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Fixed points of p-toral groups acting on partition complexes

Julia E. Bergner, Ruth Joachimi, Kathryn Lesh, Vesna Stojanoska,
and Kirsten Wickelgren

Abstract. We consider the action of p-toral subgroups of U(n) on the unitary

partition complex Ln. We show that if H ⊆ U(n) is p-toral and has noncon-
tractible fixed points on Ln, then the image of H in the projective unitary

group U(n)/S1 is an elementary abelian p-group.

1. Introduction

Let n denote the set {1, ..., n} and let Pn denote the nerve of the poset of
proper, nontrivial partitions of n, ordered by coarsening. In [ADL13], Arone,
Dwyer, and Lesh compute the Bredon homology of Pn for certain kinds of p-local
Mackey functors on the category of Σn-sets. The calculation is part of a program
to obtain a proof of the Whitehead Conjecture and the collapse of the homotopy
spectral sequence of the Goodwillie tower of the identity functor for S1 by using
the Bousfield-Kan cosimplicial resolution of S1. A key element in the calculation
of [ADL13] is understanding which p-subgroups H ⊆ Σn can have noncontractible

fixed point sets (Pn)
H

. It turns out that if H ⊆ Σn is a p-group and (Pn)
H

is not
contractible, then H is elementary abelian (Proposition 6.6 in [ADL13]).

In this paper, we consider the corresponding question in the unitary context,
following analogies set up by Arone and Lesh in [Aro02] and [AL07]. Let Ln
denote the nerve of the (topological) poset of proper partitions of Cn into orthogonal
subspaces, where “proper” means that we exclude the partition consisting of the
single subspace Cn itself. (See Section 2.) The action of the unitary group U(n) on
Cn induces an action on Ln. The space Ln with its U(n) action is strongly related
to the bu-analogues of symmetric powers of spheres and to the Weiss tower for the
functor V 7→ BU(V ) (see [AL07] Theorem 9.5 and [Aro02] Theorems 2 and 3).

In moving from finite group theory to compact Lie groups, one replaces the
notion of a p-group with that of a p-toral group, i.e., an extension of a finite p-
group by a torus. In this paper we study the action of p-toral subgroups H ⊆ U(n)

on Ln in order to find out when the fixed point set (Ln)
H

is contractible. We show
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that the answer is “most of the time”: the condition that (Ln)
H

is not contractible
puts considerable group-theoretic restrictions on the p-toral subgroup H.

Recall that the center of U(n) is S1, and that the projective unitary group is
defined as PU(n) = U(n)/S1. A subgroup H of U(n) is called projective elementary
abelian if its image in PU(n) is elementary abelian. Our main theorem is the
following.

Theorem 1.1. Suppose that H is a p-toral subgroup of U(n) and (Ln)
H

is not
contractible. Then H is a projective elementary abelian p-subgroup of U(n).

The organization of the paper is as follows. In Section 2, we define Ln and inves-
tigate the first nontrivial examples (n = 2, 3) directly and in detail. Section 3 does
some group-theoretic setup that is needed for studying fixed points. In Section 4,

we find a condition on H that implies contractibility of (Ln)
H

(Theorem 4.5), and
in Section 5 we prove Theorem 1.1.

Finally, in Section 6 we compute two illustrative examples of fixed points. First,
we exhibit a projective elementary abelian 2-subgroup of U(2) whose fixed points
on L2 are not contractible (Proposition 6.1), which shows that Theorem 1.1 is
group-theoretically sharp. In contrast, we also show that the same subgroup, em-
bedded in U(3), has contractible fixed points on L3 (Proposition 6.3). In future
work [BJL+], we plan to establish further restrictions on the projective abelian
p-subgroups of U(n) that can have noncontractible fixed point sets by considering
their representation theory in greater detail.

Notation and Terminology
We generally do not distinguish notation for a category and its nerve, and we

trust to context to make clear which is being discussed.
By “subgroup,” we always mean a closed subgroup. If G is a group, we write

Z(G) for the center of G and G[p] for the elements of G of order p.

Acknowledgements: The authors thank the Banff International Research Sta-
tion and the Clay Mathematics Institute for financial support, and the anonymous
referee for a helpful and thorough reading of the paper. The first and third authors
are grateful to Bill Dwyer for preliminary discussions about this project.

2. Homotopy type of Ln for small n

In this section, we give an introduction to Ln. We define and describe it in
some detail, and we look at the two lowest-dimensional examples.

