−1 : KM
2 → KQ

2

is an isomorphism, so that (Kind
3 )−1

∼= 0. It is known, for instance by [MS90], that Kind
3 is

not constant, so this furnishes a specific example of a nonconstant strictly A1-invariant sheaf, the

contraction of which is 0.
27



5.3. A1-homology and the connectivity theorem. In [Mor12], Morel defines an “A1-homology

theory” HA1
n (X), by means of the following: for any simplicial (pre)sheaf X one may define Z(X),

the free abelian group on X, which one converts to a chain complex C∗(X) via the Dold–Kan

correspondence. One can take the category of (pre)sheaves of chain complexes on Smk, viewed as

a setting for homotopy theory in its own right, and then localize with respect to A1, that is, with

respect to the maps C∗ ⊗C∗(A1)→ C∗. One may now replace chain complexes C∗(X) by “abelian

A1-local replacements”—for Morel, these are the fibrant objects in the localized model category—

denoted CA1
∗ (X). The homology of such an object is HA1

∗ (X), and these homology sheaves are all

strictly A1-invariant.

This homology theory is quite distinct from the “motivic homology theory” defined by Voevodsky

[Voe00]; it is much closer to the unstable A1-homotopy theory, and little is known about it. It does

enjoy the following three properties:

(1) It is S1 stable: HA1
n+1(X ∧ S1) ∼= HA1

n (X).

(2) If F is a discrete sheaf, then HA1
0 (F) is the strictly A1-invariant sheaf freely generated by the

sheaf F , in the sense that this construction is left adjoint to an obvious forgetful functor.

(3) For any A1-simply-connected pointed object X, a Hurewicz isomorphism holds. If πA1
i (X) =

0 for i ≤ n − 1, and n ≥ 2, then a natural map πA1
n (X) → HA1

n (X) is an isomorphism. A

modification of this holds for π1, involving abelianization and “A1-strictification”. See

[Mor12, Theorems 6.35, 6.37].

It is this theory, and the properties above, that allows Morel to compute the unstable A1-homotopy

sheaves of the spheres. Specifically, provided n ≥ 2, so that πA1
n is known to be abelian & strictly

A1 invariant, then πA1
n (Sn ∧G∧mm ) is the free strictly A1-invariant sheaf generated by the set G∧mm .

That is

(11) πn(Sn ∧G∧mm ) = KMW
m

provided n ≥ 2.

Combined with further results of Morel’s on the contractions of KMW
• , one deduces

(12) πA1
n+iα(Sn ∧G∧mm ) = KMW

m−i

provided n ≥ 2 and m ≥ 1. These calculations appear as [Mor12, Remark 6.42].

The following result of Morel is known as the “unstable connectivity theorem”.

Theorem 5.4. Let n > 0 be an integer and let X be a pointed (n − 1)- connected object in

sPre(Smk). Then its A1-localization is simplicially (n− 1)-connected.
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6. Application to vector bundles

6.1. A1-classifying spaces. A recurring distinction in A1-homotopy theory is the existence of two

different notions of classifying space of an algebraic group scheme G. In both cases, one wishes to

begin with a contractible object EG on which G acts, and then to form the quotient (EG)/G. The

difference arises because there are two distinct notions of quotient.

The simplicial or Nisnevich classifying space BG is constructed by taking a contractible object

EG on which G acts freely, and then forming the quotient BG = (EG)/G in the category of

simplicial Nisnevich sheaves. Standard homotopical devices for the construction of BG, such as

found in [May75] for instance, will invariably produce this classifying space, up to homotopy.

One may produce a new space, BétG, by taking a (derived) pushforward of the pullback of BG

along the morphism of sites

(Smk)ét → (Smk)Nis,

see [MV99, Section 4.1].

The geometric classifying space, BgmG, is constructed in [MV99, Section 4.2], using what they term

an admissible gadget, which is a generalization of the construction of [Tot99]. The construction

of [MV99] applies to étale sheaves of groups over a base S, but for the sake of the exposition here,

we restrict to a reductive algebraic group G over a field k. While EG cannot be constructed as a

variety, one may construct a sequence Ui ↪→ Ui+1 of increasingly highly-A1-connected varieties on

which G acts freely and compatibly. The construction is accomplished by considering a suitable

family of larger and larger representations of G on affine spaces over k, and discarding the locus

where the action of G is not free. The quotients Ui/G may then be taken in the category of algebraic

spaces, or if one is particularly careful, in schemes, and BgmG is then defined to be the colimit

of the ind-algebraic-space {Ui/G}. The quotient that is constructed here is ‘geometric’, in that it

agrees with classically-existing notions of quotient of one variety by another, as in e.g., [MFK94];

it is also the quotient in the big site of étale sheaves. It is then the case, [MV99, Proposition 4.2.6],

that BétG is A1-equivalent to BgmG.

