Filtered knot contact homology and transverse knots

Lenny Ng

Duke University

Geometric Topology Seminar Columbia March 4, 2011

References:

- T. Ekholm, J. Etnyre, L. Ng, and M. Sullivan, "Filtrations on the knot contact homology of transverse knots", arXiv:1010.0450.
- L. Ng, "Combinatorial knot contact homology and transverse knots", arXiv:1010.0451.
- T. Ekholm, J. Etnyre, L. Ng, and M. Sullivan, "Knot contact homology", in preparation.
- L. Ng, "Framed knot contact homology", Duke Math. J. 141, 365-406.

Outline

1 The conormal construction

2 Knot contact homology

Transverse homology

Cotangents and conormals

- Let *M* be a smooth *n*-manifold.
 - T^*M is naturally a *symplectic 2n*-manifold;
 - ST^*M , the cosphere bundle of M, is naturally a contact (2n-1)-manifold.

Cotangents and conormals

- Let *M* be a smooth *n*-manifold.
 - T^*M is naturally a *symplectic* 2n-manifold;
 - ST^*M , the cosphere bundle of M, is naturally a contact (2n-1)-manifold.
- Let $K \subset M$ be any embedded submanifold. Define $L_K \subset T^*M$ to be the *conormal bundle* to K:

$$L_K = \{(q, p) \in T^*M : q \in K, \langle p, v \rangle = 0 \,\forall \, v \in T_qK\}.$$

Also define $\Lambda_K \subset ST^*M$ to be the unit conormal bundle to K:

$$\Lambda_K = L_K \cap ST^*M$$
.

Cotangents and conormals

- Let *M* be a smooth *n*-manifold.
 - T^*M is naturally a *symplectic* 2n-manifold;
 - ST^*M , the cosphere bundle of M, is naturally a contact (2n-1)-manifold.
- Let $K \subset M$ be any embedded submanifold. Define $L_K \subset T^*M$ to be the *conormal bundle* to K:

$$L_K = \{(q, p) \in T^*M : q \in K, \langle p, v \rangle = 0 \,\forall \, v \in T_qK\}.$$

Also define $\Lambda_K \subset ST^*M$ to be the *unit conormal bundle* to K:

$$\Lambda_K = L_K \cap ST^*M$$
.

- $L_K \subset T^*M$ is a Lagrangian submanifold $(\omega|_{L_K} \equiv 0)$;
- $\Lambda_K \subset ST^*M$ is a Legendrian submanifold (Λ_K tangent to ξ).

Schematic picture

 $(K \subset M \text{ submanifold}; ST^*M \text{ cosphere bundle}; L_K \text{ conormal bundle to } K; \Lambda_K \text{ unit conormal bundle to } K.)$

Symplectic and topological invariants

Symplectic/contact invariants of T^*M , ST^*M yield smooth invariants of M.

Question

Is T^*M up to symplectomorphism equivalent to M up to diffeomorphism? That is, does the symplectic topology of T^*M completely encode the smooth topology of M?

- Symplectic homology of T*M and loop space cohomology:
 Viterbo, Abbondandolo–Schwarz, Salamon–Weber
- Cylindrical contact homology of ST*M and string topology:
 Cieliebak–Latschev
- related work of Abouzaid, Seidel, . . .

Symplectic and topological invariants: the relative case

Relative case: invariants of L_K , Λ_K under Lagrangian/Legendrian isotopy yield smooth-isotopy invariants of $K \subset M$.

Question

Does the symplectic topology of the conormal bundle L_K completely encode the smooth topology of K? If Λ_{K_1} and Λ_{K_2} are Legendrian isotopic, does that imply that K_1 and K_2 are smoothly isotopic?

Symplectic and topological invariants: the relative case

Relative case: invariants of L_K , Λ_K under Lagrangian/Legendrian isotopy yield smooth-isotopy invariants of $K \subset M$.

