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1 Introduction

The aim of this paper is to use computer program to generate and classify Legendrian
knots and links. Modifying the algorithm in [11], we write a program in Java to generate
all grid diagrams of up to size 10. Since classification of Legendrian links up to Legendrian
isotopy is equivalent to grid diagrams modulo a set of Cromwell moves including translation,
commutation and 𝑋:NE,𝑋:SW (de)stabilization [17], we can identify two grid diagrams and
check whether they represent the same Legendrian link.

We also use various topological, Legendrian and transverse invariants for knots and
links to distinguish Legendrian knots and links generated by the algorithm. Since classical
Legendrian invariants are not enough for classification, we use several non-classical ones such
as graded ruling invariant and linearized contact homology. To refine our result even further,
we use several techniques such as the Chekanov-Eliashberg differential graded algebra (DGA)
[13] and knot Floer homology [15].

The main result of this paper consists of two atlases, a Legendrian knot atlas (table 1)
and an atlas for unoriented Legendrian two-component links (table 3). We also provide a
transverse knot atlas (table 2), which can be inferred from the Legendrian knot atlas. In the
Legendrian knot atlas, we give information on grid diagram, Thurston-Bennequin number,
rotation number, polynomials for graded ruling invariant and linearized contact homology
for each Legendrian knot with knot type of arc index up to 9. For each knot type, we also
provide conjecture for its mountain range.

The Legendrian knot atlas also illustrates several interesting phenomena such as unusual
mountain ranges for 10161, 𝑚(10139) and 𝑚(12𝑛242), and transversely non-simple knots for
𝑚(10145), 𝑚(10161) and 12𝑛591. The later group is depicted in their mountain ranges as
Legendrian knots whose Thurston-Bennequin number is not equal to the maximal Thurston-
Bennequin number of their knot type but are not stabilization of any Legendrian knots. Prior
to this paper, such phenomenon was found only in knots with very large number of crossings.

The atlas for unoriented Legendrian two-component links also gives information on grid
diagram, Thurston-Bennequin number and rotation number for each unoriented Legendrian
link with link type of arc index up to 9. We also give information on whether its two
components can be switched via topological isotopy and conjecture on whether they can
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be switched via Legendrian isotopy. For each link type, we also provide conjecture for its
Thurston-Bennequin polytope [1]. Our result can answer the question posted by Baader
and Ishikawa in [1] that whether the tb polytope can always be described by the three linear
inequalities.

2 Knots and Links

In mathematics, a knot is a simple closed curve in 3-dimensional Euclidean space, ℝ3. One
can simply think of knot as one piece of string with its ends glued together. Formally, we
can define a knot as follows.

Definition 1. A knot is a smooth embedding 𝐾 : 𝑆1 → ℝ
3. Two knots are equivalent (or

topological isotopic) if they are ambient isotopic.

In other word, two knots are equivalent if one can continuously deform to the other
without brreaking or intersecting itself. We call an equivalence class of knots a knot type.
Some simpler knot types are well-studied and have names such as “trefoil knot” and “the
figure-eight knot”.

We usually represent knots by their immersion on ℝ
2 such that the restriction map

𝑆1 → ℝ
2 is injective except finite number of points, in which case the map is two-to-one

and transverse, i.e., tangent lines should not coincide at the crossing. Such a projection is
called knot diagram. The two-to-one points are called crossings. At each crossing, we need
to specify which strand passes over or in front of another strand. We call the strand that
passes over overstrand and another understrand. Distinct knot diagrams can represent knots
with the same knot type. We can define crossing number of a particular knot type to be the
minimum number of crossings of any knot diagrams representing that knot type.

The main problem in knot theory is to classify knots and decide whether two given knots
are equivalent. Traditionally, knots are classified by crossing numbers and hence we have a
knot table as in Figure 1. Each knot type is labeled as 𝐶𝑖 where 𝐶 is the crossing number
and 𝑖 is an index within the knots of the same crossing number. For example, the trefoil knot
is labeled 31. The standard knot table with such labeled for all prime knots with less than
11 crossings is called the Rolfsen knot table. For knots with 11 crossings or more, we further
categorize them by whether a knot is alternating, i.e., whether the crossings alternate under,
over, under, over, as one travels along the strand. Otherwise, a knot is non-alternating. We
then labeled an alternating knot by 𝐶𝑎𝑖 and a non-alternating knot by 𝐶𝑛𝑖. The standard
knot table for knots with 11 crossing is called the Hoste-Thistlethwaite table. The largest
knot table consists of all knots with up to 16 crossings.

It is not simple to show the equivalence of two given knots by using only the definition.
In 1926, Kurt Reidemeister, and independently, in 1927, J.W. Alexander and G.B. Briggs
proved that two knot diagrams represent knots with the same knot type if and only if one
can be transformed to the other via planar isotopy by a sequence of three kinds of moves,
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Figure 1: Knot Table 1

called Reidemeister moves as shown in Figure 2.

(a) Type I (b) Type II

(c) Type III

Figure 2: Reidemeister Moves 2

1http://en.wikipedia.org/wiki/Knot (mathematics)
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Although Reidemeister moves provide more convenient and systematic way to show
equivalence of two knot diagrams, they does not give a deterministic algorithm to clas-
sify knots. In general, we do not know how many moves we need to use to transform one
knot diagram to the other. Hence, it is not possible to use Reidemeister moves to distinguish
two knot diagrams that possibly belong to different knot types.

Sometimes we give an orientation to knot, denoted by arrows in knot diagram as in
Figure 3. Two knots of the same knot diagram but different orientation may or may not
be equivalent. A mirror image of a knot, which can be obtained by reversing all crossings,
may or may not be equivalent to the original one. The mirror image of a knot 𝐾 usually
denoted by 𝑚(𝐾) or 𝐾.

Figure 3: Two Orientations of Trefoil Knot 3

We can assign some “value” such as integer, polynomial or even algebraic structure, to
each knot. If the values is invariant under three types of Reidermester moves, we call such
values knot invariants. Clearly, crossing number is a knot invariant by definition. Some
knot invariants is defined in a way that one can determine such value from knot diagram.
We may use these knot invariants to show that two diagrams represent different knot type.

For oriented knot, we call a crossing positive if one can turn the direction of the overstrand
counterclockwise to match the direction of the understrand with the angle less than a half-
turn. Otherwise, we call a crossing negative (Figure 4). For each crossing 𝑐, we may define

𝜖(𝑐) =

{
1 𝑐 positive
−1 𝑐 negative

Then the writhe of a diagram 𝐷 is

𝑤𝑟(𝐷) =
∑

crossing 𝑐 in 𝐷

𝜖(𝑐).

Although writhe is not a knot invariant as it is not invariant under Reidemeister I move, it
is useful quatity that we will use to compute several invariants later in this paper.

2http://en.wikipedia.org/wiki/Knot theory
3http://www.math.cornell.edu/˜mec/2008-2009/HoHonLeung/page2 knots.htm
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(a) positive crossing (b) negative crossing

Figure 4: Positive and Negative Crossings4

We can also consider a union of disjoint embeddings of 𝑆1 in ℝ
3. We call a collection of

disjoint knots a link. Two links are equivalent (or topological isotopic) if they are ambient
isotopic. Each embedding of 𝑆1 is called a component of a link. A knot is simply a link
with one component. Most results for knots apply to links as well. For example, two link
diagrams represent links with the same link type if and only if one can be transformed to the
other by a sequence of Reidemeister moves. Note that if we consider only one component
of a link and omit the rest, it will become a knot. We can also construct a link from a knot
to get some extra properties and invariants, which we will discuss later on in this paper.
Hence, the study of knots and links are strongly related.

The concept of invariants also applies to links. Several knot invariants are also link
invariant. In addition, there are several link invariants that are only useful to links with
more than one component. For example, the linking number of components 𝐿1 and 𝐿2 of a
link 𝐿 is

𝑙𝑘(𝐿1, 𝐿2) =
1

2

∑
crossing 𝑐 between 𝐿1 and 𝐿2

𝜖(𝑐).

In other word, the linking number is half of the total number of positive crossings between
components minus the total number of negative crossings between components. We can see
that the linking number of any diagram is always an integer, and the linking number is an
invariant of a link with two components.

Several other useful and widely used knot and link invariants are Kauffman polyno-
mial, Jones polynomial, HOMFLY-PT polynomial and Alexander polynomial. We shall not
discuss the meaning of these invariants in detail. Given some representation of knot and
Mathematica can compute these invariants if the knot is not too large.

Similar to knots, links are traditionally classified by their crossing numbers. Links are
also considered whether they are alternating or non-alternating. A link is labeled 𝐿𝑐𝑎𝑖 and
𝐿𝑐𝑛𝑖, respectively, where 𝑐 is its crossing number and 𝑖 is an index within (non-)alternating

4http://en.wikipedia.org/wiki/Writhe
5http://en.wikipedia.org/wiki/Linking number
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Figure 5: A Two-Component Link with Linking Number Two5

knots of the same crossing number (Figure 6). Unlike knots, links are less studied and more
complicated. The Thistlethwaite link table consists of all prime links with up to 13 crossings.

Figure 6: Link Table6

3 Legendrian and Transverse Knots

Definition 2. Let 𝐿 be a knot parametrized by a map 𝑆1 → ℝ
3 defined by

𝜃 �→ (𝑥(𝜃), 𝑦(𝜃), 𝑧(𝜃)).

Then 𝐿 is a Legendrian knot if

𝑧′(𝜃)− 𝑦(𝜃)𝑥′(𝜃) = 0.

There are several ways to represent or project a Legendrian knot in ℝ
2. Throughout

this paper, we shall use a front projection defined by the map Π : ℝ3 → ℝ
2 which sends

(𝑥, 𝑦, 𝑧) �→ (𝑥, 𝑧). Since 𝑧′(𝜃) − 𝑦(𝜃)𝑥′(𝜃) = 0, we can retrieve 𝑦(𝜃) from 𝑥(𝜃) and 𝑧(𝜃) by

𝑦(𝜃) = 𝑧′(𝜃)
𝑥′(𝜃) = 𝑑𝑧

𝑑𝑥 . We call an image of the projection at 𝑥′(𝜃) = 0 a cusp. The image of
front projection, called Legendrian front diagram or front diagram, is a knot diagram with
the following properties:

6http://katlas.math.toronto.edu/wiki/The Thistlethwaite Link Table
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1. has no vertical tengencies

2. the only non-smooth points are horizontal cusps

3. at each crossing, the slope of the overcrossing strand is smaller (more negative) than
the undercrossing strand.

Moreover, any knot diagram satisfying all of the above three properties is a front diagram
of a Legendrian knot. The third property allows us to omit the notation indicating which
strand is overcrossing at each crossing. We can write front diagrams as in Figure 7.

Figure 7: Front Diagrams of unknot, trefoil knot and the figure-eight knot

Similar to topological knot, two Legendrian knots are equivalent or Legendrian isotopic if
they are ambient isotopic in the way that a knot at every state of deformation is Legendrian.
Figure 8 shows three types of Legendrian Reidemeister moves on a front diagram which are
analogous to Reidemeister moves for topological knots on a knot diagram. The result of
Swiatkowski [19] shows that two front diagrams represent equivalent Legendrian knots if
and only if they relate by a sequence of Legendrian Reidemeister moves.

Clearly, a Legendrian knot is also a topological knot. One may consider a front diagram
as a knot diagram. Legendrian isotopy is also a topological isotopy, but not the other way
around. For any topological knot type, there are Legendrian knots representing it. One can
construct a Legendrian knot, or, in particular, its front diagram, from a knot diagram by
adding cusps and zig-zags as shown in Figure 9.