The partition complex Ln is a poset category internal to topological spaces.
An object λ in Ln is a proper, unordered decomposition of Cn into nonzero, mu-
tually orthogonal subspaces v1, . . . , vm, where by proper we mean that m > 1. To
topologize the set of objects, Obj (Ln), let Grk (Cn) denote the Grassmannian of
k-planes in Cn. The set of objects of Ln is given the subspace topology

Obj (Ln) ⊆
∐
m>1

∐
k≥1

Grk (Cn)

m /Σm
 .

Note that the connected components Obj (Ln) are in one-to-one correspondence
with unordered partitions of the integer n as the sum of at least two positive
integers.
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Morphisms in Ln are given by coarsenings; that is, there is a morphism from
{v1, . . . , vm} to {w1, . . . , wm′} if and only if for each vi there exists a j such that
vi ⊆ wj . Note that between any two objects there is at most one morphism. In
particular, there is a monomorphism

Morph (Ln) ↪→ Obj (Ln)×Obj (Ln)

via the source and target maps, and accordingly we topologize the morphism space
by the subspace topology of the product topology.

Since Ln is a category internal to topological spaces, its nerve is a simplicial
space (or the realization of that simplicial space, depending on context). Simplicial
degree zero of the nerve consists simply of the space of objects of Ln. The first
simplicial degree consists of the space of morphisms, the second simplicial degree
consists of the space of composable morphisms (topologized as a subspace of the
two-fold product of the morphism space), and so forth. (See, for example, Section
5.1 of [Lib11].)

The action of U(n) on Cn induces a continuous action of U(n) on the category
Ln (i.e., the action is continuous on the space of objects and the space of mor-
phisms). Hence the nerve of Ln likewise has an action of U(n), as do the nerves of
any subcategories closed under the action of U(n). By inspection of the simplices
in the nerve of Ln, we see that

(Nerve (Ln))
H ∼= Nerve

(
(Ln)

H
)
.

To provide the reader with some intuition about Ln, at least in low dimensions,
we work out concrete information about L2 and L3. (Observe that L1 is empty,
since C has no proper partitions.) For L2, the smallest interesting example of a
unitary partition complex, we can actually find the homeomorphism type. For the
more complicated example of L3, we exhibit its homotopy type as a homotopy
pushout diagram and prove that it is simply connected (Propositions 2.2 and 2.4).

To begin our study of L2, we observe that a proper partition of C2 can only
be a partition into two orthogonal lines. Since there are no refinements and no
proper coarsenings of such a partition, the poset category of partitions of C2 has
only identity morphisms, and L2 is homeomorphic to its space of objects.

Proposition 2.1. The space L2 is homeomorphic to RP 2.

Proof. A partition of C2 is an unordered pair consisting of a line in C2 and
its orthogonal complement. The space of lines in C2 is the projective space CP 1.
Because the pair is unordered, L2 is the quotient of CP 1 by the action of the
involution that interchanges a line and its orthogonal complement.

More explicitly, note that the line spanned by (0, 1) has orthogonal complement
spanned by (1, 0) (a special case), and in general the line in C2 spanned by (1, z)
with z ∈ C\{0} has orthogonal complement spanned by (1,−1/z). Thus L2 is
homeomorphic to the quotient of S2 ∼= CP 1 ∼= C∪{∞} by the involution z 7→ −1/z
(and 0 ↔ ∞). The involution exchanges points in the region ‖z‖ > 1 with those
in the region ‖z‖ < 1, so we only need to consider the quotient of the unit disk
‖z‖ ≤ 1 by the action on the boundary circle. When ‖z‖ = 1, we can write z = eiϕ

and −1/z = −eiϕ for some ϕ ∈ R, whence the transformation is the antipodal map
on the boundary of the unit disk. We conclude that L2 is homeomorphic to the
quotient space obtained from the disk ‖z‖ ≤ 1 by identifying antipodal points on
the boundary circle, namely RP 2. �
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We now turn to L3, which is more complicated. There are two connected
components in the space of objects, corresponding to partitions of C3 into three
lines and partitions into a line and a 2-plane. The action of U(n) on Ln allows the
following explicit identification of the connected components of the object space:
the transitive action of U(n) on each connected component exhibits each component
as the homogeneous space U(n)/I once we have computed the isotropy group I of
a typical object in the component. A decomposition of C3 into a 1-dimensional
subspace v1 and its 2-dimensional orthogonal complement v2 has isotropy group
conjugate to U(1) × U(2), since an element of U(3) that stabilizes the partition
{v1, v2} must stabilize v1 and v2 individually. On the other hand, elements of the
isotropy group of a decomposition of C3 into three lines can act nontrivially on each
line, but can also permute the lines, because the lines all have the same dimension.
Hence this isotropy group is (U(1))

3 o Σ3. We conclude that the object space has
homeomorphism type[

U(3)/ (U(1)× U(2))
]
t
[
U(3)/

(
(U(1))

3 o Σ3

)]
.