Question

Does the symplectic topology of the conormal bundle L_K completely encode the smooth topology of K? If Λ_{K_1} and Λ_{K_2} are Legendrian isotopic, does that imply that K_1 and K_2 are smoothly isotopic?

Apply Legendrian contact homology (\subset Symplectic Field Theory) due to Eliashberg–Hofer (for case $V=J^1(Q)$, work of Ekholm–Etnyre–Sullivan).

Recap

When Legendrian contact homology is well-defined, this gives an isotopy invariant of ${\cal K}.$

Legendrian contact homology

The LCH complex for $\Lambda_K \subset ST^*M$ is (\mathcal{A}, ∂) , where \mathcal{A} is the tensor algebra freely generated by Reeb chords of Λ_K . The differential ∂ counts certain holomorphic disks with $\partial \subset \mathbb{R} \times \Lambda_K$.

The Lagrangian cylinder $\mathbb{R} \times \Lambda_K$ inside the symplectization $\mathbb{R} \times ST^*M$.

Legendrian contact homology

The LCH complex for $\Lambda_K \subset ST^*M$ is (\mathcal{A}, ∂) , where \mathcal{A} is the tensor algebra freely generated by Reeb chords of Λ_K . The differential ∂ counts certain holomorphic disks with $\partial \subset \mathbb{R} \times \Lambda_K$.

Holomorphic-disk contribution of $a_{j_1}a_{j_2}a_{j_3}$ to $\partial(a_i)$, where a_i , a_{j_1} , a_{j_2} , a_{j_3} are Reeb chords.

Knot contact homology

First reasonably nontrivial case:

- $M = \mathbb{R}^3$, $K \subset M$ knot (or link)
- $ST^*M = ST^*\mathbb{R}^3 = J^1(S^2)$
- Think of $\Lambda_K \subset ST^*\mathbb{R}^3$ as the boundary of a tubular neighborhood of $K \subset \mathbb{R}^3$; topologically T^2
- Λ_K is unknotted as a smooth torus but generally knotted as a Legendrian torus.

Knot contact homology

First reasonably nontrivial case:

- $M = \mathbb{R}^3$, $K \subset M$ knot (or link)
- $ST^*M = ST^*\mathbb{R}^3 = J^1(S^2)$
- Think of $\Lambda_K \subset ST^*\mathbb{R}^3$ as the boundary of a tubular neighborhood of $K \subset \mathbb{R}^3$; topologically T^2
- Λ_K is unknotted as a smooth torus but generally knotted as a Legendrian torus.

Definition

Let $K \subset \mathbb{R}^3$ be a knot. The Legendrian contact homology of $\Lambda_K \subset ST^*\mathbb{R}^3$ is the knot contact homology of K,

$$HC_*(K) := HC_*(ST^*\mathbb{R}^3, \Lambda_K).$$

This is a smooth knot invariant.

Transverse homology

Knot contact homology, continued

Knot contact homology $HC_*(K)$ is the homology of a differential graded algebra (A, ∂) , where A is the graded tensor algebra over

$$R := \mathbb{Z}[\lambda^{\pm 1}, \mu^{\pm 1}]$$

generated by finitely many generators in degrees 0, 1, 2 (Reeb chords for Λ_K). The coefficient ring keeps track of the relative homology classes of boundaries of holomorphic disks.

Knot contact homology, continued

Knot contact homology $HC_*(K)$ is the homology of a differential graded algebra (A, ∂) , where A is the graded tensor algebra over

$$R := \mathbb{Z}[\lambda^{\pm 1}, \mu^{\pm 1}]$$

generated by finitely many generators in degrees 0, 1, 2 (Reeb chords for Λ_K). The coefficient ring keeps track of the relative homology classes of boundaries of holomorphic disks.

There is a purely algebraic/combinatorial DGA ($\mathcal{A}^{\text{comb}}$, ∂^{comb}) associated to a braid or knot diagram for K; $\mathcal{A}^{\text{comb}}$ is as above, but ∂^{comb} can be defined without PDEs.