We can view Legendrian knots as subtypes of topological knots. Each topological knot
belongs to exactly one knot type. Hence, topological knot type is an invariant of Legen-
drian knots. In fact, it is one of three classical Legendrian invariants which are the most
fundamental tools to classify Legendrian knots throughout this paper. We shall denote the
topological type of a Legendrian knot 𝐿 by 𝑘(𝐿).

Another classical Legendrian invariant is the Thurston-Bennequin number, denoted by
𝑡𝑏, or 𝑡𝑏(𝐿) for the Thurston-Bennequin number of a Legendrian knot 𝐿. The Thurston-
Bennequin number is defined in several ways, but for our convenience, we shall define it
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Figure 8: Legendrian Reidemeister Moves [7]

combinatorially from a front diagram. Let 𝑐(𝐷) be the number of left cusps in a front
diagram 𝐷. Note that in any front diagram, the number of left cusps is equal to the number
of right cusps. Thus, 𝑐(𝐷) is also half of the number of all cusps in 𝐷. The Thurston-
Bennequin number of a Legendrian knot 𝐿 with a front diagram 𝐷 is

𝑡𝑏(𝐿) = 𝑤𝑟(𝐷)− 𝑐(𝐷).

The last classical Legendrian invariant is the rotation number, denoted by 𝑟, or 𝑟(𝐿) for
the rotation number of an oriented Legendrian knot 𝐿. We may define the rotation number
combinatorially as follows. For an oriented front diagram 𝐷, let 𝑐↓(𝐷) be the total number
of downward cusps in 𝐷 and 𝑐↑(𝐷) be the total number of upward cusps in 𝐷 (Figure 10).
Then the rotation number of 𝐿 represented by 𝐷 is

𝑟(𝐿) =
1

2
(𝑐↓(𝐷)− 𝑐↑(𝐷)).

One can check that 𝑡𝑏 and 𝑟 are invariant under three types of Legendrian Reidemeister
moves and therefore Legendrian invariants. Figure 11 depicts 𝑡𝑏 and 𝑟 of several Legendrian
knots.

The classical invariants alone are not enough to distinguish several pairs of Legendrian
knots, especially the larger ones. Besides the classical invariants, there are several useful
nonclassical Legendrian invariants that we shall use to distinguish Legendrian knots and links
later on in this paper, namely, graded ruling invariant and linearized contact homology. We
can compute both of them as polynomials using Mathematica.

Given a front diagram of a Legendrian knot, we define a ruling to be a one-to-one
correspondence of left and right cusps, together with a decomposition of the front diagram
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Figure 9: Construction of a front diagram from a knot diagram [7]

Figure 10: Cusps [6]

to a union of pairs of paths, each of which connects a corresponding pair of left and right
cusps, and satisfy the following conditions:

1. all paths are smooth except possibly at crossings and always go from either left to right
or right to left

2. the two paths corresponding to the same pair of cusps never intersect except at the
cusps

3. at each crossing where two paths intersect and one lies entirely above the other (called
such crossing a switch), the pair of vertical line segments connecting pairs of paths
passing through that crossing, with the same 𝑥 coordinate as that crossing are either
nested or disjoint except at the crossing

Note that a ruling is uniquely determined by its switches. By Chekanov and Pushkar
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(a) 𝑡𝑏 = -1, 𝑟 = 0 (b) 𝑡𝑏 = -2, 𝑟 = 1 (c) 𝑡𝑏 = -6, 𝑟 = 1

Figure 11: 𝑡𝑏 and 𝑟 for some Legendrian knots

[4], the number of rulings is an invariant of Legendrian knot. For each front diagram 𝐹 ,
we may define a function 𝛾 : {rulings of 𝐹} → ℤ by 𝛾(𝑅) = #(𝑅) − 𝑆(𝑅), where 𝑅 is a
ruling of 𝐹 , #(𝑅) is the total number of left cusps (or right cusps), and 𝑆(𝑅) is the total
number of switches. Then the map 𝜃 is also a Legendrian invariant up to isomorphism of
{rulings of 𝐹}, called complete ruling invariant [7].

We may refine this invariant by considering Maslov degrees. For a Legendrian knot
with 𝑟 = 0, we may assign an interger, called Maslov number, to each arc (from a left
cusp to a right cusp without passing through any other cusps) such that at each cusp, the
upper arc has Maslov number 1 greater than the lower arc. At each crossing, we define
the Maslov degree to be the Maslov number of the strand with more negative slope minus
the Maslov number of the strand with more positive slope. The rulings such that every
switch has Maslov degree zero are called graded ruling. The number of graded ruling and
𝛾 restricted to graded rulings are also Legendrian invariants [4]. The later is called graded
ruling invariant.

Furthermore, we can also restrict the rulings to those with Maslov degree divisible by
an integer 𝜌. For a Legendrian knot with nonzero rotation number, we can consider Maslov
number and Maslov degree modulo 2𝑟, and rulings with every switch has Maslov degree
divisible by 𝜌, where 𝜌 divides 2𝑟. For each such 𝜌, we get Legendrian invariants [4], called
𝜌-graded ruling invariant.

Now we shall consider some important moves on a front diagram which do not preserve
Legendrian isotopy. Stabilization is a process of adding a zig-zag to a front diagram as
shown in Figure 12. There are two types of stabilization, positive stabilization (𝑆+) and
negative stabilization (𝑆−). If two down cusps are added, then the stabilization is positive.
Otherwise, it is negative. Note that

𝑡𝑏(𝑆±(𝐿)) = 𝑡𝑏(𝐿)− 1

and
𝑟(𝑆±(𝐿)) = 𝑟(𝐿)± 1.

Thus, 𝑆±(𝐿) is not Legendrian equivalent to 𝐿.

Theorem 3.1. [10] If two Legendrian knots are topological isotopic, then after each of them
has been stabilized for some number of times they will become Legendrian isotopic.

10



Figure 12: Positive and Negative Stabilization [7]

That means equivalence classes of Legendrian knots under positive and negative stabi-
lization together with Legendrian Reidemeister moves are the same as equivalence classes of
topological knots under topological Reidemeister moves.

One may also try to “destabilize” a Legendrian knot. We say 𝐿 destabilize to 𝐿′ if
𝐿 = 𝑆±(𝐿′). However, not every Legendrian knot destabilizes, and it is generally not easy
to see whether a Legendrian knot destabilizes.

Now we shall define another type of knots which strongly relates to Legendrian knot.

Definition 3. Let 𝑇 be a knot parametrized by

𝜙 : 𝑆1 → ℝ
3

𝜃 �→ (𝑥(𝜃), 𝑦(𝜃), 𝑧(𝜃)).

Then 𝐿 is a transverse knot if
𝑧′(𝜃)− 𝑦(𝜃)𝑥′(𝜃) > 0.

Similar to topological knot and Legendrian knot, two transverse knots are equivalent
or transverely isotopic if they are ambient isotopic in the way that a knot at every state of
deformation is transverse. Although there is a typical way to study transverse knots without
relying on Legendrian knots, for our convenient, we shall study transverse knot through its
relationship with Legendrian knot.

Given an oriented Legendrian knot 𝐿, there are two transverse knots “close” to 𝐿. (For
further information on what “close” means, see [7].) The two knots are called the positive
and negative transverse push-offs of 𝐿, determined by whether they follow the same (positive
push-off) or different (negative push-off) orientation as the Legendrian knot 𝐿. The positive
(and negative) transverse push-off is unique up to transverse isotopy, and is denoted by
𝑇+(𝐿) (and 𝑇−(𝐿)). There is also a notion of Legendrian approximation of a transverse
knot 𝑇 . Although the Legendrian approximation is not unique up to Legendrian isotopy,
it is unique up to Legendrian isotopy and negative stabilization. Thus, the equivalence
classes of transverse knots are in one-to-one correspondence with the equivalence classes of
Legendrian knots modulo by negative stabilization [6].
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The above statement also allows us to represent transverse knot using a front diagram
of its Legendrian approximation. Since we know how to calculate 𝑡𝑏 and 𝑟 from a front
diagram, we may define the self-linking number of a transverse knot 𝑇 with a front diagram
for a Legendrian approximation 𝐷 by

𝑠𝑙(𝑇 ) = 𝑤𝑟(𝐷)− 𝑐↓(𝐷).

From the definition of 𝑡𝑏 and 𝑟, we can also write

𝑠𝑙(𝑇±(𝐿)) = 𝑡𝑏(𝐿)∓ 𝑟(𝐿).
Note that 𝑡𝑏 and 𝑟 are not transverse invariants as they are not invariant under negative

stabilization. However, their difference, which is the self-linking number, is invariant under
negative stabilization. Hence, the self-linking number is a transverse invariant. We may
observe that the self-linking number is also a Legendrian invariant, but it is not useful as
we can always obtain it from 𝑡𝑏 and 𝑟.

Suppose we have a Legendrian knot 𝐿 of type 𝑘(𝐿) with 𝑡𝑏(𝐿) = 𝑁 . We can find a
Legendrian knot 𝐿′ of type 𝑘(𝐿′) = 𝑘(𝐿) with 𝑡𝑏(𝐿′) = 𝑁−1 by stabilizing 𝐿 in either positive
or negative direction. Since 𝑟(𝑆+(𝐿)) ∕= 𝑟(𝑆−(𝐿)), 𝑆+(𝐿) and 𝑆−(𝐿) are not Legendrian
isotopic. Similarly, for any 𝑛 ∈ ℤ, let 𝑆𝑖 be either positive or negative stabilization for
each 𝑖 = 1, 2, . . . , 𝑛 and let 𝑆 be the composition 𝑆𝑛𝑆𝑛−1 . . . 𝑆1. Then a Legendrian knot
𝐿′′ = 𝑆(𝐿) of type 𝑘(𝐿′′) = 𝑘(𝐿) has 𝑡𝑏(𝐿′′) = 𝑁 − 𝑛. One can easily check by Legendrian
Reidemester moves that 𝑆+ and 𝑆− commute up to Legendrian isotopy. Thus, there are 𝑛+1
possible Legendrian knots, distinct up to Legendrian isotopy, as a result of 𝑆, completely
determined by the number of positive stabilization in 𝑆.

In contrast, there is no general way to “increase” 𝑡𝑏(𝐿) of a given Legendrian knot 𝐿. In
fact, the classical result of Bennequin [3] shows that 𝑡𝑏(𝐿) is bounded above by some integer.
Thus, we can define the maximal Thurston-Bennequin number

𝑡𝑏(𝐾) = max{𝑡𝑏(𝐿)∣𝐿 Legendrian knot, 𝑘(𝐿) = 𝐾}.
By definition, 𝑡𝑏 is a knot invariant. Ng [14] has found 𝑡𝑏 for knots with 11 or fewer crossings.
In general, we have

Theorem 3.2. (Khovanov Bound [12]) Let 𝐾 be a knot and 𝐾ℎ𝐾(𝑎, 𝑧) is the Khovanov
polynomial of 𝐾, then

𝑡𝑏(𝐾) ≤ min 𝑑𝑒𝑔𝑞𝐾ℎ𝐾(𝑞, 𝑡/𝑞),

where 𝐾ℎ𝐾 is the Poincaré polynomial for 𝔰𝔩2 Khovanov homology (see [12] for more infor-
mation). The Khovanov polynomial of 𝐾 can be calculated, given a braid presentation of
𝐾, by Mathematica package KnotTheory‘ (for more detail, see [2]).

This property of Legendrian knots allow us to write a diagram illustrating the possible
𝑡𝑏 and 𝑟 of Legendrian knots of topological type 𝐾 as shown in Figure 13 for knot type 31.
Each point indicates a unique Legendrian knot in the position corresponding to its 𝑡𝑏 and
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𝑟. Each edge corresponds to a stabilization where edge with negative (or positive) slope
corresponds to negative (or positive) stabilization. As in [7], we shall call this diagram a
mountain range which associate to a topological knot type. Note that mountain ranges for
most knot types are unknown prior to this paper, even for the ones with small number of
crossings such as 62 and 63.