We write Gr(1, 2) for the first component, and Gr(1, 1, 1) for the second.
The next task is to identify the morphism space of L3. Each connected com-

ponent of the object space gives a connected component of the morphism space
consisting of identity morphisms, so two components of the morphism space of L3

are given by Gr(1, 2) and Gr(1, 1, 1). (These components are precisely the degen-
erate simplices in simplicial dimension 1 of the nerve of L3.)

Unlike L2, the category L3 has nonidentity morphisms, given by coarsenings
from Gr(1, 1, 1) to Gr(1, 2). The action of U(3) on these morphisms is transitive, so
again we can identify the homeomorphism type of this component of the morphism
space by finding the isotropy group of a sample morphism, say the morphism

C⊕ C⊕ C −→ C⊕ C2

that takes the standard basis to itself in the natural way. There is exactly one
morphism between these objects, so for it to be fixed it is necessary and sufficient
that both the source and the target be fixed. The isotropy group I of the morphism
is therefore the intersection of the isotropy groups of the source and the target, that
is,

I =
(
U(1)3 o Σ3

)
∩
(
U(1)× U(2)

)
= U(1)×

(
U(1)2 o Σ2

)
.

Proposition 2.2. The nerve of L3 is homeomorphic to the double mapping
cylinder of the diagram

(2.3)

U(3)/I −−−−−−−→ U(3)/
(
U(1)× U(2)

)y
U(3)/

(
(U(1))

3 o Σ3

)
.

Proof. The nerve of the category L3 has nondegenerate simplices only in sim-
plicial dimensions 0 and 1, since there are no composable morphisms that do not
involve an identity morphism. Diagram (2.3) has the two connected components
of the object space of L3 in the upper right and lower left corners, and the nonde-
generate part of the morphism space in the upper left corner. The double mapping
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cylinder is homeomorphic to the realization of the simplicial space that gives the
nerve of L3. �

From Proposition 2.2, we obtain the following homotopy-theoretic result.

Proposition 2.4. The space L3 is simply connected.

Proof. We use diagram (2.3) and the Seifert-Van Kampen theorem, noting
that all of the spaces in (2.3) are path connected. To find the fundamental groups
of the corners, recall that if G is a compact Lie group with maximal torus T , then
the natural map π1T → π1G is an epimorphism (e.g., Corollary 5.17 in [MT91]).
For the fundamental group of U(3)/(U(1) × U(2)), we observe that U(1) × U(2)
contains the maximal torus of U(3) and so U(1)×U(2)→ U(3) induces a surjection
on fundamental groups. Since U(1)×U(2) is connected, we conclude from the fiber
sequence

U(1)× U(2)→ U(3)→ U(3)/(U(1)× U(2))

that the upper right corner of (2.3) is simply connected.
To find the fundamental group of the lower left corner of (2.3), we consider the

fiber sequence
U(1)3 o Σ3 → U(3)→ U(3)/

(
U(1)3 o Σ3

)
.

Just as before, we find that the map U(1)3 o Σ3 → U(3) induces a surjection on
fundamental groups. Continuing the long exact sequence in homotopy gives us

π1
[
U(3)/

(
U(1)3 o Σ3

)] ∼= π0
[
U(1)3 o Σ3

] ∼= Σ3.

A similar argument tells us that in the upper left corner of (2.3), we have

π1
[
U(3)/I

] ∼= π0I ∼= Σ2,

and the left vertical map on fundamental groups is the inclusion of Σ2 ↪→ Σ3 by
(1 2) 7→ (1) (2 3).

The Seifert-Van Kampen theorem now tells us that the fundamental group of
L3, which is the homotopy pushout of (2.3), is given by taking the free product
of the fundamental groups of the lower left and upper right, namely Σ3 and the
trivial group, and taking the quotient by the normal subgroup generated by the
fundamental group of the upper left corner, which is Σ2. But the smallest normal
subgroup of Σ3 containing Σ2 is actually Σ3 itself. We conclude that π1(L3) is
trivial. �

3. Group-theoretic results

This section is devoted to establishing preliminary group-theoretic results about
U(n) and related groups that we will need in later sections. More precisely, the goal
of this section is to establish criteria for H ⊆ U(n) that allow us to find suitable
elements of H that are central and of order p. These criteria will be needed in order
to apply Corollary 5.2 and construct contractions of fixed point spaces.