Combinatorial knot contact homology

Here it is, for $B \in B_n$ a braid whose closure is K:

 ϕ_B automorphism of the algebra generated by a_{ii} , $1 \leq i, j \leq n$, $i \neq j$, defined by

$$\phi_{\sigma_k}: \left\{ \begin{array}{cccc} a_{ki} & \mapsto & -a_{k+1,i} - a_{k+1,k} \, a_{ki} & i \neq k, \, k+1 \\ a_{ik} & \mapsto & -a_{i,k+1} - a_{ik} a_{k,k+1} & i \neq k, \, k+1 \\ a_{k+1,i} & \mapsto & a_{ki} & i \neq k, \, k+1 \\ a_{i,k+1} & \mapsto & a_{ik} & i \neq k, \, k+1 \\ a_{k,k+1} & \mapsto & a_{k+1,k} \\ a_{k+1,k} & \mapsto & a_{k,k+1} \\ a_{ij} & \mapsto & a_{ij} & i, \, j \neq k, \, k+1; \end{array} \right.$$

 $n \times n$ matrices Φ_B^L, Φ_B^R defined by

$$\phi_B(a_i) = \sum_{i=1}^n (\Phi_B^L)_{ij} a_j$$
 and $\phi_B(a_i) = \sum_{i=1}^n a_{i} (\Phi_B^R)_{ij}$;

 $n \times n$ matrix $\Lambda = \operatorname{diag}(\lambda, 1, \cdots, 1)$; generators a_{ij} $(i \neq j)$ of degree 0, b_{ij} $(i \neq j)$, c_{ij} , d_{ij} of degree 1, e_{ij} , f_{ij} of degree 2 with $1 \leq i, j \leq n$, assembled into $n \times n$ matrices A, B, C, D, E, F, with $A_{ij} = a_{ij}$ if i > j, μa_{ij} if i < j, $-1 - \mu$ if i = j; $B_{ij} = b_{ij}$ if i > j, μb_{ij} if i < j, 0 if i = j; $C_{ij} = c_{ij}$, $D_{ij} = d_{ij}$, $E_{ij} = e_{ij}$, $F_{ij} = f_{ij}$;

$$\begin{split} &\partial(A) = 0 \\ &\partial(B) = A - \Lambda \cdot \Phi_B^L \cdot A \cdot \Phi_B^R \cdot \Lambda^{-1} \\ &\partial(C) = A - \Lambda \cdot \Phi_B^L \cdot A \\ &\partial(D) = A - A \cdot \Phi_B^R \cdot \Lambda^{-1} \\ &\partial(E) = B - C - \Lambda \cdot \Phi_B^L \cdot D \\ &\partial(F) = B - D - C \cdot \Phi_B^R \cdot \Lambda^{-1}. \end{split}$$

Invariance

Theorem (N., 2003)

The chain homotopy type of $(A^{comb}, \partial^{comb})$ is diagram-independent and yields a knot invariant, combinatorial knot contact homology

$$HC_*^{comb}(K) := H_*(A^{comb}, \partial^{comb}),$$

supported in degrees $* \ge 0$.

Invariance

Theorem (N., 2003)

The chain homotopy type of $(A^{comb}, \partial^{comb})$ is diagram-independent and yields a knot invariant, combinatorial knot contact homology

$$HC_*^{comb}(K) := H_*(\mathcal{A}^{comb}, \partial^{comb}),$$

supported in degrees $* \ge 0$.

Theorem (Ekholm–Etnyre–N.–Sullivan, in progress)

 $(\mathcal{A}^{comb}, \partial^{comb})$ is homotopy equivalent (in fact, "stable tame isomorphic") to the complex (\mathcal{A}, ∂) for Legendrian contact homology; in particular,

$$HC_*(K) \cong HC_*^{comb}(K)$$
.