Figure 13: A mountain range for knot type 31

For a topological (or Legendrian) knot 𝐾, we define a double of 𝐾 to be a link with
two components contained in a tubular neighborhood of 𝐾 such that each component is
equivalent to 𝐾. We call the double with linking number 𝑚 an 𝑚-framed double, denoted
by 𝐷𝑚(𝐾). Given a front diagram 𝐷, we can construct a double of 𝐷 by creating a copy
of 𝐷 and shift it slightly upward as shown in Figure 14. For a Legendrian knot 𝐿, this
construction will give a 𝑡𝑏(𝐿)-framed double of 𝐿, which we shall simply denote 𝐷(𝐿).

Figure 14: A double of a knot

Double of a knot is a useful tool to compute various invariants of knots and links. We
shall see some examples later in this paper.

Similarly, given a topological knot 𝐾, we can define the maximal self-linking number

𝑠𝑙(𝐾) = max{𝑠𝑙(𝑇 )∣𝑇 transverse knot, 𝑘(𝑇 ) = 𝐾}.
Again, by definition, the maximal linking number is a knot invariant. By the result of
Bennequin [3], 𝑠𝑙(𝐾) <∞ for every knot type 𝐾.

A topological knot 𝐾 is called transversely simple if every transverse knot of knot type
𝐾 can be completely classified by self-linking number. In other words, all transverse knots
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of knot type 𝐾 with the same self-linking number are transverse isotopic. If a topological
knot is not transversely simple, it is called transversely non-simple.

Several knot types such as unknot, the figure-eight knot and torus knots are proved to be
transversely simple [8]. However, it is generally difficult to find an example of transversely
non-simple knot. Although there are previously found and proved transversely non-simple
knots [15], many of such examples are constructed using braid theory or convex surface
theory. Most of them belong to knot types with large crossing numbers and are represented
by large grid diagrams.

4 Grid Diagrams

The main goal of this paper is to classify Legendrian knots and links as it has been done
on topological ones. In order to do so, we need to be able to find all such knots and links
within some constraints. However, a front diagram of a Legendrian link is not suitable to
be generated by computer. The three Legendrian Reidemeister moves are also hard to be
implemented and recognized. Here, we introduce another way to represent knots and links
which is suitable not only for being represented as data structure but also for manipulation
and computation of invariants.

Definition 4 ([16]). A grid diagram with grid number (or size) 𝑛 is an 𝑛×𝑛 square grid with
𝑛 𝑋’s and 𝑛 𝑂’s placed in distinct squares, such that each row and each column contains
exactly on 𝑋 and one 𝑂.

A grid diagram is determined by the positions of𝑋’s and𝑂’s in 𝑥𝑦-coordinate as followed.
Let the bottom-left (or southwest-SW) corner of the diagram be the origin and the top-right
(or northeast-NE) corner be (𝑛, 𝑛) (Figure 15). We call the box with its NE corner at the
position (𝑖, 𝑗), the box (𝑖, 𝑗). Now, the grid diagram is represented by two permutations
of {1, . . . , 𝑛}, 𝑋 = (𝜋1(1), . . . , 𝜋1(𝑛)) and 𝑂 = (𝜋2(1), . . . , 𝜋2(𝑛)), where 𝑋’s are at boxes
(𝑖, 𝜋1(𝑖)) and 𝑂’s are at boxes (𝑗, 𝜋2(𝑗)).

We construct a knot (link) diagram from a grid diagram by connecting every 𝑂 to 𝑋
horizontally and 𝑋 to 𝑂 vertcally. At each crossing, a vertical segment goes over a horizontal
one (Figure 15). By convention, we obtain a front diagram by rotating a knot diagram 45∘

counterclockwise, smoothing NE and SW corners, and changing NW and SE corners into
cusps.

We may define the arc index of a knot 𝐾, denoted 𝛼(𝐾) to be the minimal grid number
over all grid diagrams that represent 𝐾. By definition, it is a knot invariant. Jin, Kim and
Lee [11] enumerated all prime knots with arc index up to 10.

There are 3 types of moves on grid diagram called the Cromwell moves, namely, trans-
lation, commutation, and stabilization/destabilization. We shall define each type of moves
as follows.
Translation consists of vertical and horizontal translation. Vertical translation moves the

top most row of the diagram to the bottom of the diagram or vice versa while leaving the
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Figure 15: Grid Diagrams and Corresponding Knot Diagrams

rest unchanged. Horizontal translation, similarly, moves the leftmost column of the diagram
to the rightmost or vice versa. We can consider a class of grid diagrams modulo translation
as a diagram drawn on a torus.
Commutation interchanges two adjacent rows or two adjacent columns satisfying the

following conditions.

1. To commute two rows (or columns), four 𝑋’s and 𝑂’s in those rows (or columns) must
lie in different columns (or rows).

2. Line segments connecting 𝑋’s and 𝑂’s in the rows (or columns) must be either nested,
or disjoint (see Figure 16).

Lastly, destabilization replaces a 2×2 subgrid containing two 𝑋’s and one 𝑂’s (or two𝑋’s
and one 𝑂’s) by a 1× 1 subgrid containing 𝑂 (or 𝑋), and results in a grid diagram with one
fewer row and one fewer column as in Figure 17. Stabilization is simply an inverse process
of destabilization. Hence, there are 8 types of (de)stabilization, denoted by 𝑋:NW, 𝑋:NE,
𝑋:SW, 𝑋:SE, 𝑂:NW, 𝑂:NE, 𝑂:SW, and 𝑂:SE. The first part corresponds to the letter in
a 1× 1 subgrid, and the second part corresponds to the position of the empty box in 2× 2
subgrid. Note that one can write any 𝑂 (de)stabilization by a composition of translations,
commutations and exactly one 𝑋 (de)stabilization of the diagonally opposite position (e.g.
NE is diagonally opposite to SW). Thus, we may consider only 𝑋 (de)stabilization as a type
of Cromwell moves.
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Figure 16: Commutation
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Figure 17: Destabilization

Let 𝒢 denote the set of all grid diagrams, ℒ the set of all oriented Legendrian links up
to Legendrian isotopy, 𝒯 the set of all oriented transverse links up to transveral isotopy, 𝒦
the set of all oriented links up to topological isotopy, and let 𝒢 denote the quotient of 𝒢 by
translation and commutation. Ng and Thurston have shown in [16] that there are bijections

𝒢/(𝑋 : 𝑁𝐸,𝑋 : 𝑆𝑊 ) → ℒ
𝒢/(𝑋 : 𝑁𝐸,𝑋 : 𝑆𝑊,𝑋 : 𝑆𝐸) → 𝒯

𝒢/(𝑋 : 𝑁𝐸,𝑋 : 𝑆𝑊,𝑋 : 𝑆𝐸,𝑋 : 𝑁𝑊 ) → 𝒦

induced by the above construction of a front diagram from a grid diagram.
Besides three types of Cromwell moves, we shall define a few other significant operations

on grid diagrams. We define the symmetry of grid diagram which reflects the diagram about
the NW-SE diagonal and interchanges 𝑋’s and 𝑂’s to be 𝑆2. Ng and Thurston [16] show
that 𝑆2 operation on a grid diagram preserves Legendrian isotopy.

Given a Legendrian link 𝐿, we may define a Legendrian mirror of 𝐿, denoted 𝜇(𝐿), to
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be a Legendrian link represented by the front diagram which is the reflection of the front
diagram of 𝐿 in horizontal axis. This operation preserves topological type but generally do
not preserve Legendrian isotopy. Let −𝐿 be a Legendrian link which has the same front
diagram as 𝐿 but with orientation reverse. These two operations can easily be defined on grid
diagram by rotating the grid diagram by 180∘ and interchanging 𝑋’s and 𝑂’s, respectively.
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Figure 18: Operation on grid diagrams

In the case of representing unoriented links by grid diagrams, 𝑋 and 𝑂 are interchange-
able. Hence we may replace all 𝑋’s and 𝑂’s by the same symbol, says ‘1’. We replace all
empty grids by ‘0’ and obtain a matrix with only 0’s and 1’s, called Cromwell matrix. A
Cromwell matrix has exactly two 1’s in each row and each column. Consisting of binary
numbers, a Cromwell matrix is the most convenient form of a link to be implemented in
programming. Similarly, we can construct a knot (link) diagram of an unoriented knot (link)
from a Cromwell matrix by connecting 1’s in the same row or the same column such that
a vertical segment goes over a horizontal one. We can also turn the diagram 45∘ counter-
clockwise to get an unoriented Legendrian front diagram.

We may define translation, commutation, and (de)stabilization on Cromwell matrices
analogous to those on grid diagrams but ignoring the difference between 𝑋 and 𝑂. We say
two Cromwell matrices are equivalent if they relate by a sequence of translations, commu-
tations and 𝑋 : 𝑁𝐸, 𝑋 : 𝑆𝑊 (de)stabilizations. This definition is well-defined even though
we do not distinguish 𝑋 and 𝑂 because 𝑂 : 𝑁𝐸 and 𝑂 : 𝑆𝑊 can be written as 𝑋 : 𝑆𝑊 and
𝑋 : 𝑁𝐸, respectively. In other word, two Cromwell matrices are equivalent if they represent
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two unoriented Legendrian isotopic links.
Note that a stabilization increases the size of a Cromwell matrix by one. Thus, for any

Cromwell matrix of size 𝑛, there are equivalent Cromwell matrices of size 𝑛 + 1, 𝑛 + 2, . . ..
Since we will generate links by their size and we only distinguish them up to Legendrian
isotopy, links of the same type will show up again while we generate matrices of larger sizes.
To prevent this reoccurence of links of the same type, we introduce a notion of irreducibility,
which will reduce redundancy in our algorithm.

Definition 5 ([11]). A Cromwell matrix is reducible if two 1’s in a row or a column are
adjacent up to a cyclic permutation of entries.

If a Cromwell matrix is not reducible, we say it is irreducible. It is easy to implement
an algorithm to check whether a given Cromwell matrix is reducible. A reducible Cromwell
matrix represents a grid diagram which can be destabilized. Hence, an 𝑛 × 𝑛 reducible
Cromwell matrix does not represent a topological link with arc index 𝑛. In other words, if a
Cromwell matrix of size 𝑛 represents a topological link with arc index 𝑛, then any Cromwell
matrix in the same equivalence class has size at least 𝑛. In particular, any Cromwell matrix
obtained from such matrix by a sequence of translations and commutations is irreducible.
However, it is not necessarily true that if every matrix obtained from a Cromwell matrix
of size 𝑛 by a sequence of translations and commutations is irreducible, then the Cromwell
matrix represents a topological link with arc index 𝑛.

5 Algorithms

Our classification of Legendrian knots and links will be done for each grid number at a time.
From the previous section, there is a 2𝑛-to-one correspondence between grid diagrams and
Cromwell matrices, where 𝑛 is the number of components (𝑛 = 1 for knots). Furthermore,
the correspondence preserves equivalence class under translation, commutation and 𝑋:NE,
𝑋:SW (de)stabilization. Thus, we can obtain all irreducible grid diagrams by generating
all irreducible Cromwell matrices. Although the uniqueness up to Lengendrian isotopy may
not be preserved, comparing as Cromwell matrices greatly reduces work to be done to grid
diagrams as there are fewer Cromwell matrices and fewer possible moves.

For each grid number 𝑛, the classification is done in three main steps.