If G is a sheaf of étale group schemes, e.g., if G is representable, and if H1
Nis(·, G) ∼= H1

ét(·, G),

then the constructions of BétG and BG above are naturally simplicially equivalent, [MV99, Lemma

4.1.18]. In particular, in the case of the special algebraic groups of [Ser95, Section 4.1], including

GLn, SLn and Spn, all notions of classifying space considered above are A1-weakly equivalent.

In contrast, in the case of a nontrivial finite group, both BG and BétG are A1-local objects already,

[MV99, Section 4.3], and one may easily construct a G-torsor π : U → U/G where both U and U/G

are smooth k schemes but where π is not Nisnevich-locally trivial, it follows from [MV99, Lemma

4.1.8] again that for a nontrivial finite group, BG→ BétG is never an A1-equivalence.

In the study of vector bundles, or equivalently of GLn-bundles, the spaces Bgm GLn appearing

above are approximated by the ordinary Grassmanians, Grn(Ar). The notation Grn is adopted for
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the colimit as r →∞, and the A1-weak equivalences

Grn 'A1 BGLn

can be interpreted as a relation between a geometric construction on the left and a homotopical

construction on the right.

6.2. Classification of Vector Bundles. The following metatheorem lies at the heart of the ap-

plications of A1-homotopy to the classification of vector bundles:

Theorem 6.1. Let k be a sufficiently pleasant base ring, and let r ∈ N. The functor assigning to

a smooth affine k-scheme X its set of rank-r vector bundles, denoted X 7→ Vr(X), is represented

in the A1-homotopy category by the infinite Grassmannian of r-planes, Grn. That is, there is a

natural bijection of sets

(13) Vr(X)↔ MorH(k)(X,Grr).

This metatheorem was proved by Morel as [Mor12, Theorem 8.1] in the case where n 6= 2and subject

to the running assumptions of [Mor12], namely, that k be an infinite perfect field.2 Subsequently this

was vastly generalized, to the case where k is a regular noetherian ring over a Dedekind domain

with perfect residue fields—this includes, in particular, all fields—and allowing the case n = 2

in [AHW17a, Theorem 5.2.3].

We remark in passing that the restriction to smooth affine k-schemes cannot be weakened. Once

the “affine” hypothesis is dropped, the set of isomorphism classes of vector bundles is no longer A1-

invariant, and so cannot be represented in the A1-homotopy category. One can consult [AD08] for

a proof that Vr(P1)→ Vr(P1 ×A1) is not an isomorphism or that there exists a smooth quasiaffine

X 'A1 ∗ such that Vr(X) 6= Vr(∗).

One can use the metatheorem to deduce facts about Vr(X). The main computational tool is

the existence of a Postnikov tower in A1-homotopy theory; which reduces the calculation of maps

X → Grn, where X is a smooth affine variety, to a succession of lifting problems. It should be

noted that πA1
1 (Grn) ∼= Gm, and this π1 acts nontrivially on the higher homotopy sheaves of Grr,

so that the lifting problems one encounters for GLn are Gm-twisted lifting problems. The essentials

of the twisted sheaf-theoretic obstruction are set out in [AF14b, Section 6] and [Mor12, Appendix

B].

Once the obstruction theory has been set up, two related problems remain: the calculation of

πA1
i (Grn) for various values of i—including the Gm-action—and the interpretation of the resulting

lifting problems.

For the calculational problem, the following is known

An − {0} // Grn−1
// Grn

2Although the case n = 2 can presumably be proved using similar methods, the work on the subject has not been
published.
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is an A1-homotopy fiber sequence, [Mor12, Remark 8.15]. Let X = SpecA denote a smooth affine

k-scheme and let V denote a rank n vector bundle on X, i.e., a projective module. The “splitting

problem” is to determine necessary and sufficient conditions for there to be an isomorphism V ∼=
V ′ ⊕A.