Properties of knot contact homology $HC_*^{\text{comb}}(K)$

Theorem (N., 2005)

- HC_0^{comb} is a finitely generated, finitely presented noncommutative algebra over $\mathbb{Z}[\lambda^{\pm 1}, \mu^{\pm 1}]$ (=group ring of $H_1(\Lambda_K)$).
- Encodes Alexander polynomial (via linearized HC_1^{comb}).
- HC_0^{comb} is closely related to A-polynomial; distinguishes the unknot (Kronheimer–Mrowka, Dunfield–Garoufalidis).
- ullet $HC_0^{\it comb}$ extends to arbitrary codimension-2 submanifolds.

Properties of knot contact homology $HC_*^{\text{comb}}(K)$

Theorem (N., 2005)

- HC_0^{comb} is a finitely generated, finitely presented noncommutative algebra over $\mathbb{Z}[\lambda^{\pm 1}, \mu^{\pm 1}]$ (=group ring of $H_1(\Lambda_K)$).
- Encodes Alexander polynomial (via linearized HC₁^{comb}).
- HC_0^{comb} is closely related to A-polynomial; distinguishes the unknot (Kronheimer–Mrowka, Dunfield–Garoufalidis).
- ullet $HC_0^{\it comb}$ extends to arbitrary codimension-2 submanifolds.

Corollary (Ekholm–Etnyre–N.–Sullivan)

 $K \subset \mathbb{R}^3$ knot. If Λ_K is Legendrian isotopic to Λ_{unknot} , then K is the unknot.

Transverse knots

Definition

A knot K in a contact 3-manifold (M, ξ) is transverse if it is everywhere transverse to ξ . Two transverse knots are transversely isotopic if they are isotopic through transverse knots.

Bennequin: (closure of) braids \longleftrightarrow transverse knots/links.

Transverse knots

Definition

A knot K in a contact 3-manifold (M, ξ) is transverse if it is everywhere transverse to ξ . Two transverse knots are transversely isotopic if they are isotopic through transverse knots.

Bennequin: (closure of) braids \longleftrightarrow transverse knots/links. For $(M,\xi)=(\mathbb{R}^3,\xi_{\rm std})$, the transverse Markov Theorem (Orevkov–Shevchishin, Wrinkle) states that transverse knots/links are equivalent to braids modulo:

- conjugation in the braid groups
- positive stabilization $B \longleftrightarrow B\sigma_n$:

Transverse classification

Question

Classify transverse knots of some particular topological type.

There is one "classical" invariant of transverse knots: self-linking number.

Definition

A topological knot is transversely simple if its transverse representatives are completely determined by self-linking number; otherwise transversely nonsimple.

Transverse classification

Question

Classify transverse knots of some particular topological type.

There is one "classical" invariant of transverse knots: self-linking number.

Definition

A topological knot is transversely simple if its transverse representatives are completely determined by self-linking number; otherwise transversely nonsimple.

Transversely simple:

- unknot (Eliashberg)
- torus knots and the figure 8 knot (Etnyre–Honda)
- some twist knots (Etnyre-N.-Vértesi)
-

Transverse nonsimplicity

Transversely nonsimple:

- some torus knot cables (Etnyre–Honda, Etnyre–LaFountain–Tosun)
- some 3-braids (Birman–Menasco)
- a number of knots distinguished by Heegaard Floer homology.

Historically difficult problem: find effective invariants of transverse knots.

Definition

A transverse invariant is **effective** if it can distinguish different transverse knots with the same self-linking number and topological type (i.e., prove that some topological knot is transversely nonsimple).

Heegaard Floer homology provided the first.