1. Generating all Cromwell matrices, unique up to translation and commutation

2. Reducing Cromwell matrices to be unique up to unoriented Lengendrian isotopy

3. Reducing grid diagrams to be unique up to oriented Lengendrian isotopy
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5.1 Generating all Cromwell matrices, unique up to translation and com-
mutation

We modify the algorithm used to classify topological knots by Jin, Kim and Lee in [11].
First, we introduce a way to order Cromwell matrices by assigning a distinct integer to each
Cromwell matrix.

Definition 6 ([11]). The norm of an 𝑛 × 𝑛 Cromwell matrix is the natural number corre-
sponding to the binary number obtained by concatenating its rows.

For example, the norm of ⎡
⎢⎢⎢⎢⎣

1 0 0 1 0
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1

⎤
⎥⎥⎥⎥⎦

is 10010010011010001010001012 .
This definition of norm allows us to generate Cromwell matrices in norm-decreasing

order. Beginning with an ’empty’ matrix with 0 in every entry, we can create a Cromwell
matrix by replacing 2𝑛 0’s with 1’s, one at a time. We start from the left 1 in the top row,
the right 1, then the left 1 in the second row, and so on. We can reduce number of possible
choices of placing 1’s by taking translation, commutation and reducibility into account.

As our goal is to generate irreducible Cromwell matrices, we shall not place two 1’s next to
each other vertically or horizontally. Moreover, we can eliminate the choice of placing in such
a way that we can easily get a reducible matrix by translations or commutations. In addition,
we can also omit the choice that norm may increase by translations or commutations. Thus,
we require that all Cromwell matrices we generate must have a 1 at the leftmost column of
the first row. We shall use tree structure to represent each step of placing 1 to an empty
matrix (Figure 19). We let the matrix with only one 1 be the root of the tree (depth 0).
By the previous constraint, there are ⌈𝑛−3

2 ⌉ possible positions to place the second 1 without
making the matrix reducible and also avoiding redundancy. Hence, there are ⌈𝑛−3

2 ⌉ nodes
in the next level (depth 1) of the tree. The third 1 cannot be placed right below any of the
previous ones. The fourth 1 must be as far from the third as the distance between the first
two 1’s. Otherwise, we can translate them to the first row and get larger norm. By taking
these conditions into account, we similarly generate nodes in the fifth, the sixth, and so on,
until we reach the last level (depth 2𝑛− 1). Only the nodes in the last level are complete as
Cromwell matrices.

For each Cromwell matrix generated in this way, we check and eliminate the matrix if it
has one of the following properties:

1. the matrix represents link with incorrect number of components (more than 1 if we
only consider knots)
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Figure 19: Tree structure for generating Cromwell matrices of size 5

2. translations and/or commutations increase its norm

3. it becomes reducible after a sequences of translations and/or commutations

Cromwell matrices left from this algorithm with be unique up to translations and com-
mutations, and have the highest norm among those in the same equivalence class.

5.2 Reducing Cromwell matrices to be unique up to unoriented Lengen-
drian isotopy

Now we are ready to classify unoriented Legendrian links generated in the previous step.
Recall that any two Legendrian links are equivalent if and only if they relate by translations,
commutations and 𝑋:NE, 𝑋:SW (de)stabilizations. We simply have an algorithm to deter-
mine whether two Cromwell matrices represent the same Legendrian links by repeatedly
apply the corresponding moves to one matrix until it to become another one. However, this
algorithm is indeterministic. That is, if the two matrices represent inequivalent Legendrian
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links, the algorithm does not halt and goes on forever. Even though the two matrices repre-
sent the same Legendrian link, we do not know how many moves it may take to transform
one to the other. Although there is no simple known deterministic algorithm to determine
whether two Legendrian links are equivalent, we can improve this simple algorithm to aid
us in making conjectures in the classification.

We can consider this problem as a path searching problem on a graph: let each grid
diagram (or Cromwell matrix) be represented by a vertex, and two vertices are connected if
they represent grid diagrams that relate by one step of those moves. Since each Cromwell
move is reversible, the graph is thus undirected. Hence, the algorithm to determine whether
two grid diagrams represent the same Legendrian links is equivalent to the algorithm to
determine whether there is a path connecting two vertices on a given graph (with infinite
number of vertices). Hence, we may apply any path searching algorithm to answer this
question.

Generally, a simple path searching algorithm will start at an initial vertex and search
along each edge connected from the initial vertex until reaching the goal. Theoretically, this
algorithm should be able to determine whether there exists a path connecting the given two
vertices. However,

1. a graph representing all possible grid diagrams is infinitely large as we can always
stabilize a grid diagram to get a larger one

2. the graph is not given but need to be generated while searching

3. degree at each vertex is very high.

Since we have limited computing resource, we have to optimize our algorithm in every
possible way.

Instead of regular search algorithm, we use bidirectional search algorithm to determine
whether there exists a path connecting two vertices. This algorithm is appropriate in our
circumstance because the moves are reversible and similar in both directions, and goal state
is clear. Note again that this algorithm is undecidable. In the case that two diagrams are
not related by any number of moves, i.e. they represent different Legendrian links, this
algorithm does not halt. Hence, we need to specify number of steps it will compute. As a
result, this algorithm may take very long time to check all possible pairs of grids we have
generated if we allow a large number of step.

To reduce the time this algorithm will take to compare a pair of grid diagrams or
Cromwell matrices, we use several techniques to optimize the algorithm. Firstly, since
translation is the easiest move to be implemented and relatively fast compared to other
types of Cromwell moves, every Cromwell matrix (or grid diagram) will be translated to
the one with maximal norm among those obtained by translations. This will significantly
reduce number of vertices in the graph and allow each step to obtain more variety of other
Cromwell matrices (or grid diagrams).
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We can also reduce number of steps the algorithm would take to get from one Cromwell
matrix (or grid diagram) to another by allowing non-Cromwell moves that preserve Legen-
drian isotopy. By doing so, although each vertex will have higher degree, number of edges
in the graph will be reduced significantly. Thus, for each vertex representing a Cromwell
matrix (or grid diagram) 𝐷, we generate adjacant vertices as follows:

1. all Cromwell matrices (or grid diagrams) generated by applying one commutation to
𝐷, do not exist if 𝐷 does not contain nested or disjoint rows or columns

2. all Cromwell matrices (or grid diagrams) generated by applying one 𝑋:NE, 𝑋:SW
stabilization at the top left box in 𝐷, which we assume to be 1 (for Cromwell matrix)
(or 𝑂 for grid diagram, in which case we will use 𝑂:NE and 𝑂:SW)

3. all Cromwell matrices (or grid diagrams) generated by applying one 𝑋:NE, 𝑋:SW
destabilization to 𝐷, do not exist if 𝐷 is not reducible

4. a Cromwell matrix (or grid diagram) generated by applying 𝑆2 to 𝐷

5. all Cromwell matrices (or grid diagrams) generated by applying the speed up move to
𝐷, may not exist if 𝐷 does not contain the specific pattern

where the speed up move is defined locally as in Figure 20 together with its rotation reverse
and 180∘ rotation. Note that this constitutes a Legendrian isotopy since it only involves
𝑋:NE and 𝑋:SW (equivalently, 𝑂:SW and 𝑂:NE) (de)stabilization.

Figure 20: Speed up move

We call any one of the above a step. Note that we only apply a stabilization to one box
in 𝐷 since we can move it to any other places using commutations. We choose the top left
box because it will always be 1 for Cromwell matrix or 𝑂 for grid diagram if 𝐷 has maximal
norm up to translation.
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Let IsLegendrianIsotopic(𝑑, 𝑠) be the algorithm to check whether two Cromwell matri-
ces (or grid diagrams) represent the same Legendrian link while allowing no more than 𝑑 steps
and the grid size is never more than 𝑠. We can describe IsLegendrianIsotopic(𝑑, 𝑠)(𝐷1,𝐷2)
as follows:

1. begin with two sets of Cromwell matrices (or grid diagrams), 𝐴 = {𝐷1} and 𝐵 = {𝐷2};
also let 𝐴′ = ∅ and 𝐵′ = ∅

2. for each 𝐷 ∈ 𝐴,
∙ move 𝐷 to 𝐴′

∙ for each 𝐷′, a Cromwell matrix (or grid diagram) generated from 𝐷 in one step,
put 𝐷′ in 𝐴 if 𝐷′ is not in 𝐴′ and size of 𝐷′ is at most 𝑠

3. check whether 𝐴 ∩𝐵 = ∅; if not, halt and return true

4. repeat the two previous steps with 𝐴 and 𝐵 switched

5. repeat the last three steps 𝑑 times or until this algorithm halts.

Since there are finitely many grid diagrams of size at most 𝑠, IsLegendrianIsotopic(𝑑, 𝑠)
must halt for any 𝑑 ∈ ℕ ∪ {∞}.

If 𝐷1,𝐷2 are grid diagrams, by allowing 𝑋 : 𝑆𝐸 (de)stabilization, this algorithm can
be applied to the problem of determining whether they represent the same transverse link.
Similarly, by allowing both 𝑋:SE and 𝑋:NW (de)stabilization, this algorithm can also be
applied to the problem of determining whether two Cromwell matrices (or grid diagrams)
represent the same topological link.

In order to reduce the number of comparison, we can use other methods to eliminate
pairs of diagrams which do not represent the same Legendrian knots. These methods must
be a lot faster than directly comparing. Classical invariants such as rotation number (𝑟) and
Thurston-Bennequin number (𝑡𝑏) are easy to compute and effective in decreasing number of
pairs the actual comparison required since we do not need to check pairs with different 𝑟 or
𝑡𝑏. We only use these two invariant for arc index up to 8. For arc index 9, we also check
for topological knot type of each grid diagrams as another invariant since several knot types
have the same 𝑡𝑏.

Instead of comparing two diagrams at a time, we can also improve our bidirectional
search algorithm to check for any number of grid diagrams by beginning with each set
containing each diagram we consider and comparing them all at once. For larger arc index,
there are many grid diagrams which classical invariants cannot classify. As it takes longer to
generate new grid diagrams, comparing many grid diagrams at once can make the process
significantly faster.
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5.3 Reducing grid diagrams to be unique up to oriented Lengendrian
isotopy

The previous step gives us a set of Cromwell matrices that potentially represent distinct
unoriented Legendrian knots. However, our goal is to classify oriented Legendrian knots.
We then need to assign orientations to each unoriented Legendrian knots represented by
Cromwell matrices. For a knot, which is a one-component link, this step is simply to assign
the 1 at the left upper corner to be either 𝑂 or𝑋 as the rest will be completely determined by
the first one. Generally, for a link with 𝑛 components, we get 2𝑛 oriented links by assigning
𝑂 or 𝑋 to one box for each of the 𝑛 components. These generated grid diagrams may relate
by a sequence of Cromwell moves and thus represent knots that are Legendrian isotopic.

We can repeat the above algorithm on grid diagrams representing Legendrian knots that
we cannot simply distinguish by classical invariants. The reason that we apply this algorithm
both before and after assigning orientation is to reduce number of comparison that need to
be made. Note that if two unoriented Legendrian knots cannot be shown to be the same by
the algorithm IsLegendrianIsotopic(∞, 𝑠), they still cannot be shown to be the same after
being assigned orientations. However, this may not be true for IsLegendrianIsotopic(𝑑, 𝑠)
for some finite 𝑑 because the top left corner of an oriented diagram is always set to be 𝑂
and the stabilization takes place at that box for knot case. Thus, if the top left corner of an
unoriented diagram (a Cromwell matrix) is assgined to be 𝑋 when given orientation, it will
get translated so that the box at top left corner becomes 𝑂 and therefore alter the position
where stabilization will occur.

6 Distinguish Legendrian Knots

Remind that our algorithm cannot show that two Legendrian knots are not Legendrian
isotopic. The three classical Legendrian invariants alone are not enough to classify Legen-
drian knots, even for small ones such as type 𝑚(52). In this section, we will use several
non-classical invariants to distinguish Legendrian knots which share topological type, 𝑡𝑏 and
𝑟.