Let PU(n) denote the projective unitary group, i.e., the quotient of U(n) by
its center S1. If H is a subgroup of U(n), we use H to denote its image in PU(n),
so H ∼= H/(S1 ∩H).

We recall the following terminology from Section 3.1 of [GW98]. Let v be a
complex representation of a group G; then v splits into irreducibles as

v ∼=
⊕
k

v⊕mk

k
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where for different values of k, the corresponding irreducible representations vk are
non-isomorphic. This decomposition is not canonical; however, if we group all the
isomorphic irreducibles together into wk = v⊕mk

k , the decomposition

v ∼=
⊕
k

wk

is canonical. It is called the isotypic decomposition of v, and we call the subspaces
wk the isotypic components of v. If v has only one isotypic component, we say it is
an isotypic representation; otherwise, we say it is polytypic.

For our situation, we will usually be considering a closed subgroup H ⊆ U(n)
acting through the standard representation of U(n) on Cn. In this case we say
that H acts isotypically/polytypically or that H is isotypic/polytypic if Cn is iso-
typic/polytypic as an H-representation.

Lemma 3.1. Let Z/p be a subgroup of PU(n) and let J be its inverse image in
U(n). Then J is polytypic. In fact, a generator of Z/p ⊆ PU(n) can be lifted to an
element of order p in U(n) and J ∼= S1 × Z/p.

Proof. Let A ∈ U(n) be such that its image A ∈ PU(n) generates the given
Z/p. Then Ap is an element of the central S1 ⊆ U(n) and is a diagonal matrix
with all equal diagonal entries. Let α be some pth root of the diagonal entry of Ap.
Define B = α−1A, so Bp = Id and the image of B in PU(n) is A. Then A 7→ B
determines a homomorphism that splits the short exact sequence

1→ S1 → J → Z/p→ 1,

and since S1 is central, the map S1×Z/p→ J given by (s,A
b
) 7→ sBb respects the

multiplication in J and is an isomorphism.
It remains to show that J is polytypic. Since J is abelian, its irreducible

representations are all one-dimensional, so every element of J acts on every one-
dimensional J-irreducible summand of Cn by multiplication by a scalar. If J were
isotypic, then an element of J would have to act on every such summand by multi-
plication by the same scalar, i.e., J would be contained in S1, which is false. Hence,
J is polytypic. �

The subgroups of U(n) of greatest interest to us are the p-toral subgroups. We
begin with a definition.

Definition 3.2. A p-toral group H is an extension of a finite p-group by a
torus. In other words, there exists a short exact sequence

1→ T → H → P → 1,

where T is a torus and P is a finite p-group. If T ∼= (S1)×r, we call r the rank of
H. The torus T is the connected component of the identity of H, so we also denote
it by H0.

Lemma 3.3. Any quotient of a p-toral subgroup H by a closed normal subgroup
K is p-toral.

In particular, if H is a p-toral subgroup of U(n), then its image H in PU(n) is
also p-toral.
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Proof. Since H is p-toral, we have a short exact sequence

1→ T → H → P → 1,

where T is a torus and P is a p-group. We obtain a morphism of short exact
sequences

1 −−−−→ T −−−−→ H −−−−→ P −−−−→ 1y y y
1 −−−−→ T/(K ∩ T ) −−−−→ H/K −−−−→ Q −−−−→ 1.

The map H → H/K is surjective, as is H/K → Q, so P → Q is surjective, implying
that Q is a p-group. Further, T/(K ∩T ) is a compact connected abelian Lie group,
and so must be a torus. �

For the remainder of this section, we focus on finding certain elements of order p
in H.

Definition 3.4. For a p-toral group H, let H/p denote the quotient of H by
its normal subgroup Hp[H,H], the normal subgroup generated by p-th powers and
commutators.

For a finite group H, the subgroup Hp[H,H] may be familiar to the reader
as the Frattini subgroup of H, and H/p as the Frattini quotient of H. A p-toral
group H is elementary abelian if and only if both Hp and [H,H] are the trivial
subgroup of H, i.e., if and only if Hp[H,H], the subgroup generated by both, is
trivial. Further, H/p is an elementary abelian p-group, and the map H → H/p is
initial among homomorphisms from H to finite elementary abelian p-groups; thus
we refer to H/p as the maximal elementary abelian quotient of H.

The following lemma is the main technical tool for the proof of Theorem 1.1 in
Section 5. Part of the statement is actually Lemma 6.5 of [ADL13], for which we
have given a streamlined proof here.