6.3. The splitting problem. Since An − {0} is n − 2-connected, by results of [Mor12, Chapter

6], it follows by induction that if the dimension of d < n, then one can always split V ∼= V ′ ⊕ A.

This gives a “geometric” argument for a result of Serre, [Ser58].

More interesting is what happens when the obstruction-theory problem is not trivial for dimen-

sional reasons. The problem is slightly easier if all vector bundles appearing are assumed to

be equipped with a trivialization of their determinant bundles, so that B SLn may be substi-

tuted for Grn = BGLn. The first obstruction to the splitting problem is an Euler class class

c̃n(V ) ∈ Hn
Nis(X; KMW

n ), as calculated in [Mor12, Theorem 8.14], arising directly from the obstruc-

tion theory in A1-homotopy theory, and if the dimension of the base, d, is equal to the rank n of

the bundle, then this is the only obstruction.

Related to the above, Nori gave a definition of an “Euler class group” E(A) of a noetherian ring A,

appearing in [MS96, Section 1] and of the Euler class e(P ) of a projective module, and Bhatwadekar

& Sridharan [BS00] established that the vanishing of the Euler class is precisely equivalent to the

splitting off of a trivial summand of P . There exists a surjective map η : E(A) → C̃H
n
(SpecA),

where A is a smooth k-algebra of dimension n, [Fas08, Chapitre 17], taking one Euler class to the

other. According to recent, not yet published, work of Asok and Fasel [AF16b], the map η is an

isomorphism for smooth affine varieties over an infinite perfect field of characteristic different from

2.

6.4. Other results on vector bundles. Obstruction theory in A1-homotopy theory, applied to

the representing space for Vr, as established in (13), is a powerful technique for deducing results

about vector bundles.

The main result of [AF14b] is the following:

Theorem 6.2. Suppose X is a smooth affine 3-fold over an algebraically closed field k having char-

acteristic unequal to 2. The map assigning to a rank-2 vector bundle E on X the pair (c1(E), c2(E))

of Chern classes gives a pointed bijection

V2(X)
∼=→ Pic(X)× CH2(X).

The surjectivity of the map above had previously been established in [KM82]. The method of proof

is a calculation—at least in part—of the first three nontrivial A1-homotopy groups of GLn. Of

these, two are calculated by Morel in [Mor12]. Specifically πA1
0 (GLn) ∼= Gm, for all n ≥ 0: the

reason being that SLn is A1-connected [Mor12, 6.52], so that

1→ SLn → GLn → Gm → 1
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is an A1-homotopy fibre sequence. It is moreover split, and Gm is strongly A1-invariant, so it follows

that for n ≥ 1

πA1
i (GLn) =

{
Gm if i = 0,

πA1
i (SLn) otherwise.

It is then also possible to calculate πA1
1 (GL2) = πA1

1 (SL2) = πA1
1 (A2−{0}) ∼= KMW

2 —this belonging

in the family of calculations of πA1
n (Sn+mα) of [Mor12]—the reason the groups πA1

1 are sometimes

exceptional is that they are not known in general to be abelian, but here one is calculating a higher

homotopy sheaf of a group, so the Eckmann–Hilton argument applies and πA1
1 (SL2) is abelian.

The sheaf KM
2 relates to classical invariants of vector bundles via the “formula of Rost”:

Hn
Nis(X,K

M
n ) = Hn

Zar(X,K
M
n ) = CHn(X),

the first identity being [Mor12] and the second being [Ros96, Corollary 6.5]. For a quadratically

closed field, the result also holds for KMW
n , see [AF14b].

Knowing the first two nonvanishing homotopy sheaves ofBGL2, along with the action of πA1
1 (BGL2) =

Gm on πA1
2 , allows one to construct the second stage of the Postnikov tower, BGL

(2)
2 . The action

of Gm does have to be taken into account, so the calculation is more involved than simply the

observations

[X,BGm]A1 = Pic(X), [X,K(KMW
2 (L), 2)]A1 = CH2(X),

for a smooth X—here KMW
2 (L) is a twisted form of KMW

2 —, but over a quadratically closed field

the ultimate calculation is the same. For a 3-fold, there is no further obstruction to lifting to a

map [X,BGL2]A1 , but what there might be a priori is a choice of different liftings. The set of

such choices is H3(X,πA1
3 (BGL2)(L)), and [AF14b] shows that this is trivial over an algebraically

closed field. It is worth remarking that the sheaf πA1
3 (BGL2) in question—at least in the untwisted

form—is isomorphic to πA1
2 (S1+2α), that is, it corresponds to the stable 1-stem.

