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Cotangents and conormals

Let M be a smooth n-manifold.

T ∗M is naturally a symplectic 2n-manifold;
ST ∗M, the cosphere bundle of M , is naturally a contact

(2n − 1)-manifold.

Let K ⊂ M be any embedded submanifold. Define
LK ⊂ T ∗M to be the conormal bundle to K :

LK = {(q, p) ∈ T ∗M : q ∈ K , 〈p, v〉 = 0∀ v ∈ TqK}.

Also define ΛK ⊂ ST ∗M to be the unit conormal bundle to K :

ΛK = LK ∩ ST ∗M.

LK ⊂ T ∗M is a Lagrangian submanifold (ω|LK ≡ 0);
ΛK ⊂ ST ∗M is a Legendrian submanifold (ΛK tangent to ξ) .
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Schematic picture

K

ΛK Legendrian

LK Lagrangian

M

ST ∗M contact

T
∗
M

symplectic

(K ⊂ M submanifold; ST ∗M cosphere bundle; LK conormal
bundle to K ; ΛK unit conormal bundle to K .)
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Symplectic and topological invariants

Symplectic/contact invariants of T ∗M, ST ∗M yield smooth
invariants of M.

Symplectic homology of T ∗M and loop space cohomology:
Viterbo, Abbondandolo–Schwarz, Salamon–Weber
Cylindrical contact homology of ST ∗M and string topology:
Cieliebak–Latschev
related work of Abouzaid, Seidel, . . .

Relative case: invariants of LK , ΛK under Lagrangian/Legendrian
isotopy yield smooth-isotopy invariants of K ⊂ M.
Apply Legendrian contact homology (⊂ Symplectic Field Theory).

For Legendrian Λ in contact V , counts holomorphic disks in
R × V with boundary on Lagrangian R × Λ with one
boundary puncture at +∞ and some number of boundary
punctures at −∞.
Eliashberg–Hofer; Ekholm–Etnyre–Sullivan for case
V = J1(Q).



Background and setup Knot contact homology String homology Homotopy-group interpretation

Knot contact homology

First reasonably nontrivial case:

M = R
3, K ⊂ M knot or link

ST ∗M = ST ∗
R

3 = J1(S2)

Think of ΛK ⊂ ST ∗
R

3 as the boundary of a tubular
neighborhood of K ⊂ R

3; topologically T 2

ΛK is unknotted as a smooth torus but generally knotted as a
Legendrian torus.

Definition

Let K ⊂ R
3 be a knot. The Legendrian contact homology of

ST ∗
R

3 relative to ΛK is the knot contact homology of K ,

HC∗(K ) := HC∗(ST ∗
R

3,ΛK ).

This is a smooth knot invariant.
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Knot contact homology, continued

Knot contact homology HC∗(K ) is the homology of a dg-algebra
(A, d), where A is the graded tensor algebra over Z generated by:

finitely many generators in degrees 0, 1, 2 (Reeb chords for
ΛK )

λ±1, µ±1 in degree 0 (to keep track of the relative homology
classes of boundaries of holomorphic disks).

The geometric content of (A, d) is encoded in the differential d ,
which counts the holomorphic disks.

There is a purely algebraic/combinatorial dg-algebra
(Acomb, dcomb) associated to a braid or knot diagram for K ; Acomb

is as above, but dcomb can be defined without PDEs.
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Combinatorial knot contact homology

Here it is, for B ∈ Bn a braid whose closure is K :
φB algebra automorphism of An defined by

φσk
:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

aki 7→ −ak+1,i − ak+1,kµ−1aki i 6= k, k + 1
aik 7→ −ai,k+1 − aikak,k+1 i 6= k, k + 1

ak+1,i 7→ aki i 6= k, k + 1
ai,k+1 7→ aik i 6= k, k + 1

ak,k+1 7→ ak+1,k µ−1

ak+1,k 7→ µak,k+1
aij 7→ aij i, j 6= k, k + 1;

n × n matrices ΦL
B , ΦR

B defined by

φB (ai·) =
n

X

j=1

(Φ
L
B )ijaj· and φB (a

·j ) =
n

X

i=1

a
·i (Φ

R
B )ij ;

n × n matrix Λ = diag(λ, 1, · · · , 1); generators aij (i 6= j) of degree 0, bij , cij of degree 1, dij , ei of degree 2
with 1 ≤ i, j ≤ n, assembled into n × n matrices A = (aij ) (with aii = µ − 1), B = (bij ), C = (cij ), D = (dij );

d(A) = 0

d(B) = (1 − Λ · Φ
L
B ) · A

d(C ) = A · (1 − Φ
R
B · Λ

−1
)

d(D) = B · (1 − Φ
R
B · Λ

−1
) − (1 − Λ · Φ

L
B ) · C

d(ei ) = (B + Λ · Φ
L
B · C )ii .