Lemma 3.5. Let H be a p-toral subgroup of U(n) with image H in PU(n). If
H is nontrivial and not elementary abelian, then there exists a central element in
H of order p that lies in the kernel of H → H/p.

Proof. By Lemma 3.3, H is itself p-toral. If H is connected, then it is a
(nontrivial) torus and has at least p − 1 elements of order p. They are central in
H because the torus is abelian, and map to the identity in H/p because a torus is
p-divisible.

Suppose that H is not connected and has a nontrivial identity component H0.
Let H0[p] denote the group of elements of H0 that have order p. The conjugation
action of H on itself preserves H0[p], while H0 acts trivially on H0[p] since H0 is
abelian, so we get an action of H/H0 on H0[p]. By assumption H0 is nontrivial,

so the set H0[p] has prank(H0) > 1 elements. The nontrivial p-group H/H0 fixes
the identity element in H0[p], so by the orbit decomposition of H0[p], there exist
at least p− 1 other elements of H0[p] fixed by H/H0. These elements are in Z(H),
and because H0 is a torus and is p-divisible, we know they also map to the identity
in H/p.

Now suppose that H is not connected and has trivial identity component, i.e.,
H is a finite p-group. Since H is not elementary abelian, the subgroup H

p
[H,H] is
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a nontrivial subgroup of H, and it is also normal. But a nontrivial normal subgroup
of a finite p-group must have nontrivial intersection with the center, and this gives
the required element. �

4. Conditions for contractibility of the fixed point sets

In this section, we turn to Ln for a general n and establish preliminary criteria
for the action of a subgroup H ⊆ U(n) on Ln to have a contractible fixed point
set (Proposition 4.2 and Theorem 4.5). We begin with some terminology and
notation. We often think of an object λ in Ln as given by the equivalence classes
of an equivalence relation ∼λ on Cn \ {0}, where x ∼λ y if x and y are in the
same subspace of the partition λ. We therefore denote the set of subspaces of the
partition λ by cl(λ) := {v1, . . . , vm}.

Definition 4.1.

(1) A partition λ is weakly fixed by H, or weakly H-fixed if x ∼λ y implies
hx ∼λ hy for all h ∈ H. That is, the action of H on Cn stabilizes
cl(λ) as a set, although H may permute the elements of cl(λ) nontrivially.
We denote the full subcategory of Ln whose objects are weakly H-fixed

partitions of Cn by (Ln)
H

.
(2) A partition λ is strongly fixed by H, or strongly H-fixed, if x ∼λ hx for

all x ∈ Cn\{0} and all h ∈ H. That is, the action of H on cl(λ) is trivial.
We denote the full subcategory of Ln whose objects are strongly H-fixed

partitions of Cn by (Ln)
H
st .

(3) A strongly H-fixed partition λ is called H-isotypic if each element of cl(λ)
is an isotypic representation of H. We denote the full subcategory of

H-isotypic partitions by (Ln)
H
iso.

We observe that
(Ln)

H
iso ⊆ (Ln)

H
st ⊆ (Ln)

H
,

and that in general the containments are strict. We are interested in conditions

under which (Ln)
H

is contractible.

Proposition 4.2. Let H ⊆ U(n) be connected and polytypic. Then (Ln)
H

is
contractible.

Remark. Proposition 4.2 is not actually used directly in the proof of Theo-
rem 1.1. We nonetheless include it as it may be of independent interest, and it
provides an uncomplicated exemplar of our methods.

Proof. The action of H on the elements of cl(λ) for λ ∈ (Ln)
H

defines a
continuous map

H → Σcl(λ)

from H to the symmetric group on cl(λ). Since H is connected and Σcl(λ) is discrete,
this map is trivial. Thus any weakly H-fixed partition must be strongly H-fixed,

and it is sufficient to prove that (Ln)
H
st is contractible.

A strongly H-fixed partition is a decomposition of Cn into representations
of H. Each of these representations can in turn be decomposed into its isotypic

components as an H-representation, which defines a functor φ : (Ln)
H
st → (Ln)

H
iso.

There is also a natural transformation of the composite

(Ln)
H
st

φ−−→ (Ln)
H
iso ↪→ (Ln)

H
st
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to the identity functor on (Ln)
H
st , while the other composition is actually equal to

the identity. It follows that (Ln)
H
st is homotopy equivalent to (Ln)

H
iso. However,

H is polytypic, so the decomposition of Cn into isotypic components is a proper

partition of Cn. This partition is a terminal object of (Ln)
H
iso, whence (Ln)

H
iso is

contractible. �

Recall that any partition λ in Ln corresponds to an equivalence relation on
points of Cn \ {0}, and x ∼λ y if x and y are in the same subspace of the partition
λ. We now define another, coarser equivalence relation which incorporates the
group action.