Lifting a contact structure

Given a contact manifold (M, ξ) , the contact structure ξ itself has a conormal lift to ST^*M :

$$\widetilde{\xi} \cup \widetilde{-\xi} = \{(q,p) \in ST^*M : \langle p,v \rangle = 0 \,\forall \, v \in \xi_q\}.$$

Lifting a contact structure

Given a contact manifold (M, ξ) , the contact structure ξ itself has a conormal lift to ST^*M :

$$\widetilde{\xi} \cup \widetilde{-\xi} = \{(q,p) \in ST^*M : \langle p,v \rangle = 0 \,\forall \, v \in \xi_q\}.$$

If K is transverse to ξ , then the conormal lifts of K and ξ are disjoint: $\Lambda_K \cap \widehat{\pm \xi} = \emptyset$.

Filtering the LCH differential

•
$$(\mathbb{R} \times \Lambda_K) \cap (\mathbb{R} \times \widetilde{\pm \xi}) = \emptyset$$

- $\dim(\mathbb{R} \times \widetilde{\pm \xi}) = 4$
- $\mathbb{R} \times \widetilde{\pm \xi}$ is holomorphic (given suitable choices).

Filtering the LCH differential

We can then filter the LCH differential for Λ_K by counting intersections with the holomorphic 4-manifolds $\mathbb{R} \times \widetilde{\pm \xi}$:

$$\partial^{-}(a_i) = U^{n_+(\Delta)}V^{n_-(\Delta)}a_{j_1}a_{j_2}a_{j_3} + \cdots,$$

where $n_{\pm}(\Delta) \geq 0$ are the number of intersections of the holomorphic disk Δ with $\mathbb{R} \times \widetilde{\pm \xi}$.

Transverse homology

Definition

The (minus) transverse complex of a transverse knot K is the LCH algebra $(CT_*^-(K) = \mathcal{A}, \partial^-)$ over the base ring $R[U, V] = \mathbb{Z}[\lambda^{\pm 1}, \mu^{\pm 1}, U, V]$, with the differential ∂^- filtered by intersections with $\pm \xi$. The transverse homology of K is $HT_*^-(K) = H_*(CT^-(K), \partial^-)$.

Transverse homology

Definition

The (minus) transverse complex of a transverse knot K is the LCH algebra $(CT_*^-(K) = \mathcal{A}, \partial^-)$ over the base ring $R[U, V] = \mathbb{Z}[\lambda^{\pm 1}, \mu^{\pm 1}, U, V]$, with the differential ∂^- filtered by intersections with $\widetilde{\pm \xi}$. The transverse homology of K is $HT_*^-(K) = H_*(CT^-(K), \partial^-)$.

$\mathsf{Theorem}$

There is a combinatorial formula for $(CT_*^-(K), \partial^-)$ in terms of a braid representative of K.

This formula is a small tweak of the combinatorial formula for the complex for knot contact homology.

Combinatorial transverse homology

Here it is, for $B \in B_n$ a braid whose closure is K:

As before, algebra is generated by a_{ij} , b_{ij} , c_{ij} , d_{ij} , e_{ij} , f_{ij} , assembled into $n \times n$ matrices A, B, C, D, E, F; auxiliary $n \times n$ matrices \hat{A} , \hat{A} , \hat{B} , \hat{B} defined by

$$\begin{split} \hat{A}_{ij} &= \begin{cases} a_{ij} & i > j \\ \mu U a_{ij} & i < j \\ -1 - \mu U & i = j \end{cases} & \check{A}_{ij} &= \begin{cases} V a_{ij} & i > j \\ \mu a_{ij} & i < j \\ -V - \mu & i = j \end{cases} \\ \hat{B}_{ij} &= \begin{cases} b_{ij} & i > j \\ \mu U b_{ij} & i < j \\ 0 & i = j \end{cases} & \check{B}_{ij} &= \begin{cases} V b_{ij} & i > j \\ \mu b_{ij} & i < j \\ 0 & i = j; \end{cases} \end{split}$$

then the differential is given by

$$\begin{split} \partial^{-}(A) &= 0 \\ \partial^{-}(B) &= A - \Lambda \cdot \Phi_{B}^{L} \cdot A \cdot \Phi_{B}^{R} \cdot \Lambda^{-1} \\ \partial^{-}(C) &= \hat{A} - \Lambda \cdot \Phi_{B}^{L} \cdot \check{A} \\ \partial^{-}(D) &= \check{A} - \hat{A} \cdot \Phi_{B}^{R} \cdot \Lambda^{-1} \\ \partial^{-}(E) &= \hat{B} - C - \Lambda \cdot \Phi_{B}^{L} \cdot D \\ \partial^{-}(F) &= \check{B} - D - C \cdot \Phi_{B}^{R} \cdot \Lambda^{-1}. \end{split}$$