We use the Mathematica notebook Legendrian invariants.nb from [18] to compute
polynomials for graded ruling invariant and linearized contact homology. In Legendrian

invariant.nb, the graded ruling invariant of a Legendrian knot 𝐿 is written as a polynomial∑
𝑖 𝑎𝑖𝑧

𝑖 where 𝑎𝑖 is the number of graded rulings 𝑅 with 𝛾(𝑅) = 𝑖. Note that these two
Legendrian invariants are defined only on Legendrian knots with 𝑟 = 0. Thus, they cannot
be used to distinguish several pairs of Legendrian knots such as two knots of type 63. They
are also invariant under orientation reversal and Legendrian mirror, and hence cannot be
used to distinguish pairs of Legendrian knots that are orientation reversal and Legendrian
mirror of each other.

Despite such limitation, graded ruling invariant and linearized contact homology are
very useful and can be used to classify several pairs of Legendrian knots. The Legendrian
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knots that can be distinguished using graded ruling invariant are those of type𝑚(52), 𝑚(72),
73, 74, 𝑚(75), 𝑚(76), 𝑚(945), 948, 949, 10128, 10136, 10142 and 10160. By using linearized
contact homology, we can further distinguish pairs of type 𝑚(61) and 𝑚(72) that cannot be
done using graded ruling invariant though they can be distinguished using 𝜌-graded ruling
invariants for some integer 𝜌.

We can see from table 1 that we can use linearized contact homology to distinguish every
pair that we can do by graded ruling invariant. However, it is still useful to mention graded
ruling invariant as it is easier to compute by hand, and it is not true in general that any pair
of knot distinguished by graded ruling invariant can be distinguished by linearized contact
homology.

Furthermore, Ng [13] provides a technique using the Chekanov-Eliashberg differential
graded algebra (DGA) which can be used to distinguish between several pairs that cannot
be distinguished by any invariants mentioned earlier. In his paper, Ng distinguishes

1. two Legendrian knots of type 62 with (𝑡𝑏, 𝑟) = (−7, 0) which correspond to the first
grid diagram of type 62 in the table and its Legendrian mirror

2. two Legendrian knots of type 63 with (𝑡𝑏, 𝑟) = (−4, 1) which correspond to two grid
diagrams of type 63 in the table

3. two Legendrian knots of type𝑚(72) with (𝑡𝑏, 𝑟) = (1, 0) which correspond to the second
and the fourth grid diagrams of type 𝑚(72) in the table

4. two Legendrian knots of type 74 with (𝑡𝑏, 𝑟) = (1, 0) which correspond to the second
and the third grid diagrams of type 74 in the table.

The Chekanov-Eliashberg DGA can also be used to distinguish the first and the third grid
diagrams of type 74, and the third grid diagrams of the same type with its Legendrian
mirror.

As we mentioned earlier, we can view Legendrian knot as a subtype of transverse knot.
In other words, if two knots are not transverse isotopic, they are not Legendrian isotopic.
Ng, Ozsváth and Thurston [15] provide a technique using knot Floer homology, based on
the work of Ozsváth, Szabo and Thurston [17], to distinguish several pairs of transverse
knots. We can apply the same technique to distinguish some pairs of Legendrian knots in
the table. In [15], two transverse knots, corresponding to the first grid diagram and its
Legendrian mirror of type 𝑚(10132) are distinguished. Since the second grid diagram is
transversal isotopic to the first grid and Legendrian isotopic to its own mirror, it cannot
be Legendrian isotopic to the first grid. Hence, we can conclude that 3 grid diagrams with
knot type 𝑚(10132) represent 3 distinct Legendrian knots. In the same manner, we can
distinguish three Legendrian knots with (𝑡𝑏, 𝑟) = (−1, 0) of type 𝑚(10140). Moreover, we
can identify transversely non-simple knots of type 𝑚(10145), 𝑚(10161) and 12𝑛591, each of
which lies in the second level (from above) in the mountain range of its type.
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7 Legendrian Knot Atlas

The result of our algorithm together with invariants and techniques described in previous
section gives the Legendrian knot atlas as shown in table 1. From our generated grid
diagrams, we use gridlink [5] to draw diagrams, each of which can be rotated 45∘ to get a front
diagram. Note that we do not show all grid diagrams of each knot type. However, readers can
find all grid diagrams from the table by using Legendrian mirror and/or orientation reversal
as described earlier. Note again that these two operations preserve graded ruling invariant
and linearized contact homology which also depicted in the table. Since orientation reversal
will negate 𝑟, we only illustrate Legendrian knots with nonnegative 𝑟. Again, readers can
find grid diagrams for negative 𝑟 by reversing orientation. We also provide the mountain
range of each knot type in the table, some of which have been proven while the rest are
conjecture drawn from the result of our algorithm and the previous section.

For columns labeled 𝐿 = −𝐿?, 𝐿 = 𝜇(𝐿)? and 𝐿 = −𝜇(𝐿)?, we use ✓ to indecate pairs
of grid diagrams which our algorithm can show that they represent the same Legendrian
knot. For example, the 𝑡𝑏 = 1, 𝑟 = 0 Legendrian knot 𝐿 of type 𝑚(31) is Legendrian
isotopic to its orientation reversal (−𝐿), its Legendrian mirror (𝜇(𝐿)) and the orientation
reversal of its Legendrian mirror (−𝜇(𝐿)). We use ✗ to indicate pairs of grid diagrams
which can be distinguished by some invariants and/or techniques described above. We use
✗? to indicate pairs of grid diagrams which our algorithm cannot show that they represent
the same Legendrian knot, but cannot be distinguished by any invariants or techniques
described above. The letters subscripted under some pairs of grid diagrams also indicate
sets of Legendrian knots that cannot be distinguished by those invariants and techniques.

Since orientation reversal and Legendrian mirror negate rotation number, for grid dia-
grams with 𝑟 ∕= 0, orientation reversal and Legendrian mirror cannot be Legendrian isotopic
to the original. We use − to indicate such case. Similarly, since graded ruling invariant and
linearized contact homology are not defined on grid diagrams with 𝑟 ∕= 0, such boxes are
indicated by −. Note that − is different from ∅ which is when 𝑟 = 0 but there are no graded
rulings or linearized contact homology.

In moutain range, we use a box containing more than one dot to indicate that there are
(conjecturally if other dots are red) more than one Legendrian knot with the same 𝑡𝑏 and 𝑟.
Number of black dots in the box corresponds to number of grid diagrams that can be proved
to represent distinct Legendrian knots with that particular 𝑡𝑏 and 𝑟. Number of black and
red dots together corresponds to number o grid diagrams that our algorithm cannot show
that any pairs of them represent the same Legendrian knots. We also omitted axes of 𝑡𝑏 and
𝑟 as they can be inferred from 𝑡𝑏 and 𝑟 of the grid diagrams.

Our result agrees with mountain ranges of torus knots and the figure eight knot described
by Etnyre and Honda in [8], and also agrees with mountain ranges of twist knots described
by Etnyre, Ng and Vértesi in [9]. We indicate torus knots by 𝑇 (𝑝, 𝑞) and twist knots by
𝐾𝑚 (notation as in [9]) in “Note” column. Moreover, the result gives more conjectures for
mountain ranges of all prime knots with arc index up to 9. Since we generated grid diagrams
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up to size 10, all grid diagrams of size at most 10 of each knot type are shown in its mountain
range. The black dots in the mountain range are the lower bound on what mountain range
of each knot type is, i.e., the smallest possible mountain range. However, we conjecture
the mountain ranges to consist of both black dots and red dots. It is still possible that the
mountain ranges of some knot types are larger than we describe, but any Legendrian knots
not shown in the mountain range, if exist, must be represented by grid diagrams of size 11
or higher.

The mountain range of each knot type also gives an information on transverse knots.
We see from the previous section that classes of transverse knots are equivalent to classes of
Legendrian knots modulo negative stabilization. Hence, we can read of classes of transverse
knots of each knot type from its mountain range and relations of Legendrian classes under
negative stabilization. This results in a transverse knot atlas as shown in table 2. We use
similar notations as in the Legendrian knot atlas described above. Knot types that are
shown to be transversely nonsimple are labeled in blue and knot types that we conjecture
to be transversely nonsimple but cannot prove are labeled in red.

8 Legendrian Links

In the previous section, we focused the classification entirely on Legendrian knots and we
left out all grid diagrams that represent links with more than one component in generating
step of our algorithm. Note that, with little modification, the following step of the algorithm
also works for links with more than one component. The main differences for links with 𝑛
components are as follows:

1. there are 2𝑛 different possible orientations for each unoriented link (Cromwell diagram)
although some of them may be Legendrian isotopic

2. there are 𝑛 positions for stabilization, one in each component

3. may need to keep track of two distinct components in the case that they cannot be
switched topologically

Since each component of 2-component link can be considered a knot when we omit the
other component, one can separately compute 𝑡𝑏 for each component. Let 𝐿 be a topological
link with two components 𝐿1 and 𝐿2. For each Legendrian link with topological type 𝐿, one
can compute a pair of integers (𝑡𝑏1, 𝑡𝑏2) where 𝑡𝑏𝑖 is the 𝑡𝑏 of the component corresponding
to 𝐿𝑖. By taking convex hull of all such pairs in ℝ

2, we get a polytope called the Thurston-
Bennequin polytope or 𝑡𝑏 polytope of 𝐿, denoted Δ(𝐿) as in [1]. Figure 21 gives an example
of 𝑡𝑏 polytope of 𝑚(𝐿4𝑎1).

Note that if (𝑎, 𝑏) is a pair of integers in Δ(𝐿), then (𝑎− 𝑘, 𝑏− 𝑙) must be in Δ(𝐿) for all
𝑘, 𝑙 ∈ ℕ ∪ {0} since we can stabilize each component of 𝐿 to decrease 𝑡𝑏 of that component
without making any change on the 𝑡𝑏 of the other. Baader and Ishikawa [1] has shown that
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Figure 21: Thurston-Bennequin polytope of 𝑚(𝐿4𝑎1)

for two-bridge link 𝐿 with two components 𝐿1 and 𝐿2

Δ(𝐿) = {(𝑥1, 𝑥2) ∈ ℝ∣𝑥1 ≤ −1, 𝑥2 ≤ −1, 𝑥1 + 𝑥2 ≤ 𝑡𝑏(𝐿)− 2𝑙𝑘(𝐿1, 𝐿2)}.

However, the 𝑡𝑏 polytope is not known in general case.
Let ℒ = ℒ1 ∪ ℒ2 be a Legendrian link with two components ℒ1 and ℒ2. Let 𝐿 be

a topological link type of ℒ with components 𝐿1 and 𝐿2 corresponding to ℒ1 and ℒ2,
respectively. Then it follows from the definition that

𝑡𝑏(ℒ) = 𝑡𝑏(ℒ1) + 𝑡𝑏(ℒ2) + 2𝑙𝑘(𝐿1, 𝐿2).

Similarly, we may calculate

𝑡𝑏(ℒ1 ∪𝐷(ℒ2)) = 𝑡𝑏(ℒ1) + 4𝑡𝑏(ℒ2) + 4𝑙𝑘(𝐿1, 𝐿2)

from the construction of double of 𝐿 in previous section. For each value of 𝑡𝑏(ℒ2), we can
find a good bound for 𝑡𝑏(ℒ1) by using Theorem 3.2 on 𝐿1 ∪𝐷𝑡𝑏(ℒ2)(𝐿2). This is similar to
the technique used in [14]. We have

𝑡𝑏(ℒ1) ≤ 𝑡𝑏(𝐿1 ∪𝐷𝑡𝑏(ℒ2)(𝐿2))− 4𝑡𝑏(ℒ2)− 4𝑙𝑘(𝐿1, 𝐿2).