Definition 4.3. Let J ⊆ U(n) be a subgroup, and let λ be an element of Ln
corresponding to the relation ∼λ. We define a new equivalence relation ∼(λ/J) by
x ∼(λ/J) y if there exists j ∈ J such that x ∼λ jy, and we denote the associated
partition by (λ/J).

In other words, the partition (λ/J) is the minimal coarsening of λ that is
strongly fixed by J .

Lemma 4.4. Let J be a normal subgroup of H and let λ ∈ (Ln)
H

. Assume

that (λ/J) is a proper partition of Cn. Then (λ/J) ∈ (Ln)
H

.

Proof. We want to show that (λ/J) is weaklyH-fixed. Let h ∈ H and suppose
that x ∼(λ/J) y. By definition of (λ/J), there exists some j ∈ J such that x ∼λ jy.

Since λ is fixed by H, we have hx ∼λ hjy =
(
hjh−1

)
hy. Since J is normal in H,

the element hjh−1 is in J , so hx ∼(λ/J) hy. �

We now bring these results together to give conditions under which (Ln)
H

is
contractible.

Theorem 4.5. Let H ⊆ U(n), and let J be a normal subgroup of H such

that for every λ ∈ (Ln)
H

, the partition (λ/J) is a proper partition of Cn. If J is
polytypic, then

(Ln)
H ' (Ln)

H ∩ (Ln)
J
iso

and (Ln)
H

is contractible.

Proof. Under our assumptions and by Lemma 4.4, the assignment λ 7→ (λ/J)
defines a functor

(Ln)
H → (Ln)

H ∩ (Ln)
J
st .

Since (λ/J) is a coarsening of λ, there is a natural transformation from the identity

functor on (Ln)
H

to the composite

(Ln)
H → (Ln)

H ∩ (Ln)
J
st ↪→ (Ln)

H
,

showing that the induced composite map on classifying spaces is homotopic to the

identity. Since for λ in (Ln)
H ∩ (Ln)

J
st, we know (λ/J) = λ, it follows that the map

on classifying spaces induced by the functor λ 7→ (λ/J) is a deformation retraction,
giving a homotopy equivalence

(4.6) (Ln)
H ' (Ln)

H ∩ (Ln)
J
st .

Next, we show that (Ln)
H ∩ (Ln)

J
iso ↪→ (Ln)

H ∩ (Ln)
J
st is a homotopy equiva-

lence. Suppose that λ ∈ (Ln)
H ∩ (Ln)

J
st, and construct a new partition λ̃ by taking
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each v ∈ cl(λ), and refining it into its J-isotypic components. We claim that λ̃ is

weakly fixed by H. Indeed, suppose the refinement λ̃ of λ has cl(λ̃) = {vi}i∈I with
⊕kvik = vi and all of the vik are irreducible and isomorphic as representations of
J . Let h ∈ H and j ∈ J be arbitrary, and let x be an element of vik . Then

jhx = hh−1jhx = hj′x,

for some j′ in J . But j′x is an element of vik . Thus we conclude that hvik is a
representation of J .

Since vik is a J-representation, there is a corresponding map ρik : J → GL(vik)
from J to the linear automorphisms of vik . Define ρhik : J → GL(vik) by ρhik(j) =

ρik(h−1jh). Since

jhx = h(h−1jh)x = hρhik(j)x,

the map x 7→ hx defines an isomorphism from the representation determined by
ρhik to hvik . Since ρik is irreducible, so is ρhik . Thus hvik is irreducible. Moreover, if

vik is isomorphic to vik′ , then the representations corresponding to ρhik and ρhik′ are
isomorphic as well, whence hvik is isomorphic to hvik′ . It follows that hvi = ⊕khvik
is J-isotypic.

Since h fixes λ, we have that h permutes the elements of cl(λ). Let w ∈ cl(λ),
and let hw ∈ cl(λ) denote its image. The previous paragraph shows that h maps
the J-isotypic components of w to the J-isotypic components of hw. It follows that
H fixes the refinement of λ into its J-isotypic components as claimed.

The original partition λ is a coarsening of λ̃, so there is a natural transformation
from the composite

(Ln)
H ∩ (Ln)

J
st → (Ln)

H ∩ (Ln)
J
iso ↪→ (Ln)

H ∩ (Ln)
J
st

to the identity functor on (Ln)
H ∩ (Ln)

J
st. If λ is in (Ln)

H ∩ (Ln)
J
iso, then λ̃ = λ,

so the map on classifying spaces induced by the functor λ 7→ λ̃ is a deformation
retraction, giving a homotopy equivalence

(4.7) (Ln)
H ∩ (Ln)

J
st ' (Ln)

H ∩ (Ln)
J
iso .