Main invariance results

Theorem

Up to stable tame isomorphism over R[U,V], the transverse complex (CT_*^-,∂^-) is invariant under transverse isotopy. In particular, transverse homology HT_*^- is an invariant of transverse knots.

Two proofs:

- geometric (Ekholm–Etnyre–N.–Sullivan), by explicit computation of the holomorphic disks in LCH
- combinatorial (N.), via the transverse Markov Theorem.

Flavors of transverse homology

From $(CT^-(K), \partial^-)$ chain complex over R[U, V] (with $R = \mathbb{Z}[\lambda^{\pm 1}, \mu^{\pm 1}]$), obtain:

- 0
- •
- •
- •

Flavors of transverse homology

From $(CT^-(K), \partial^-)$ chain complex over R[U, V] (with $R = \mathbb{Z}[\lambda^{\pm 1}, \mu^{\pm 1}]$), obtain:

- $(\widehat{CT}_*(K), \widehat{\partial})$ chain complex over R, by setting (U, V) = (0, 1) or (1, 0)
- •
- •
- •

- $(\widehat{CT}_*(K), \widehat{\partial})$ chain complex over R, by setting (U, V) = (0, 1) or (1, 0)
- $(\widehat{CT}_*(K), \widehat{\partial})$ chain complex over R, by setting (U, V) = (0, 0)
- •
- •

From $(CT^-(K), \partial^-)$ chain complex over R[U, V] (with $R = \mathbb{Z}[\lambda^{\pm 1}, \mu^{\pm 1}]$), obtain:

- $(\widehat{CT}_*(K), \widehat{\partial})$ chain complex over R, by setting (U, V) = (0, 1) or (1, 0)
- $(\widehat{CT}_*(K), \widehat{\partial})$ chain complex over R, by setting (U, V) = (0, 0)
- $(CT_*^{\infty}(K), \partial^{\infty})$ chain complex over $R[U^{\pm 1}, V^{\pm 1}]$, by tensoring with $R[U^{\pm 1}, V^{\pm 1}]$

•

- $(\widehat{CT}_*(K), \widehat{\partial})$ chain complex over R, by setting (U, V) = (0, 1) or (1, 0)
- $(\widehat{CT}_*(K), \widehat{\partial})$ chain complex over R, by setting (U, V) = (0, 0)
- $(CT_*^{\infty}(K), \partial^{\infty})$ chain complex over $R[U^{\pm 1}, V^{\pm 1}]$, by tensoring with $R[U^{\pm 1}, V^{\pm 1}]$
- $(CC_*(K), \partial)$ chain complex over R, by setting (U, V) = (1, 1)

- $(\widehat{CT}_*(K), \widehat{\partial})$ chain complex over R, by setting (U, V) = (0, 1) or $(1, 0) \longrightarrow$ transverse invariant
- $(\widehat{CT}_*(K), \widehat{\partial})$ chain complex over R, by setting (U, V) = (0, 0) \longrightarrow transverse invariant
- $(CT_*^{\infty}(K), \partial^{\infty})$ chain complex over $R[U^{\pm 1}, V^{\pm 1}]$, by tensoring with $R[U^{\pm 1}, V^{\pm 1}]$
- $(CC_*(K), \partial)$ chain complex over R, by setting (U, V) = (1, 1)