Background and setup Knot contact homology String homology Homotopy-group interpretation

Invariance

Theorem (—, 2002–2004)

The chain homotopy type of (Acomb, dcomb) is

diagram-independent and yields a knot invariant, combinatorial

knot contact homology

HC comb

∗ (K ) := H∗(A
comb, dcomb),

supported in degrees ∗ ≥ 0.

Theorem (Ekholm, Etnyre, Sullivan, —, in progress)

(Acomb, dcomb) is homotopy equivalent (in fact, “stable tame isomorphic”)

to the complex (A, d) for Legendrian contact homology; in

particular,

HC∗(K ) ∼= HC comb

∗ (K ).
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Properties of knot contact homology HC
comb
∗ (K )

Encodes Alexander polynomial (via linearized HC comb

1 ).

HC comb

0 is a finitely generated, finitely presented
noncommutative ring containing Z[λ±1, µ±1] (=group ring of
H1(ΛK )).

HC comb

0 is closely related to A-polynomial; distinguishes the
unknot (Kronheimer–Mrowka, Dunfield–Garoufalidis).

HC comb

0 distinguishes mirrors, mutants (and noninvertible
knots?); can be defined solely in terms of the knot quandle
(?).

HC comb

0 extends to tangles; spatial graphs; virtual knots;
arbitrary codimension-2 submanifolds.
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Cords

HC comb

0 (K ) can be defined topologically: the cord algebra. A cord
of K is a continuous oriented path in R

3 with endpoints on K (not
equal to a fixed point ∗ ∈ K ) and no other points on K .

*
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The cord algebra

The cord algebra of K is the tensor algebra over Z generated by
λ±1, µ±1 and homotopy classes of cords, modulo “skein relations”2:

1

*
= λ ·

*
and

*
=

*
· λ

2 − µ · = ·

3 = 1 − µ

The cord algebra is finitely generated and finitely presented for any
knot, and is evidently an invariant of (framed) smooth knots.

2Skein relation 2 is slightly incorrect; it would be correct if µ commuted

with cords. One fixes this using “framed cords”.
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More on the cord algebra

Theorem (—, 2003–2004)

HC comb
0 (K ) is isomorphic to the cord algebra of K as rings

containing Z[λ±1, µ±1].

Possibly illustrative examples:

HC comb

0 (unknot) = Z[λ±1, µ±1]/((λ − 1)(µ − 1))

HC comb

0 (RH trefoil) = Z〈λ±1, µ±1, x〉 / 〈λµ − µλ, xλ − λx ,

xµx + µxµ − λµ−2 − λµ−1,

xµ2x + µ−1xλµ−1 − λµ−2 − λµ−1〉.

Would like a topological interpretation (à la the cord algebra) for
the entire knot contact homology HC∗(K ).
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Topological reinterpretation of HC∗(K )

Joint with Cieliebak, Ekholm, and Latschev: associate to a knot K

a new knot invariant, the string homology HS∗(K ), which is
evidently an isotopy invariant.

Theorem (Cieliebak, Ekholm, Latschev, —)

HS∗(K ) ∼= HC∗(K ).

HC∗(K )
ff

∼=

EENS &&MMMMMMMMMMOO

∼=CELN

��

K

contact geometry
77o

o
o

o
o

o
o

string topology ''O
O

O
O

O
O

O HC comb
∗ (K )

CC

cord algebra in degree 0

rrHS∗(K )
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M ∪K N

Recall: M = R
3, K ⊂ M. There are two natural Lagrangians in

T ∗M, intersecting in K :

the zero section M

the conormal bundle LK .

Think of LK as a tubular neighborhood N = nbd(K ) ⊂ M; then K

sits naturally in both M and N .
Let M ∪K N be the space constructed as the disjoint union of M

and N glued along K .

K

ΛK Legendrian

LK Lagrangian

M

ST ∗M contact

T
∗
M

symplectic

K

N = nbd(K) ∼= LK

M = R
3



Background and setup Knot contact homology String homology Homotopy-group interpretation

Broken closed strings

Definition

Fix K and a point ∗ ∈ N \ K , and let ℓ be a nonnegative integer. A broken closed
string of length ℓ is a C1 map γ : [0, 1] → M ∪K N such that there exist
0 < t1 < t2 < · · · < t2ℓ < 1 for which:

γ(0) = γ(1) = ∗; γ(ti ) ∈ K for all i

γ maps [0, t1] → N, [t1, t2] → M, [t2, t3] → N , [t3, t4] → M, . . . , [t2ℓ, 1] → N

γ̇(t−i ) = γ̇(t+
i ) for all i .

*

N

K

M
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Chains of broken closed strings

Define:

Σℓ = {broken closed strings of length ℓ}

Cn(Σℓ) = n-chains on Σℓ

Cn =
⊕

ℓ≥0

Cn(Σℓ).

