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Let f : Rn ! Rn be a C1-function with an isolated zero at the origin. Recall that
the local degree deg0 f of f at zero is defined as

deg0 f = deg( @B(0, ✏)
f/|f | // @B(0, 1) ) 2 Z,

where ✏ > 0 is chosen su�ciently small. The Signature Formula of Eisenbud-
Levine/Khimshiashvili [1] [3] gives a formula for deg0 f as the signature of the
following real symmetric bilinear form. DefineQ0(f) = R[[x1, . . . , xn

]]/hf1, . . . , fni
where f

i

denotes the ith coordinate projection of f . Let J = det( @fi

@xj
). Choose a

R-linear function ' : Q0(f) ! R such that '(J) > 0. Define

h, i
'

: Q0(f)⇥Q0(f) ! R
h, i

'

(g, h) = '(gh).

Theorem. (Eisenbud-Levine/Khimshiashvili Signature Formula)

deg0 f = signature h, i
'

The complex analogue of their theorem was proven earlier by Palamodov. When
f is analytic, and hence has a complexification f ⌦ C, Palamodov proved

Theorem. (Palamodov)

deg0 f ⌦ C = rank h, i
'

.

For an arbitrary field k and a polynomial function f , let

Q0(f) = k[x1, . . . , xn

]m0/hf1, . . . , fni,
where m0 = hx1, . . . , xn

i, and choose ' to be k-linear such that '(J) = dim
k

Q0(f).
In positive characteristic, assume that dim

k

Q0(f) is finite and if this dimension
is divisible by the characteristic, J is replaced by a distinguished socle element E
with '(E) = 1. The isomorphism class of h, i

'

does not depend on the choice of
'.

Eisenbud wrote an AMS Bulletin article about this work [2], and the article
ends with some questions. Question 3 [2, p. 763-764] is

I would propose that the degree of a finite polynomial map f :
kn ! kn, where k is an arbitrary field of characteristic 0 be defined
to be the equivalence class of the quadratic form h, i

'

on the local
ring of f at 0. . . . There is really no reason to stick to characteristic
0 for all this, . . . The question is, does this idea of degree have some
other interpretation (or usefulness), for example in cohomology
theory, as in the case of R or C
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We answer this question “yes:” h, i
'

is the local degree from Morel-Voevodsky’s
A1-homotopy theory [5], appearing before A1-homotopy theory itself.

Theorem 1. (Kass, W.)

degA
1

0 f = h, i
'

About the left hand side: Morel’s degree homomorphism in A1-homotopy theory
over a field k takes an endomorphism of a sphere to an element of the Grothendieck
Witt group GW(k) of k. This group is the group completion of the semi-ring
of isomorphism classes of non-degenerate symmetric bilinear forms over k. The
above equality is in GW(k). Morel’s construction is compatible with the Z-valued
topological degree: when we have an embedding k ,! C, the topological degree

of the C-points of a map is the rank of the bilinear form degA
1

; the topological
degree of the R-points of a map is the signature. (Note the compatibility with the
Signature Formula, Palamodov’s Theorem and Theorem 1.)

Theorem 1 is proven by reducing to the étale case, where both sides are com-
puted to be equal. To do the reduction, both sides are shown to be unchanged
when f is modified by an n-tuple of polynomials in a su�ciently high power of the
maximal ideal. We modify f in this way to be able to extend it to an endomor-
phism G (satisfying certain conditions) of the sphere Pn/Pn�1 in A1-homotopy
theory. We show that h, i

'

has certain properties of a local degree, namely that
there is a global degree which is a sum of local degrees over points of G�1(x) with
x 2 An = Pn � Pn�1, making this sum independent of x. We can now check the
equality of global degrees using an x so that G is étale at every point of G�1(x).
When there is no such rational x, we take an odd-degree field extension, which
induces an injection on GW.

As an application, we enrich Milnor’s equality between the local degree of the
gradient of a complex hypersurface singularity and the number of nodes into which
the singularity bifurcates [4]. Classically, this common integer is the Milnor num-
ber µ. We enrich this to an equality in GW(k). Specifically, let k be a field of
characteristic not 2, and let g 2 k[x1, . . . , xn

] define a hypersurface with an isolated
singularity at 0.