- $(\widehat{CT}_*(K), \widehat{\partial})$ chain complex over R, by setting (U, V) = (0, 1) or $(1, 0) \longrightarrow \text{transverse invariant}$
- $(\widehat{CT}_*(K), \widehat{\partial})$ chain complex over R, by setting (U, V) = (0, 0) \longrightarrow transverse invariant
- $(CT_*^{\infty}(K), \partial^{\infty})$ chain complex over $R[U^{\pm 1}, V^{\pm 1}]$, by tensoring with $R[U^{\pm 1}, V^{\pm 1}] \longrightarrow$ topological invariant
- $(CC_*(K), \partial)$ chain complex over R, by setting (U, V) = (1, 1) \longrightarrow topological invariant; original formulation of knot contact homology

From $(CT^-(K), \partial^-)$ chain complex over R[U, V] (with $R = \mathbb{Z}[\lambda^{\pm 1}, \mu^{\pm 1}]$), obtain:

- $(CT_*(K), \widehat{\partial})$ chain complex over R, by setting (U, V) = (0, 1) or $(1, 0) \longrightarrow$ transverse invariant
- $(\widehat{CT}_*(K), \widehat{\partial})$ chain complex over R, by setting (U, V) = (0, 0) \longrightarrow transverse invariant
- $(CT_*^{\infty}(K), \partial^{\infty})$ chain complex over $R[U^{\pm 1}, V^{\pm 1}]$, by tensoring with $R[U^{\pm 1}, V^{\pm 1}] \longrightarrow$ topological invariant
- $(CC_*(K), \partial)$ chain complex over R, by setting (U, V) = (1, 1) \longrightarrow topological invariant; original formulation of knot contact homology

The homologies of these chain complexes are various flavors of transverse homology.

Effectiveness

Theorem (N., 2010)

Transverse homology (more precisely, \widehat{HT}_0) is an effective invariant of transverse knots in $(\mathbb{R}^3, \xi_{std})$.

Previous transverse invariants:

 Plamenevskaya, Wu: distinguished elements of Khovanov and Khovanov-Rozansky homology; not known to be effective (and guessed not to be?)

Effectiveness

Theorem (N., 2010)

Transverse homology (more precisely, \overline{HT}_0) is an effective invariant of transverse knots in $(\mathbb{R}^3, \xi_{std})$.

Previous transverse invariants:

- Plamenevskaya, Wu: distinguished elements of Khovanov and Khovanov-Rozansky homology; not known to be effective (and guessed not to be?)
- Ozsváth–Szabó–Thurston: distinguished element of knot Floer homology via grid diagrams; known to be effective (work of Baldwin, Chongchitmate, Khandhawit, N., Ozsváth, Thurston, Vértesi, ...)
- Lisca-Ozsváth-Stipsicz-Szabó: distinguished element of knot Floer homology via open book decompositions; known to be effective.

Example: $m(7_6)$ knot

These two transverse representatives of the $m(7_6)$ knot, which are related by a "negative flype", can be distinguished by \widehat{HT}_0 : one has no ring homomorphisms to $\mathbb{Z}/3$, the other has 5. They can't be distinguished by the (hat) HFK invariant, which is

an element of $\widehat{HFK}_{0,0}(m(7_6)) = 0$.

Legendrian knot atlas (Chongchitmate–N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m(7_2)$	$m(7_6)$	9 ₄₄	$m(9_{45})$	9 ₄₈
HFK					
HT					
Knot	10 ₁₂₈	$m(10_{132})$	10 ₁₃₆	$m(10_{140})$	
HFK					
HT					
Knot	$m(10_{145})$	10 ₁₆₀	$m(10_{161})$	12 <i>n</i> ₅₉₁	
HFK					
HT					

Legendrian knot atlas (Chongchitmate–N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m(7_2)$	$m(7_6)$	9 ₄₄	$m(9_{45})$	9 ₄₈
HFK					
HT					
Knot	10 ₁₂₈	$m(10_{132})$	10 ₁₃₆	$m(10_{140})$	
HFK		√		√	
HT					
Knot	$m(10_{145})$	10 ₁₆₀	$m(10_{161})$	12 <i>n</i> ₅₉₁	
HFK					
HT					