There is the usual boundary operator

∂ : Cn(Σℓ) → Cn−1(Σℓ)

giving a map ∂ : Cn → Cn−1 and satisfying ∂2 = 0.

However, the homology H∗(C∗, ∂) is independent of the knot K .
To define string homology, we perturb ∂ to a new differential d .
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The δ maps

If a broken closed string of length ℓ has an M-string that passes
through K in an extra point, then we can break that M-string in
two to obtain a new broken closed string of length ℓ + 1:

M M

M

K K

N

Since the extra-point condition has codimension 1, this operation
turns a generic n-chain in Σℓ into an (n − 1)-chain in Σℓ+1:

δM : Cn(Σℓ) → Cn−1(Σℓ+1)  δM : Cn → Cn−1 .

Similarly, one can break an N-string:

N N

N

K K

M

to obtain a map

δN : Cn(Σℓ) → Cn−1(Σℓ+1)  δN : Cn → Cn−1 .
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String homology

“Theorem”

d := ∂ + δM + δN is a differential on C∗: d2 = 0.

Problem with well-definedness of δM , δN : transversality/genericity
issues; definition of δM , δN on chain level rather than homology.

Solution: use slightly different complex C̃∗ defined using generic 0-,
1-, and 2-chains of broken closed strings, and define d̃ on C̃∗

analogously to d .

Theorem (Cieliebak, Ekholm, Latschev, —)

(C̃∗, d̃) is a complex: d̃2 = 0. Furthermore, the string homology

HS∗(K ) = H∗(C̃ , d̃) is a knot invariant.
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String homology and knot contact homology

Theorem (Cieliebak, Ekholm, Latschev, —)

The complexes for string homology and knot contact homology are

homotopy equivalent. In particular,

HS∗(K ) ∼= HC∗(K ).

Note: when ∗ = 0, the maps δM , δN precisely give the skein
relations in the cord algebra, and so HS0(K ) is the cord algebra.

...

...

∂

∂

δM

cf. skein relation: − µ · = · .
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Proof of equivalence

The proof of the result HS∗(K ) ∼= HC∗(K ) examines moduli spaces
of holomorphic disks with one boundary puncture mapping to
T ∗M = T ∗

R
3 with boundary on M ∪ N = R3 ∪ LK , and a

length-shortening argument.

K M

T ∗M

LK

Reeb chord for ΛK
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The cord algebra via homotopy groups

We can reformulate the cord algebra HC0(K ) purely in terms of
the knot group and its peripheral subgroup.
Let K be a knot as before. Write

π = knot group = π1(R
3 \ K )

π̂ = peripheral subgroup = π1(∂(tubular nbd of K )) ∼= Z
2

Zπ = group ring of π

Zπ̂ = group ring of π̂ ∼= Z[λ±1, µ±1].

The map π̂ → π turns Zπ into a Zπ̂-bimodule.
One can construct a “noncommutative tensor product”
Zπ ⊗Zπ̂ Zπ, which is also a Zπ̂-bimodule.
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The cord algebra via homotopy groups, continued

Define Aπ,π̂ to be the “noncommutative tensor algebra of Zπ over
Zπ̂”, which is a ring and a Zπ̂-bimodule:

Aπ,π̂ = Zπ̂ ⊕ Zπ ⊕ (Zπ ⊗Zπ̂ Zπ) ⊕ (Zπ ⊗Zπ̂ Zπ ⊗Zπ̂ Zπ) ⊕ · · ·

Let Iπ,π̂ ⊂ Aπ,π̂ be the two-sided ideal generated by:

x1x2 − x1µx2 − x1 ⊗ x2 for all x1, x2 ∈ π

1π̂ − µ − 1π, where 1π̂, µ ∈ Zπ̂ and 1π ∈ Zπ.

Theorem

Aπ,π̂/Iπ,π̂ is isomorphic to HC0(K ) as rings containing

Zπ̂ = Z[λ±1, µ±1].
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The cord algebra is (almost) the group ring of the knot
group

Theorem

The map

Z[λ±1] ⊕ Zπ −→ Aπ,π̂/Iπ,π̂ (∼= HC0(K ))

induces an isomorphism of Zπ̂-bimodules.

Corollary

The cord algebra HC0(K ) distinguishes the unknot.

The proof of the corollary uses nothing more complicated than the
Loop Theorem.
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Open questions—please solve!

Can we generalize homotopy-theoretic definition to all
degrees? I.e., use π, π̂ to construct a complex homotopy
equivalent to the complexes for contact homology, string
homology.

Full(er) Symplectic Field Theory invariant for ΛK ⊂ ST ∗
R

3?

Transverse knots in (R3, ξstd) give a filtration on knot contact
homology; what is it?

Knots in other manifolds? Cord algebra detects knottedness
of spun S2’s in R

4.

Cobordism/concordance of knots?
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