We may repeat this calculation but double ℒ1 instead of ℒ2. The bound on both parts
can be used to give an upper bound on Δ(𝐿). However, the calculation of the Khovanov
polynomial for very large links in KnotTheory` package sometimes fails due to running time
or memory limitation.

Using our algorithm and invariants in previous sections, we get an atlas for unoriented
Legendrian two-component links as shown in table 3. The atlas shows the representation of
grid diagrams which can be turned 45∘ to get unoriented front diagrams. In the case when
two components cannot be switched topologically, we also distinguish them by color and
size of strands. We also provide our conjecture for 𝑡𝑏 polytope of each link type. Note that
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our result can answer the question posted by Baader and Ishikawa in [1] that whether the
𝑡𝑏 polytope can always be described by three linear inequalities of the type

𝑡𝑏(ℒ1) ≤ 𝑛1, 𝑡𝑏(ℒ2) ≤ 𝑛2, 𝑡𝑏(ℒ1) + 𝑡𝑏(ℒ2) ≤ 𝑛3.

Counterexamples illustrated on table 3 are links that cannot be described by three linear
inequalities, 𝑚(𝐿7𝑎1), 𝐿9𝑛18, 𝑚(𝐿10𝑛54) and 𝐿11𝑛204, and links that can be described by
three linear inequalities but not of the above type, 𝐿9𝑛19, 𝐿10𝑛24 and 𝑚(𝐿11𝑛205).
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Table 1: Legendrian Knots up to Arc Index 9

Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

31 (−6, 1) - - ✓ - - 𝑇 (2,−3), 𝐾1
� �

� � �

� � � �

𝑚(31) (1, 0) ✓ ✓ ✓ 2 + 𝑧2 2 + 𝑡 𝑇 (2, 3), 𝐾−2
�

� �

� � �

41 = 𝑚(41) (−3, 0) ✓ ✓ ✓ 1 𝑡−1 + 2𝑡 𝐾2 = 𝐾−3
�

� �

� � �

51
(−10, 1) - - ✓ - -

𝑇 (2,−5)

(−10, 3) - - ✓ - -
� � � �

� � � � �

� � � � � �

3
1



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

𝑚(51) (3, 0) ✓ ✓ ✓ 3 + 4𝑧2 + 𝑧4 4 + 𝑡 𝑇 (2, 5)
�

� �

� � �

52 (−8, 1) - - ✓ - - 𝐾3
� �

� � �

� � � � †

𝑚(52)
(1, 0) ✓ ✓ ✓ 1 𝑡−2 + 𝑡+ 𝑡2

𝐾−4

(1, 0) ✓ ✓ ✓ 1 + 𝑧2 2 + 𝑡
� �

� �

� � �

61 (−5, 0) ✓ ✓ ✓ 1 2𝑡−1 + 3𝑡 𝐾4
�

� �

� � �

3
2



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

𝑚(61)
(−3, 0) ✓ ✓ ✓ 1 𝑡−3 + 𝑡+ 𝑡3

𝐾−5

(−3, 0) ✓ ✓ ✓ 1 𝑡−1 + 2𝑡
� �

� �

� � �

62

(−7, 0) ✓ ✗ ✗ ∅ ∅

𝑎 (−7, 2) - - ✓ - -

𝑎 (−7, 2) - - ✓ - -
� � � � � �

� � � �

� � � � �

𝑚(62) (−1, 0) ✓ ✓ ✓ 2 + 𝑧2 𝑡−1 + 2 + 2𝑡
�

� �

� � �

3
3



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

63 = 𝑚(63)
(−4, 1) - - ✓ - -

(−4, 1) - - ✓ - -
� � � �

� � �

� � � �

71

(−14, 1) - - ✓ - -
𝑇 (2,−7)

(−14, 3) - - ✓ - -

(−14, 5) - - ✓ - -
� � � � � �

� � � � � � �

� � � � � � � �

𝑚(71) (5, 0) ✓ ✓ ✓ 4 + 10𝑧2 + 6𝑧4 + 𝑧6 6 + 𝑡 𝑇 (2, 7)
�

� �

� � �

3
4



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

72 (−10, 1) - - ✓ - - 𝐾5
� �

� � �

� � � �

𝑚(72)

(1, 0) ✓ ✓ ✓ 1 𝑡−4 + 𝑡+ 𝑡4

𝐾−6

(1, 0) ✓ ✓ ✓ 1 + 𝑧2 2 + 𝑡

(1, 0) ✗ ✗ ✓ 1 𝑡−2 + 𝑡+ 𝑡2

(1, 0) ✓ ✓ ✓ 1 + 𝑧2 2 + 𝑡
� � � � �

� � � �

� � � � �

� � � � � �

73
(3, 0) ✓ ✓ ✓ 1 2𝑡−2 + 𝑡+ 2𝑡2

(3, 0) ✓ ✓ ✓ 1 + 3𝑧2 + 𝑧4 4 + 𝑡
� �

� �

� � �

3
5



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

𝑚(73)
(−12, 1) - - ✓ - -

(−12, 3) - - ✓ - -
� � � �

� � � � �

� � � � � �

74

𝑏 (1, 0) ✓ ✓ ✓ ∅ ∅

𝑏 (1, 0) ✓ ✓ ✓ ∅ ∅

(1, 0) ✓ ✗ ✗ ∅ ∅

(1, 0) ✓ ✓ ✓ 𝑧2 2 + 𝑡
� � � � �

� �

� � �

𝑚(74) (−10, 1) - - ✓ - -
� �

� � �

� � � �

3
6



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

75

𝑐 (−12, 1) - - ✓ - -

𝑐 (−12, 1) - - ✓ - -

𝑐 (−12, 1) - - ✓ - -

(−12, 3) - - ✓ - -
� � � � � � � �

� � � � �

� � � � � �

𝑚(75)
(3, 0) ✓ ✓ ✓ 2 + 𝑧2 𝑡−2 + 2 + 𝑡+ 𝑡2

(3, 0) ✓ ✓ ✓ 2 + 3𝑧2 + 𝑧4 4 + 𝑡
� �

� �

� � �

3
7



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

76

𝑑 (−8, 1) - - ✓ - -

𝑑 (−8, 1) - - ✓ - -

𝑑 (−8, 1) - - ✗? - -
� � � � � � � �

� � �

� � � �

𝑚(76)