A node is a hypersurface singularity isomorphic to x2
1 + . . .+ x2

n

over ks where
ks denotes the separable closure of k. Over non-separably closed fields, nodes
contain arithmetic information. For example, the isomorphism type of the node
of x2

1 + ax2
2 = 0 depends on the value of a in k⇤/(k⇤)2. We encode some of this

information in a bilinear form. Let hai denote the element of GW(k) represented
by the rank 1 bilinear form (x, y) 7! axy for x,y in k. Define the arithmetic

type of x2
1 + ax2

2 = 0 to be hai in GW(k). More generally, for g = 0 defining a
node at a rational point p, define the arithmetic type to be hHi, where H is the
Hessian H = det( @fi

@xj
(p)) evaluated at p. Using descent data, one also defines the

arithmetic type when x is not assumed to be rational. (When k is a finite field,
we explain the definition later.)

For general (a1, ..., an) 2 An

k

(k), the family

g(x1, . . . , xn

) + a1x1 + · · ·+ a
n

x
n

= t
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over line with coordinate t contains only nodal fibers as singular fibers, and writing
these nodes as p

i

2 X
i

, we have:

Theorem 2. (Kass, W.) Suppose grad g is finite and has only the origin as an

isolated zero. Then

(1) µA1

(g) =
X

arithmetic type(p
i

) 2 X
i

in GW(k), where

µA1

g = degA
1

0 grad g

and is called the A1-Milnor number.

Let us now analyze Theorem 2 in the special case where k = F
q

is a finite
field of characteristic p 6= 2. Describing nodal fibers over a finite field is especially
tractable because the structure of a finite field is so simple. The stable isomorphism
class of a nondegenerate symmetric bilinear form is determined by its rank and
discriminant. Furthermore, the discriminant is an element of k⇤/(k⇤)2, which is a
2 element group that we write as

F⇤
q

/(F⇤
q

)2 = {1, u
q

} for some u
q

2 F⇤
q

.

In particular, there are two possibilities for the arithmetic type of a node at the
origin:

the arithmetic type h1i of x2 + y2 and(2)

the arithmetic type hu
q

i of x2 + u
q

y2.(3)

However, not every collection of nodes {x
i

2 X
i

} satisfying Equation (1) can be
realized as the singular fibers of a family. For the example, the equation f(x, y) =

y3 + x4 of the E6 singularity over k = F5 satisfies µA1

(f) = 3 · H. We have
3·H = 6·h1i in GW(F5), but there does not exist an (a, b) such that the associated
family has 6 fibers with arithmetic type h1i because A1

F5
(F5) only has 5 < 6

elements.
We describe the configurations of nodes occurring in families associated to the

singularities in Table 1 for some small finite fields. Table 1 should be read as
follows. The equation in the second column is the equation of an isolated plane
curve singularity, and over the algebraic closure, that singularity is isomorphic
to an ADE singularity, specifically the singularity with the name in the first col-
umn. The A1

-Milnor number of the equation is given in the third column. The
discriminant, considered as an element of k⇤/(k⇤)2, is listed in the fourth col-
umn. The rank of A1-Milnor number is the integer appearing in the first column
(so e.g. for the D4 singularity, the rank is 4). In the table, H = h1,�1i is the class
of the standard hyperbolic space.

Consider the possible nodal fibers of the family A2
k

! A1
k

defined by f(x, y) +
ax + by = t. Thus suppose that x0 2 X

t0 is a node of the fiber over the closed
point t0 2 A1

k

. As was mentioned earlier, if x0 2 X0 has residue field equal to k,
then the arithmetic type is the value of the Hessian of f at x0.
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Table 1. Some singularities over k = F
q

, q = pn for p > 5 with
A4 and otherwise p > 3

Name Equation A1
-Milnor number Discriminant

A2 y2 + x3 H �1
A3 y2 + vx4, v 2 k⇤ h2 · vi+H �2 · v
A4 y2 + x5 2 ·H 1
D4 x2y + xy2 h�2, 2 · 3i+H 3
E6 x4 + y3 3 ·H �1

In general, the definition of the arithmetic type is more subtle. Colloquially,
x0 2 X

t0 corresponds to a Galois orbit of nodes (over, say a large field extension),
and if the common arithmetic type of these nodes is ↵, then the arithmetic type
of x0 2 X

t0 is the Scharlau trace Tr
L/k

(↵).
More formally, suppose first that k(t0) = k but k(x0)/k is a nontrivial extension,

say k(x0) = L. Then X
t0 ⌦

k

L has finitely many nodes mapping to x0, say
ex1, . . . , exn

2 X
t0 ⌦

k

L. Each of these nodes has residue field L, and a node’s
arithmetic type (over L) is computed as the class of a Hessian. Moreover, the ex

i

’s
are transitively permuted by the Galois group Gal(L/k), so any two nodes have
the same type, say ↵ 2 GW(L). We then have

the arithmetic type of x0 2 X
t0 = Tr

L/k

(↵).