The homotopy equivalences in equations (4.6) and (4.7), taken together, establish
the weak equivalence required in the theorem.

It remains to show that (Ln)
H ∩ (Ln)

J
iso is contractible. Since we are assuming

that J is polytypic, the decomposition µ of Cn into the isotypic components of J

is a proper partition and is terminal in (Ln)
J
iso. The partition µ is also in (Ln)

H
,

by the same argument we used above to prove that the refinement of any λ into its
J-isotypic components was weakly fixed by H.

Thus µ is a terminal element in (Ln)
H ∩ (Ln)

J
iso showing that this category has

contractible classifying space, as desired. �

5. Proof of the main theorem

In this section, our goal is to use the results of the previous sections to prove
Theorem 1.1. Let H be a p-toral subgroup of U(n) and let H be its image in
PU(n). Our plan is to pick out an appropriate element of order p in H, lift it to
U(n) using Lemma 3.1, and then use Theorem 4.5.
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Lemma 5.1. Let H ⊆ U(n) be a subgroup with H its projection to PU(n), and
suppose there exists a subgroup V ∼= Z/p of H such that

V ⊆ ker
(
H → H/p

)
.

Then V does not act transitively on cl(λ) for any weakly H-fixed partition λ of Cn.

Proof. Let λ be an object of (Ln)
H

. Since V ⊆ H, it follows that V permutes
the elements of cl(λ). We claim this permutation is not transitive. Assume the
contrary. As λ is a proper partition, it follows | cl(λ)| > 1, so | cl(λ)| = p. We
choose a bijection cl(λ) ∼= {1, 2, . . . , p} such that the image of V under the resulting
map H → Σp is generated by the p-cycle (1, 2, . . . , p).

As H is p-toral, its image under the map H → Σp is a p-group. By the

assumption that V permutes the elements of cl(λ) transitively, the image of H
must contain the subgroup Z/p ⊆ Σp generated by (1, 2, . . . , p). This subgroup

is a maximal p-subgroup of Σp, which forces the image of H to be contained in

Z/p. Therefore H → Σp factors through H → H/p. Because the restriction to
V is nontrivial, the existence of this factorization contradicts the assumption that
V ⊆ ker

(
H → H/p

)
. We conclude that V cannot act transitively on cl(λ), thus

proving the lemma. �

Corollary 5.2. Let H, H, and V be as in Lemma 5.1, and suppose further

that V is normal in H. Then (Ln)
H

is contractible.

Proof. Let J be the inverse image of V in H; by Lemma 3.1, we know that
J is polytypic. By Lemma 5.1, V does not act transitively on cl(λ) for any weakly
H-fixed partition λ, and since the action of J on Ln factors through V , we conclude
that J has the same property. Since V is normal in H, its inverse image J is normal

in H, so it follows that J and H satisfy the conditions of Theorem 4.5. Hence (Ln)
H

is contractible. �

We now have all the ingredients needed for the proof of our main theorem.

Theorem 1.1. Suppose that H is a p-toral subgroup of U(n) and (Ln)
H

is not
contractible. Then H is a projective elementary abelian p-subgroup of U(n).

Proof. Let H be a p-toral subgroup of U(n). Assume that H is not a finite,

elementary abelian p-group; then we want to prove that (Ln)
H

is contractible.
Since H is necessarily nontrivial, by Lemma 3.5 there exists

V ∼= Z/p ⊆ Z(H) ∩ ker
(
H → H/p

)
.

Thus we have V /H that satisfies the hypotheses of Lemma 5.1 and Corollary 5.2,
and the theorem follows. �

6. Examples

In this section we consider p = 2 and compute two examples of fixed point

sets (Ln)
H

where H is a projective elementary abelian p-group. We first consider

an example H ∼= Z/2 ⊆ U(2) acting on L2, and the fixed points (Ln)
H

turn out
not to be contractible (Proposition 6.1). This example shows that Theorem 1.1 is
group-theoretically sharp: there exist projective elementary abelian p-groups with
noncontractible fixed point sets. The second example is H ′ ∼= Z/2 ⊆ U(3) acting on
L3. In this case the fixed point set turns out to be contractible (Proposition 6.3),
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illustrating that not all projective elementary abelian p-subgroups have noncon-
tractible fixed point sets. In [BJL+], we will establish further restrictions of a
representation-theoretic nature that narrow down the p-toral subgroups of U(n)
that can have noncontractible fixed point sets on Ln.