2007: N.-Ozsváth-Thurston, using grid diagrams

Legendrian knot atlas (Chongchitmate–N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m(7_2)$	$m(7_6)$	9 ₄₄	$m(9_{45})$	9 ₄₈
HFK	√				
HT					
Knot	10 ₁₂₈	$m(10_{132})$	10 ₁₃₆	$m(10_{140})$	
HFK		√		✓	
HT					
Knot	$m(10_{145})$	10 ₁₆₀	$m(10_{161})$	12 <i>n</i> ₅₉₁	
HFK					
HT					

2008: Ozsváth-Stipsicz, using naturality of LOSS invariant

Legendrian knot atlas (Chongchitmate–N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m(7_2)$	$m(7_6)$	9 ₄₄	$m(9_{45})$	9 ₄₈
HFK	√				
HT					
Knot	10 ₁₂₈	$m(10_{132})$	10 ₁₃₆	$m(10_{140})$	
HFK		✓		√	
HT					
Knot	$m(10_{145})$	10 ₁₆₀	$m(10_{161})$	12 <i>n</i> ₅₉₁	
HFK	√		√	√	
HT					

2010: Chongchitmate-N., using grid diagrams

Legendrian knot atlas (Chongchitmate–N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m(7_2)$	$m(7_6)$	9 ₄₄	$m(9_{45})$	9 ₄₈
HFK	√	×	×	×	×
HT					
Knot	10 ₁₂₈	$m(10_{132})$	10 ₁₃₆	$m(10_{140})$	
HFK	×	✓	×	√	
HT					
Knot	$m(10_{145})$	10 ₁₆₀	$m(10_{161})$	12 <i>n</i> ₅₉₁	
HFK	√	×	√	√	
HT					

HFK invariants can't distinguish these.

Legendrian knot atlas (Chongchitmate–N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m(7_2)$	$m(7_6)$	9 ₄₄	$m(9_{45})$	9 ₄₈
HFK	√	×	×	×	×
HT	√	√	√		√
Knot	10 ₁₂₈	$m(10_{132})$	10 ₁₃₆	$m(10_{140})$	
HFK	×	✓	×	✓	
HT		√	√	√	
Knot	$m(10_{145})$	10 ₁₆₀	$m(10_{161})$	12 <i>n</i> ₅₉₁	
HFK	√	×	√	√	
HT	√		√	√	

2010: N., using transverse homology

Legendrian knot atlas (Chongchitmate–N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m(7_2)$	$m(7_6)$	9 ₄₄	$m(9_{45})$	9 ₄₈
HFK	√	×	×	×	×
HT	√	\checkmark	\checkmark	×?	\checkmark
Knot	10 ₁₂₈	$m(10_{132})$	10 ₁₃₆	$m(10_{140})$	
HFK	×	✓	×	✓	
HT	×?	\checkmark	\checkmark	√	
Knot	$m(10_{145})$	10 ₁₆₀	$m(10_{161})$	12 <i>n</i> ₅₉₁	
HFK	√	×	√	√	
HT	√	×?	√	√	

These are "transverse mirrors", as are the Birman–Menasco knots.

Legendrian knot atlas (Chongchitmate–N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m(7_2)$	$m(7_6)$	9 ₄₄	$m(9_{45})$	9 ₄₈
HFK	√	×	×	×	×
HT	√	√	√	×?	√
Knot	10 ₁₂₈	$m(10_{132})$	10 ₁₃₆	$m(10_{140})$	
HFK	×	✓	×	√	
HT	×?	√	√	√	
Knot	$m(10_{145})$	10 ₁₆₀	$m(10_{161})$	12 <i>n</i> ₅₉₁	
HFK	√	×	√	√	
HT	√	×?	√	✓	