Here Tr
L/k

: GW(L) ! GW(k) is the Scharlau trace.
The most general case is where k(t0) is a nontrivial extension, say L. In this

case, t0 corresponds to a Gal(L/k)-orbit of fibers eXe
t1
, . . . , eXe

tm
that are transitively

permuted by the Galois group. Each of the points et1, . . . ,etm has residue field L,
so the arithmetic type of a node of eXe

ti
is defined as in the previous paragraph.

Fixing one fiber, say eXe
t1
, and defining ↵ 2 GW(L) to be the sum of the arithmetic

types of the nodes of eXe
t1

that map to x0, we have

the arithmetic type of x0 2 X
t0 = Tr

L/k

(↵).

For given k = F
q

, f(x, y) 2 k[x, y], a, b 2 k, the arithmetic types of the nodal
fibers of f(x, y) + ax + by = t can be computed using Gröbner basis techniques.
For example, consider the family x2y�xy2+2x+y = t over k = F17. The singular
fibers are the fibers over the points of the closed scheme defined by k[t]\(f(x, y)+
ax + by � t, @f

@x

+ a, @f

@y

+ b). A Gröbner basis computation shows that this ideal

is generated by d(t) = t4 + 14, an irreducible polynomial. In L := k[r]/t4 + 14,
a second Gröbner basis computation shows that X

t1 has a node at the point
(4r3 + 5r, 9r3). The value of the Hessian at this point is 4r2 = 1 in L⇤/(L⇤)2. We
conclude that the nodal fibers of the family consists of a Galois orbit of 4 fibers,
each with a single node of type h1i 2 GW(L). Table 2 was generated by similar
computations.

The table should be read as follows. The first column describes a singularity

from Table 1. For a given singularity, the possible singular fibers of a family
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f(x, y) + ax + by = t with only nodal fibers are listed in the second column.
The last column is the count of the (a, b)’s that define a family with singular fibers
as described by the corresponding entry in the second column. (E.g. for the A2

singularity over k = F5, there are 5 elements (a, b) 2 A2
k

(k) s.t. f(x, y)+ax+by = t
has 2 nodal fibers, each with a node of type h1i.)
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Table 2. Possible singular fibers of a family

Singularity Nodal fibers Count

A2 with k = F5 1 orbit of 2 fibers of type hup2i 10
2 fibers of type hupi 5
2 fibers of type h1i 5
Total 20

A2 with k = F7 1 orbit of 2 fibers of type h1i 21
1 fiber of type h1i, 1 fiber of type hupi 21
Total 42

A3 with k = F5, v = 1 1 fiber of type h1i, 1 orbit of 2 fibers of type h1i 20
Total 20

A3 with k = F5, v = 2 1 node of type hupi, 1 orbit of 2 fibers of type h1i 20
Total 20

A3 with k = F7, v = 1 1 orbit of 3 fibers of type hup3i 28
3 nodes of type hupi 14
Total 42

A3 with k = F7, v = �1 3 fibers of type h1i 14
1 orbit of 3 fibers of type h1i 28
Total 42

A4 with k = F7 1 type h1i fiber, 1 type hupi fiber, 1 orbit of 2 type h1i fibers 21
2 orbits of 2 fibers of type h1i 21
Total 42

D4 with k = F5 1 orbit of 4 fibers of type h1i 12
1 orbit of 2 fibers of type h1i, 2 fibers of type h1i 2
2 fibers of type hupi, 1 fiber of type TrFp2/Fp(h1i) 6

1 orbit of 2 fibers of type h1i, 1 fiber of type h1, 1i 4
Total 24

E6 with k = F5 1 fiber of type TrFp2/Fp(hupi), 2 orbits of 2 fibers of type hup2i 4

2 fibers of type h1i, 2 orbits of 2 fibers of type h1i 4
2 fibers of type hupi, 2 orbits of 2 fibers of type h1i 4
3 orbits of 2 fibers of type hup2i 4
Total 16