𝑒 (−1, 0) ✓ ✓ ✓ 1 + 𝑧2 𝑡−1 + 2 + 2𝑡

𝑒 (−1, 0) ✗? ✗? ✓ 1 + 𝑧2 𝑡−1 + 2 + 2𝑡

(−1, 0) ✗? ✗? ✓ 1 𝑡−2 + 𝑡−1 + 2𝑡+ 𝑡2

� � � � �

� � � �

� � � � �

� � � � � �

3
8



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

77

𝑓 (−4, 1) - - ✗? - -

𝑓 (−4, 1) - - ✓ - -

𝑓 (−4, 1) - - ✓ - -
� � � � � � � �

� � �

� � � �

𝑚(77)
𝑔 (−5, 0) ✓ ✓ ✓ 1 2𝑡−1 + 3𝑡

𝑔 (−5, 0) ✓ ✓ ✓ 1 2𝑡−1 + 3𝑡
� �

� �

� � �

819 (5, 0) ✓ ✓ ✓ 5 + 10𝑧2 + 6𝑧4 + 𝑧6 6 + 𝑡 𝑇 (3, 4)
�

� �

� � �

3
9



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

𝑚(819) (−12, 1) - - ✓ - - 𝑇 (3,−4)
� �

� � �

� � � �

820 (−6, 1) - - ✓ - -
� �

� � �

� � � �

𝑚(820) (−2, 1) - - ✓ - -
� �

� � �

� � � �

821

ℎ (−9, 0) ✓ ✓ ✓ ∅ ∅

ℎ (−9, 0) ✓ ✗? ✗? ∅ ∅

(−9, 2) - - ✓ - -
� � � � �

� � � �

� � � � �

4
0



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

𝑚(821) (1, 0) ✓ ✓ ✓ 3 + 2𝑧2 2 + 𝑡, 𝑡−1 + 4 + 2𝑡
�

� �

� � �

942 (−3, 0) ✓ ✗? ✗? 2 + 𝑧2 2𝑡−1 + 2 + 3𝑡
� �

� �

� � �

𝑚(942) (−5, 0) ✗? ✗? ✓ ∅ ∅
� �

� �

� � �

943 (1, 0) ✗? ✗? ✓ 3 + 4𝑧2 + 𝑧4 𝑡−1 + 4 + 2𝑡
� �

� �

� � �

𝑚(943) (−10, 1) - - ✗? - -
� � � �

� � �

� � � �

4
1



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

944

𝑖 (−6, 1) - - ✗? - -

𝑖 (−6, 1) - - ✗? - -

𝑖 (−6, 1) - - ✗? - -
� � �
� � �

� � �
� � �

� � � � � � �

� � � � � � � �

𝑚(944) (−3, 0) ✗? ✓ ✗? 1 𝑡−1 + 2𝑡
� �

� �

� � �

945

𝑗 (−10, 1) - - ✗? - -

𝑗 (−10, 1) - - ✓ - -

𝑗 (−10, 1) - - ✗? - -
� �
� � �

� �
� � �

� � �

� � � �

4
2



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

𝑚(945)
(1, 0) ✗? ✗? ✗? 2 + 2𝑧2 2 + 𝑡, 𝑡−1 + 4 + 2𝑡

(1, 0) ✓ ✗? ✗? 2 + 𝑧2 2 + 𝑡, 𝑡−2 + 𝑡−1 + 2 + 2𝑡+ 𝑡2

� � � � � �

� � � �

� � � � �

� � � � � �

946 (−7, 0) ✓ ✓ ✓ 1 3𝑡−1 + 4𝑡
�

� �

� � �

𝑚(946) (−1, 0) ✓ ✓ ✓ 2 𝑡
�

� �

� � �

947 (−2, 1) - - ✓ - -
� �

� � �

� � � �

4
3



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

𝑚(947) (−7, 0) ✗? ✗? ✓ 1 3𝑡−1 + 4𝑡
� �

� �

� � �

948

𝑘 (−1, 0) ✓ ✓ ✓ 𝑧2 𝑡−1 + 2 + 2𝑡

𝑘 (−1, 0) ✗? ✗? ✓ 𝑧2 𝑡−1 + 2 + 2𝑡

𝑙 (−1, 0) ✗? ✗? ✓ ∅ ∅

𝑙 (−1, 0) ✓ ✗? ✗? ∅ ∅
� � � � � � �

� � � �

� � � � �

� � � � � �

𝑚(948) (−8, 1) - - ✓ - -
� �

� � �

� � � �

4
4



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

949
(3, 0) ✓ ✗? ✗? ∅ ∅

(3, 0) ✓ ✓ ✓ 2𝑧2 + 𝑧4 4 + 𝑡
� � �

� �

� � �

𝑚(949) (−12, 1) - - ✓ - -
� �

� � �

� � � �

10124 (7, 0) ✓ ✓ ✓ 7 + 21𝑧2 + 21𝑧4 + 8𝑧6 + 𝑧8 8 + 𝑡 𝑇 (3, 5)
�

� �

� � �

𝑚(10124) (−15, 2) - - ✓ - - 𝑇 (3,−5)
� �

� � � �

� � � � �

4
5



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

10128
(5, 0) ✓ ✗? ✗? 2 + 𝑧2 2𝑡−2 + 2 + 𝑡+ 2𝑡2

(5, 0) ✗? ✓ ✗? 2 + 6𝑧2 + 5𝑧4 + 𝑧6 6 + 𝑡
� � � �

� � � �

� � � � �

� � � � � �

𝑚(10128) (−14, 1) - - ✓ - -
� �

� � �

� � � �

10132 (−8, 1) - - ✓ - -
� �

� � �

� � � �

4
6



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

𝑚(10132)
(−1, 0) ✗ ✗ ✓ ∅ ∅

(−1, 0) ✓ ✓ ✓ ∅ ∅
� � �

� � � �

� � � � �

� � � � � �

10136

𝑚 (−3, 0) ✗? ✗? ✓ 1 𝑡−2 + 2𝑡−1 + 3𝑡+ 𝑡2

𝑚 (−3, 0) ✓ ✓ ✓ 1 𝑡−2 + 2𝑡−1 + 3𝑡+ 𝑡2

𝑛 (−3, 0) ✓ ✗? ✗? 1 + 𝑧2 2𝑡−1 + 2 + 3𝑡

𝑛 (−3, 0) ✓ ✗? ✗? 1 + 𝑧2 2𝑡−1 + 2 + 3𝑡
� � � � � � �

� � � �

� � � � �

� � � � � �

4
7



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

𝑚(10136) (−6, 1) - - ✓ - -
� �

� � �

� � � �

10139 (7, 0) ✓ ✓ ✓ 6 + 21𝑧2 + 21𝑧4 + 8𝑧6 + 𝑧8 8 + 𝑡
�

� �

� � �

𝑚(10139)
∗ (−16, 1) - - ✓ - -

(−17, 4) - - ✓ - -
� �

� � � � �

� � � � � �

� � � � � � �

10140 (−8, 1) - - ✓ - -
� �

� � �

� � � �

4
8



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

𝑚(10140)
(−1, 0) ✗ ✗ ✓ 1 𝑡

(−1, 0) ✓ ✓ ✓ 1 𝑡
� � �

� � � �

� � � � �

� � � � � �

10142
(5, 0) ✓ ✓ ✓ 1 3𝑡−2 + 𝑡+ 3𝑡2

(5, 0) ✓ ✓ ✓ 1 + 6𝑧2 + 5𝑧4 + 𝑧6 6 + 𝑡
� �

� �

� � �

𝑚(10142) (−14, 1) - - ✓ - -
� �

� � �

� � � �

10145 (−12, 1) - - ✓ - -
� �

� � �

� � � �

4
9



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

𝑚(10145)
∗

(3, 0) ✓ ✓ ✓ 2 + 4𝑧2 + 𝑧4 4 + 𝑡

(2, 1) - - ✓ - -

(1, 0) ✓ ✓ ✓ ∅ ∅
�

� � � �

� � � � � �

� � � � � �

� � � � � � �

10160
(1, 0) ✓ ✗? ✗? 1 2𝑡−2 + 𝑡−1 + 2𝑡+ 2𝑡2

(1, 0) ✗? ✗? ✗? 1 + 3𝑧2 + 𝑧4 𝑡−1 + 4 + 2𝑡
� � � � � �

� � � �

� � � � �

� � � � � �

𝑚(10160) (−10, 1) - - ✓ - -
� �

� � �

� � � �

5
0



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

10∗161
(−14, 1) - - ✓ - -

(−15, 4) - - ✓ - -
� �

� � � � �

� � � � � �

� � � � � � �

𝑚(10161)
∗

(5, 0) ✓ ✓ ✓ 2 + 9𝑧2 + 6𝑧4 + 𝑧6 6 + 𝑡

(4, 1) - - ✓ - -

(3, 0) ✓ ✓ ✓ ∅ ∅
�

� � � �

� � � � � �

� � � � � �

� � � � � � �

11𝑛19 (−8, 1) - - ✓ - -
� �

� � �

� � � �

5
1



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

𝑚(11𝑛19) (−1, 0) ✓ ✗? ✗? 3 + 4𝑧2 + 𝑧4 2𝑡−1 + 4 + 3𝑡
� �

� �

� � �

11𝑛38 (−5, 0) ✓ ✗? ✗? 2 + 𝑧2 3𝑡−1 + 2 + 4𝑡
� �

� �

� � �

𝑚(11𝑛38) (−4, 1) - - ✓ - -
� �

� � � �

� � � �

11𝑛95 (3, 0) ✓ ✗? ✗? 3 + 6𝑧2 + 2𝑧4 4 + 𝑡, 𝑡−1 + 6 + 2𝑡
� �

� �

� � �

5
2



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

𝑚(11𝑛95)
𝑝 (−12, 1) - - ✗? - -

𝑝 (−12, 1) - - ✓ - -
� � � � � �

� � �

� � � �

11𝑛118 (3, 0) ✗? ✗? ✓ 4 + 7𝑧2 + 2𝑧4 4 + 𝑡, 𝑡−1 + 6 + 2𝑡
� �

� �

� � �

𝑚(11𝑛118) (−12, 1) - - ✓ - -
� �

� � �

� � � �

12𝑛242 (9, 0) ✓ ✓ ✓ 9 + 39𝑧2 + 57𝑧4 + 36𝑧6 + 10𝑧8 + 𝑧10 10 + 𝑡
�

� �

� � �

5
3



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

𝑚(12𝑛242)
∗ (−18, 1) - - ✓ - -

(−19, 4) - - ✓ - -
� �

� � � � �

� � � � � �

� � � � � � �

12𝑛∗
591

(7, 0) ✓ ✓ ✓ 4 + 17𝑧2 + 20𝑧4 + 8𝑧6 + 𝑧8 8 + 𝑡

(6, 1) ✓

(5, 0) ✓ ✓ ✓ ∅ ∅
�

� � � �

� � � � � �

� � � � � �

� � � � � � �

𝑚(12𝑛591) (−16, 1) - - ✓ - -
� �

� � �

� � � �

5
4



Knot Cromwell
(𝑡𝑏, 𝑟) 𝐿 = −𝐿? 𝐿 = 𝜇(𝐿)? 𝐿 = −𝜇(𝐿)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

15𝑛41185 (11, 0) ✓ ✓ ✓ 14 + 70𝑧2 + 133𝑧4 + 121𝑧6 12 + 𝑡 𝑇 (4, 5)
+55𝑧8 + 12𝑧10 + 𝑧12

�

� �

� � �

𝑚(15𝑛41185) (−20, 1) - - ✓ - - 𝑇 (4,−5)
� �

� � �

� � � �

5
5



Table 2: Transverse Knots up to Arc Index 9

Knot Cromwell
𝑠𝑙 𝑇 = −𝜇(𝑇 )? Note

Type Diagram

31 −5 ✓ 𝑇 (2,−3), 𝐾1

𝑚(31) 1 ✓ 𝑇 (2, 3), 𝐾−2

41 = 𝑚(41) −3 ✓ 𝐾2 = 𝐾−3

51 −7 ✓ 𝑇 (2,−5)

𝑚(51) 3 ✓ 𝑇 (2, 5)

52 −7 ✓ 𝐾3

𝑚(52) 1 ✓ 𝐾−4

61 −5 ✓ 𝐾4

𝑚(61) −3 ✓ 𝐾−5

62 −5 ✓

𝑚(62) −1 ✓

63 = 𝑚(63) −3 ✓

71 −9 ✓ 𝑇 (2,−7)

𝑚(71) 5 ✓ 𝑇 (2, 7)

56



Knot Cromwell
𝑠𝑙 𝑇 = −𝜇(𝑇 )? Note

Type Diagram

72 −9 ✓ 𝐾5

𝑚(72)
1 ✓

𝐾−6

1 ✓

73 3 ✓

𝑚(73) −9 ✓

74 1 ✓

𝑚(74) −9 ✓

75 −9 ✓

𝑚(75) 3 ✓

76 −7 ✓

𝑚(76)
𝑎 −1 ✓

𝑎 −1 ✓

77 −3 ✓

𝑚(77) −5 ✓

57



Knot Cromwell
𝑠𝑙 𝑇 = −𝜇(𝑇 )? Note

Type Diagram

819 5 ✓

𝑚(819) −11 ✓ 𝑇 (3,−4)

820 −5 ✓

𝑚(820) −1 ✓

821 −7 ✓

𝑚(821) 1 ✓

942 −3 ✓

𝑚(942) −5 ✓

943 1 ✓

𝑚(943) −9 ✓

944
𝑏 −5 ✓

𝑏 −5 ✗?

𝑚(944) −3 ✓

945 −9 ✓

58



Knot Cromwell
𝑠𝑙 𝑇 = −𝜇(𝑇 )? Note

Type Diagram

𝑚(945) 1 ✗?

946 −7 ✓

𝑚(946) −1 ✓

947 −1 ✓

𝑚(947) −7 ✓

948
𝑐 −1 ✓

𝑐 −1 ✓

𝑚(948) −7 ✓

949 3 ✓

𝑚(949) −11 ✓

10124 7 ✓ 𝑇 (3, 5)

𝑚(10124) −13 ✓ 𝑇 (3,−5)

10128 5 ✗?

𝑚(10128) −13 ✓

10132 −7 ✓

59



Knot Cromwell
𝑠𝑙 𝑇 = −𝜇(𝑇 )? Note

Type Diagram

𝑚(10132)
−1 ✓

−1 ✓

10136
𝑑 −3 ✓

𝑑 −3 ✓

𝑚(10136) −5 ✓

10139 7 ✓

𝑚(10139)
∗ −13 ✓

10140 −7 ✓

𝑚(10140)
−1 ✓

−1 ✓

10142 5 ✓

𝑚(10142) −13 ✓

10145 −11 ✓

𝑚(10145)
∗ 3 ✓

1 ✓

60



Knot Cromwell
𝑠𝑙 𝑇 = −𝜇(𝑇 )? Note

Type Diagram

10160 1 ✗?

𝑚(10160) −9 ✓

10161 −13 ✓

𝑚(10161)
∗ 5 ✓

3 ✓

11𝑛19 −7 ✓

𝑚(11𝑛19) −1 ✓

11𝑛38 −5 ✓

𝑚(11𝑛38) −3 ✓

11𝑛95 3 ✓

𝑚(11𝑛95) −11 ✓

11𝑛118 3 ✓

𝑚(11𝑛118) −11 ✓

12𝑛242 9 ✓

𝑚(12𝑛242)
∗ −15 ✓

61



Knot Cromwell
𝑠𝑙 𝑇 = −𝜇(𝑇 )? Note

Type Diagram

12𝑛591 7 ✓

𝑚(12𝑛591) −15 ✓

15𝑛41185 11 ✓ 𝑇 (4, 5)

𝑚(15𝑛41185) −19 ✓ 𝑇 (4,−5)
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Table 3: Legendrian Links

Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L2a1 ✓ (−1,−1) ✓ -3 -2 -1 0

-3

-2

-1

0

�

L4a1 ✓ (−1,−1) ✓ -3 -2 -1 0

-3

-2

-1

0

�

m(L4a1) ✓ (−2,−2) ✓ -4 -3 -2 -1 0

-4

-3

-2

-1

0

�

�

�

(−3,−1) -

L5a1 ✓ (−3,−2) - -5 -4 -3 -2 -1 0

-5

-4

-3

-2

-1

0

�

�

�

�

(−4,−1) -

m(L5a1) ✓ (−1,−1) ✓ -3 -2 -1 0

-3

-2

-1

0

�

63



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L6a1 ✓ (−1,−1) ✓ -3 -2 -1 0

-3

-2

-1

0

�

(−1,−1) ✓

m(L6a1) ✓
(−3,−3) ✓ -6 -5 -4 -3 -2 -1 0

-6

-5

-4

-3

-2

-1

0

�

�

�

�

�

(−4,−2) -

(−5,−1) -

L6a2 ✓ (−2,−2) ✓ -4 -3 -2 -1 0

-4

-3

-2

-1

0

�

�

�

(−3,−1) -
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Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L6a3 ✓
(−3,−3) ✓ -6 -5 -4 -3 -2 -1 0