First we compute fixed points on L2. Let H ∼= Z/2 ⊆ U(2) be the subgroup

generated by τ ∈ U(2) represented by the matrix

[
0 1
1 0

]
.

Proposition 6.1. The fixed point space (L2)
H

is homeomorphic to the space
S1 t ∗.

To prove Proposition 6.1, we set up a little notation. Let Lz denote the line in
C2 spanned by (1, z), and let L∞ denote the line spanned by (0, 1). We saw in the
proof of Proposition 2.1 that the set of objects in L2 consists of pairs {Lz, L−1/z}
where z ∈ C\{0}, together with one extra point {L0, L∞}. Since τ ∈ U(2) ex-
changes the standard basis vectors of C2, if z ∈ C\{0} then τ (Lz) = L1/z, and τ
exchanges L0 and L∞.

Lemma 6.2. As a set, the fixed points of the action of τ on L2 consist of
the point {L1, L−1}, the point {L0, L∞}, and the set of points {Lir, L−i/r} where
r ∈ R\{0}.

Proof. Direct computation establishes that the points of L2 in the statement
of the lemma are in fact fixed by τ .

Points in L2 besides {L0, L∞} have the form {Lz, L−1/z} where z ∈ C\{0}.
If such a point is fixed by τ , then either each line in the pair is fixed by τ (the
partition is strongly fixed), or else the lines are interchanged by τ (the partition is
only weakly fixed). In the first case, since τ (Lz) = L1/z, we must have z = 1/z, so
z = ±1, corresponding to the point {L1, L−1}. In the second case, we must have
1/z = −1/z, meaning z = −z, so z is purely imaginary, say z = ir for r ∈ R\{0}.
Thus {Lz, L−1/z} has the form {Lir, L−i/r}. �

Proof of Proposition 6.1. To determine the fixed point set of the action
of τ on L2 as a topological space, and not just as a set (as in Lemma 6.2), we recall
from the proof of Proposition 2.1 that L2 can be identified as the quotient space
of the disk ‖z‖ ≤ 1 in C1 by the antipodal action on the boundary circle ‖z‖ = 1.
According to Lemma 6.2, the fixed points of τ correspond to the points of the unit
disk that lie on the imaginary axis, {ir | r ∈ [−1, 1] ⊆ R}, together with the real
points 1 and −1. The points 1 and −1 are identified by passing to L2, as are the
points i and −i, which gives S1 t ∗ as the fixed point space of τ acting on L2. �

Proposition 6.1 gives an example of a Z/2 ⊆ U(2) that acts with noncontractible
fixed point set on L2. However, when we take the same subgroup and embed it in
U(3), we get a different result. Let H ′ ∼= Z/2 ⊆ U(3) be the subgroup generated
by

τ ′ =

0 1 0
1 0 0
0 0 1

 ∈ U(3).
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Proposition 6.3. The fixed point space (L3)
H′

is contractible.

Proof. We use essentially the proof of Theorem 4.5, slightly modified.
First, we assert that if λ is weakly fixed by H ′, then the partition (λ/H ′)

described in Definition 4.3 is a proper partition of C3. There are two cases: either
cl(λ) consists of three lines, in which case H ′ ∼= Z/2 cannot act on it transitively,
or else λ has one line and one two-dimensional subspace, in which case H ′ cannot
interchange them because they have different dimensions. As a result, the inclusion

(L3)
H′

st ↪→ (L3)
H′

has a functorial retraction λ 7→ (λ/H ′), and induces a homotopy equivalence.
Exactly as in the proof of Theorem 4.5, we note that

(L3)
H′

iso ↪→ (L3)
H′

st

also has the functorial retraction that takes an object λ in (L3)
H′

st to its refinement
into H ′-isotypic classes. Therefore each of the inclusions

(L3)
H′

iso ↪→ (L3)
H′

st ↪→ (L3)
H′

induces a homotopy equivalence.

To finish the proof we need to identify the homotopy type of (L3)
H′

iso . The
action of τ ′ on C3 has eigenvalues 1 (with multiplicity 2) and −1. Therefore H ′

acts polytypically on C3, and (L3)
H′

iso has a final object consisting of the canonical
decomposition of C3 into isotypic representations of H ′:

µ = {{(u, u, v)|u, v ∈ C}, {(u,−u, 0)|u ∈ C}}.

We conclude that (L3)
H′
' (L3)

H′

st ' (L3)
H′

iso ' ∗. �
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