A number of results in a similar vein to the above can be established by the methods outlined.

It is a corollary of Theorem 6.2 that a rank-2 vector bundle on a smooth affine 3-fold over an

algebraically closed field has a trivial line-bundle summand if and only if c2 vanishes. In [AF15],

the generalization to dimension n is named “Murthy’s Splitting Conjecture”:

“On an affine variety of dimension n over an algebraically closed field, a rank n − 1 vector bundle admits

a trivial summand if and only if cn−1 vanishes.”

The conjecture is proved for n = 4, again by analysis of a group in the 1-stem: πA1
3 (A3 − {0}). In

spite of considerable attention, [AF13], [AF17], [AWW17], the groups πA1
n (An−{0}) have not been

calculated for n ≥ 4, and the problem remains open.

The groups GLn and SLn are the most studied groups, corresponding to the study of vector bundles,

either per se or with an orientation. Other groups have also been studied. For instance, Wendt

shows in [Wen11] that if G is a smooth split reductive group over an infinite field k, and if E → B

is a G-torsor satisfying certain local triviality conditions—local triviality in the Zariski topology
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and triviality over the basepoint of B—then the fibre sequence

G→ E → B

is an A1-homotopy fibre sequence. In [AHW18], the authors establish, again over an infinite field,

that for an isotropic reductive k group G, the functor H1
Nis(·, G) of isomorphism classes of Nisnevich-

trivial G-torsors is represented in the A1-homotopy category by BG. These results generalize to

a wide class of groups the results of Morel’s that are foundational to the study of vector bundles.

Unfortunately for the applicability of the theory, however, for many algebraic groups G of interest,

the set of torsors of interest is H1
ét(·, G) rather than H1

Zar(·, G) or H1
Nis(·, G); therefore the theory is

most interesting in the case of special algebraic groups in the sense of [Ser95]—these groups include

SLn, GLn and Spn. In [AHW17b], the same authors apply their techniques to G2, where H1
Nis(·, G2)

classifies “split octonion algebras”.

The means by which Asok–Hoyois–Wendt establish their representability result is a strong general

representability result: working over a general quasicompact, quasiseparated base scheme, and

letting F denote a presheaf such that π0(F) is an A1-invariant functor and such that F satisfies a

certain “affine Nisnevich excision” property—a Mayer–Vietoris style property—then π0(F)(U) =

[U,F ]A1 for affine S-schemes, [AHW17a, Theorem 5.1.3]. If one restricts to an infinite base field k,

then [AHW18] shows that if G is an isotropic reductive group scheme, then the simplicial classifying

space BG—or, more correctly, a Nisnevich fibrant replacement—satisfies these hypotheses.

6.5. Naive A1-homotopy. If F : Ring → Set is a functor defined on (affine) rings, or some

subcategory of rings, then it is possible to define näıve A1-homotopy classes of elements in F (R).

One considers the two evaluation maps R[t] → R given by evaluation at t = 0 and t = 1. A näıve

homotopy between a and b in F (R) is an element H ∈ F (R[t]) such that under the two evaluation

maps H 7→ a and H 7→ b. Of course, there is no reason in general to this should be an equivalence

relation, so one takes the equivalence relation generated by it.

The definition above also applies to contravariant functors on schemes, but it is on affine schemes

that it works best. When F is representable, say by a scheme X, then näıve homotopy on F(R) in

the sense above recovers the theory of equivalence classes of maps SpecR → X under the relation

generated by declaring the two restrictions of a map H : SpecR[t] → X at t = 0 and t = 1 to be

equivalent.

It is worth noting that the näıve A1-equivalence classes of maps SpecR → X are exactly the

path components of the A1 singular construction SingA1 X evaluated at R, i.e., π0(SingA1 X(R)). In

general, SingA1 X is not an A1-local object, so that näıve A1-homotopy is not the same as genuine A1-

homotopy. This is perhaps the great challenge in unstable A1-homotopy—the näıve, geometrically

appealing construction does not coincide with the genuine construction possessed of good theoretical

properties. One consequence of the work of [AHW17a], [AHW18], however, is that in a number of

cases, genuine and näıve A1-homotopy agree.