-6

-5

-4

-3

-2

-1

0

�

�

�

�

�

(−3,−3) ✓

(−4,−2) -

(−5,−1) -

m(L6a3) ✓ (−1,−1) ✓ -3 -2 -1 0

-3

-2

-1

0

�

L7a1 ✗
(−1,−2) - -3 -2 -1 0

-3

-2

-1

0

�

�

(−2,−1) -
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Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L7a1) ✗

(−3,−3) - -6 -5 -4 -3 -2 -1 0

-8

-7

-6

-5

-4

-3

-2

-1

0

�

�

�

�

�

(−4,−2) -

(−5,−1) -

(−5,−1) -

(−5,−1) -

(−2,−5) -
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Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L7a2 -
(−6,−1) - -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

(−6,−1) -

m(L7a2) -

(1,−3) - -2 -1 0 1 2

-4

-3

-2

-1

0

�

�

�

(0,−2) -

(−1,−1) -

(−1,−1) -

L7a3 - (1,−1) - -1 0 1 2

-3

-2

-1

0

�

67



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L7a3) -

(−6,−3) - -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-4

-3

-2

-1

0

�

�

�

(−7,−2) -

(−7,−2) -

(−7,−2) -

(−8,−1) -

(−8,−1) -

68



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L7a4 ✓ (−1,−1) ✓ -3 -2 -1 0

-3

-2

-1

0

�

(−1,−1) ✓

m(L7a4) ✓
(−4,−3) - -7 -6 -5 -4 -3 -2 -1 0

-7

-6

-5

-4

-3

-2

-1

0

�

�

�

�

�

�(−5,−2) -

(−6,−1) -

L7a5 ✓ (−3,−2) - -5 -4 -3 -2 -1 0

-5

-4

-3

-2

-1

0

�

�

�

�

(−4,−1) -
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Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L7a5) ✓
(−2,−2) ✗?11 -4 -3 -2 -1 0

-4

-3

-2

-1

0

�

�

�

(−2,−2) ✗?10

(−3,−1) -

(−3,−1) -

L7a6 ✓ (−1,−1) ✗ -3 -2 -1 0

-3

-2

-1

0

�
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Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L7a6) ✓

(−4,−3) - -7 -6 -5 -4 -3 -2 -1 0

-7

-6

-5

-4

-3

-2

-1

0

�

�

�

�

�

�(−4,−3) -

(−5,−2) -

(−5,−2) -

(−6,−1) -

L7n1 - (−6,−1) - -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�
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Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L7n1) - (1,−1) - -1 0 1 2

-3

-2

-1

0

�

L7n2 - (−6,−1) - -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

m(L7n2) - (1,−1) - -1 0 1 2

-3

-2

-1

0

�

L8n1 -
(−3,−1) - -4 -3 -2 -1 0

-3

-2

-1

0

�

(−3,−1) -

72



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L8n1) - (−3,−1) - -4 -3 -2 -1 0

-3

-2

-1

0

�

L8n2 - (−3,−1) - -4 -3 -2 -1 0

-3

-2

-1

0

�

m(L8n2) - (−3,−1) - -4 -3 -2 -1 0

-3

-2

-1

0

�

L9n1 - (−8,−1) - -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

73



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L9n1)
- (1,−1) - 0 1 2

-3

-2

-1

0

�

(1,−1) -

L9n2 - (−8,−1) - -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

m(L9n2)
- (1,−1) - 0 1 2

-3

-2

-1

0

�

(1,−1) -

(1,−1) -

L9n3 - (−8,−1) - -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

74



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L9n3)
- (1,−1) - 0 1 2

-3

-2

-1

0

�

(1,−1) -

L9n4
- (−10,−1) - -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

(−10,−1) -

m(L9n4) - (3,−1) - 0 1 2 3 4

-3

-2

-1

0

�

L9n5
- (−10,−1) - -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

(−10,−1) -

75



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L9n5) - (3,−1) - 0 1 2 3 4

-3

-2

-1

0

�

L9n6
- (−10,−1) - -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

(−10,−1) -

(−10,−1) -

m(L9n6) - (3,−1) - 0 1 2 3 4

-3

-2

-1

0

�

L9n7
- (−8,−1) - -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

(−8,−1) -

76



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L9n7)
- (1,−1) - 0 1 2

-3

-2

-1

0

�

(1,−1) -

L9n8
- (−8,−1) - -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

(−8,−1) -

m(L9n8)
- (1,−1) - 0 1 2

-3

-2

-1

0

�

(1,−1) -

L9n9 - (−8,−1) - -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

77



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L9n9) - (1,−1) - 0 1 2

-3

-2

-1

0

�

L9n10 ✗
(−1,−1) - -3 -2 -1 0

-3

-2

-1

0

�

(−1,−1) -

m(L9n10) ✗

(−3,−4) - -7 -6 -5 -4 -3 -2 -1 0

-5

-4

-3

-2

-1

0

�

�

�

�

(−4,−3) -

(−4,−3) -

(−5,−2) -

78



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L9n10)

(−5,−2) -

(−5,−2) -

(−6,−1) -

(−6,−1) -

(−6,−1) -

(−6,−1) -

79



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L9n11 ✗

(−3,−2) -
?

(−4,−1) -

(−2,−4) -

m(L9n11) ✗

(−1,−3) - -4 -3 -2 -1 0

-4

-3

-2

-1

0

�

�

�

(−1,−3) -

(−2,−2) -

(−3,−1) -

(−3,−1) -

80



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L9n12 - (3,−1) - 0 1 2 3 4

-3

-2

-1

0

�

m(L9n12) - (−10,−1) - -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

L9n13 ✓
(−3,−3) ✗?10 -6 -5 -4 -3 -2 -1 0

-6

-5

-4

-3

-2

-1

0

�

�

�

�

�

(−4,−2) -

(−5,−1) -

(−5,−1) -

81



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L9n13) ✓ (−2,−1) - -3 -2 -1 0

-3

-2

-1

0

�

�

L9n14 -

(1,−3) - -2 -1 0 1 2

-4

-3

-2

-1

0

�

�

�

(0,−2) -

(−1,−1) -

(−1,−1) -

m(L9n14) - (−6,−1) - -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

82



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L9n15
- (−7,−1) - -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

�

(−6,−2) -

m(L9n15) - (1,−1) - 0 1 2

-3

-2

-1

0

�

L9n16 -
(1,−3) - -2 -1 0 1 2

-4

-3

-2

-1

0

�

�

�

(0,−2) -

(−1,−1) -

m(L9n16) - (−6,−1) - -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

83



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L9n17 -

(−6,−3) - -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-4

-3

-2

-1

0

�

�

�

(−7,−2) -

(−7,−2) -

(−7,−2) -

(−7,−2) -

(−7,−2) -

(−8,−1) -

84



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L9n17)
- (1,−1) - 0 1 2

-3

-2

-1

0

�

(1,−1) -

L9n18 ✓
(−3,−3) ✓ -8 -7 -6 -5 -4 -3 -2 -1 0

-8

-7

-6

-5

-4

-3

-2

-1

0

�

�

�

�

�

(−5,−2) -

(−7,−1) -

m(L9n18) ✓ (−1,−1) ✓ -3 -2 -1 0

-3

-2

-1

0

�

85



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L9n19 ✗

(−1,−3) - -6 -5 -4 -3 -2 -1 0

-4

-3

-2

-1

0

�

�

�

(−3,−2) -

(−5,−1) -

L10n23 - (3,−1) - 0 1 2 3 4

-3

-2

-1

0

�

m(L10n23) - (−10,−1) - -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

L10n24 ✗
(−3,−1) - -4 -3 -2 -1 0

-6

-5

-4

-3

-2

-1

0

�

�

�

(−2,−3) -

86



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L10n24) ✗

(−1,−4) - -5 -4 -3 -2 -1 0

-5

-4

-3

-2

-1

0

�

�

�

�

(−1,−4) -

(−2,−3) -

(−3,−2) -

(−3,−2) -

(−4,−1) -

L10n34 - (1,−1) - 0 1 2

-3

-2

-1

0

�
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Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L10n34) -
(−6,−3) - -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-4

-3

-2

-1

0

�

�

�

(−7,−2) -

(−8,−1) -

L10n42 -
(1,−1) - 0 1 2

-3

-2

-1

0

�

(1,−1) -

m(L10n42) -
(−6,−3) - -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-4

-3

-2

-1

0

�

�

�

(−7,−2) -

(−8,−1) -

88



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L10n44 ✓

(−4,−3) - -7 -6 -5 -4 -3 -2 -1 0

-7

-6

-5

-4

-3

-2

-1

0

�

�

�

�

�

�(−4,−3) -

(−5,−2) -

(−5,−2) -

(−6,−1) -

(−6,−1) -

m(L10n44) ✓ (−1,−1) ✗?10 -3 -2 -1 0

-3

-2

-1

0

�

89



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L10n45 -
(−3,−2) - -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

�

(−4,−1) -

m(L10n45) -
(−3,−1) - -4 -3 -2 -1 0

-3

-2

-1

0

�

(−3,−1) -

L10n46 - (−3,−1) - -4 -3 -2 -1 0

-3

-2

-1

0

�

L10n54 ✓ (−1,−1) ✗?10 -3 -2 -1 0

-3

-2

-1

0

�
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Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L10n54) ✓ (−4,−3) - -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

�

�

�

�

�

�

(−6,−2) -

L10n56 ✗

(−4,−3) -
?

(−6,−2) -

(−3,−5) -

m(L10n56) ✗ (−1,−1) - -3 -2 -1 0

-3

-2

-1

0

�

91



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L10n57 ✗
(−4,−1) -

?

(−3,−3) -

m(L10n57) ✗ (−3,−1) - ?

L11n119 - (3,−1) - 0 1 2 3 4

-3

-2

-1

0

�

m(L11n119) - (−10,−1) - -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

L11n132 - (−10,−1) - -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

92



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L11n132) -
(3,−1) - 0 1 2 3 4

-3

-2

-1

0

�

(3,−1) -

L11n133 - (−10,−1) - -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

m(L11n133) - (3,−1) - 0 1 2 3 4

-3

-2

-1

0

�

L11n139 -
(1,−1) - 0 1 2

-3

-2

-1

0

�

(1,−1) -
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Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

m(L11n139) - (−8,−1) - -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

L11n140 - (−8,−1) - -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

m(L11n140) -

(1,−1) - 0 1 2

-3

-2

-1

0

�

(1,−1) -

(1,−1) -

(1,−1) -

94



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L11n148 - (1,−1) - 0 1 2

-3

-2

-1

0

�

m(L11n148) - (−8,−1) - -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

L11n204 -
(−6,−3) - -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-4

-3

-2

-1

0

�

�

�

(−7,−2) -

(−9,−1) -

m(L11n204) - (1,−1) - 0 1 2

-3

-2

-1

0

�

95



Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L11n205 - (−6,−1) - -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

m(L11n205) - (1,−3) - -4 -3 -2 -1 0 1 2

-4

-3

-2

-1

0

�

�

�

L11n218 -
(1,−3) -

?

(−1,−2) -

m(L11n218) - (−6,−1) - -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�
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Link Topological Cromwell
(𝑡𝑏1, 𝑡𝑏2)

Legendrian TB
Type Switch? Diagram Switch? Polytope

L11n219 -
(1,−3) -

?

(−1,−2) -

m(L11n219) - (−6,−1) - -7 -6 -5 -4 -3 -2 -1 0

-3

-2

-1

0

�

L11n226 -
(−6,−3) -

?

(−8,−2) -

m(L11n226) - (1,−1) - 0 1 2

-3

-2

-1

0

�
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