For an example where the näıve and genuine A1-homotopy classes of maps differ, we refer to [Caz08].

In this paper, the näıve A1-homotopy classes of maps P1 → P1 are calculated. In order to put this
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in context, we should mention that in [Mor12, Theorem 7.36 and Remark 7.37], Morel calculated

(14) [P1,P1]A1 = GW(k)×k×/k×2 k×.

It is to be remarked that although P1 is a motivic sphere, this calculation lies outside the main body

of calculations of self-maps of spheres, since P1 ' S1 ∧ Gm is not A1-simply-connected. The main

theorem of [Caz08] is that the näıve homotopy classes of maps of spheres make up the submonoid

of GW(k)×k×/k×2 k× corresponding to elements in GW(k) of positive degree, so that the map from

the set of näıve A1-homotopy classes of maps P1 → P1 to the set of all A1-homotopy classes is, in

fact, a group completion.

The following is a part of [AHW18, Theorem 2.3.2]. As before, the base S is quasicompact and

quasiseparated.

Theorem 6.3. Suppose G is a finitely presented smooth S-group scheme and that H is a finitely

presented closed subgroup scheme such that G/H is an S-scheme, and such that G→ G/H is Nis-

nevich locally split, and suppose that H1
Nis(·, G) and H1

Nis(·, H) are A1-invariant on affine schemes,

then for an affine scheme SpecR, the natural map

π0(SpecA
1

(G/H)(R))→ [SpecR,G/H]A1

is a bijection.

That is, for G/H, provided the source is affine, the näıve and genuine A1-homotopy classes of maps

agree. The restrictions on G, H are not perhaps as inconvenient as might be feared, since, in

contrast to the case of the étale topology, the Nisnevich cohomology H1
Nis(·, G) is liable to be A1-

invariant. In fact, in [AHW18, Theorem 3.3.6], the authors establish A1 invariance for all isotropic

reductive group schemes over infinite fields. The more severe restriction in the theorem is that

G→ G/H should be Nisnevich locally split, but nonetheless, the theorem provides a wide range of

notable spaces for which näıve and genuine A1-homotopy are the same.
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der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-

Verlag, Berlin, 1990.

[BM00] Jean Barge and Fabien Morel. Groupe de Chow des cycles orientés et classe d’Euler des fibrés vectoriels.

Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, 330(4):287–290, February 2000.

[BS95] R. Benedetti and R. Silhol. Spin and Pin− structures, immersed and embedded surfaces and a result of

Segre on real cubic surfaces. Topology, 34(3):651–678, 1995.

[BS00] S. M. Bhatwadekar and Raja Sridharan. The Euler Class Group of a Noetherian Ring. Compositio

Mathematica, 122(2):183–222, June 2000.

[Caz08] Christophe Cazanave. Homotopy classes of rational functions. Comptes rendus - Mathematique, 346(3-

4):129, February 2008.

[Del01] Pierre Deligne. Lectures on Motivic Cohomology 2000/2001. www.math.uiuc.edu/K-theory/0527, 2001.

[DHI04] Daniel Dugger, Sharon Hollander, and Daniel C. Isaksen. Hypercovers and simplicial presheaves. Math-

ematical Proceedings of the Cambridge Philosophical Society, 136(1):9–51, 2004.

[DI04] Daniel Dugger and Daniel C. Isaksen. Topological hypercovers and A1-realizations. Mathematische

Zeitschrift, 246(4):667–689, 2004.
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Math., 278/279:174–190, 1975.

[ST15] Marco Schlichting and Girja S. Tripathi. Geometric models for higher Grothendieck–Witt groups in

A1-homotopy theory. Mathematische Annalen, 362(3-4):1143–1167, August 2015.

[SW18] Padmavathi Srinivasan and Kirsten Wickelgren. An arithmetic count of the lines meeting four lines in

P3̂. arXiv:1810.03503 [math], October 2018.

37



[Tot99] Burt Totaro. The Chow ring of a classifying space. In Algebraic K-Theory (Seattle, WA, 1997), vol-

ume 67 of Proc. Sympos. Pure Math., pages 249–281. Amer. Math. Soc., Providence, RI, 1999.
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