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Abstract. We present the first examples of elements in the fundamental group of the space
of Legendrian links in (S3, ξst) whose action on the Legendrian contact DGA is of infinite
order. This allows us to construct the first families of Legendrian links that can be shown to
admit infinitely many Lagrangian fillings by Floer-theoretic techniques. These new families
include the first known Legendrian links with infinitely many fillings that are not rainbow
closures of positive braids, and the smallest Legendrian link with infinitely many fillings
known to date. We discuss how to use our examples to construct other links with infinitely
many fillings, and in particular give the first Floer-theoretic proof that Legendrian (n,m)
torus links have infinitely many Lagrangian fillings if n ≥ 3,m ≥ 6 or (n,m) = (4, 4), (4, 5).
In addition, for any given higher genus, we construct a Weinstein 4-manifold homotopic to
the 2-sphere whose wrapped Fukaya category can distinguish infinitely many exact closed
Lagrangian surfaces of that genus in the same smooth isotopy class, but distinct Hamiltonian
isotopy classes. A key technical ingredient behind our results is a new combinatorial formula
for decomposable cobordism maps between Legendrian contact DGAs with integer (group
ring) coefficients.
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1. Introduction

In this article, we construct Legendrian loops for several families of Legendrian links in the
standard contact 3-sphere (S3, ξst) and show that their monodromy action on their Legendrian
contact DGA is of infinite order. These are the first examples of such a Floer-theoretic
infinite order, in sharp contrast with the known finite order DGA action of all previously
studied loops. We provide several new consequences of these results, including the first
known examples of Legendrian links with infinitely many Lagrangian fillings which are not
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the rainbow closure of a positive braid1, and can be distinguished via Floer theory.2 These
Lagrangian fillings are all smoothly isotopic, but their Hamiltonian isotopy classes are all
distinct. One of these new Legendrian links has 2 components and, with its Lagrangian
fillings being of genus 1, is arguably the smallest known Legendrian link to date, in terms
of genus and components, with infinitely many Lagrangian fillings. In addition, for any
given genus g ≥ 2, we construct Weinstein 4-manifolds homotopic to the 2-sphere whose
wrapped Fukaya categories can distinguish infinitely many (Hamiltonian isotopy classes of)
exact closed Lagrangian surfaces of that genus, all in the same smooth type. Finally, we
show how to Floer-theoretically detect the existence of infinitely many Lagrangian fillings
for the Legendrian (n,m) torus links of maximal Thurston–Bennequin number (“max-tb”),
with n ≥ 3,m ≥ 6 and (n,m) = (4, 4), (4, 5), and many other Legendrian links, by using the
Legendrian DGA.3

The manuscript also develops technical results on the Legendrian contact DGA, of indepen-
dent interest, needed for our argument. In particular, we present a combinatorial model for
computing DGA morphisms associated to decomposable Lagrangian cobordisms L, where the
morphisms are enhanced over integer group ring coefficients. We show that this is isomor-
phic to the abstract enhancement previously developed by Karlsson, thus proving invariance
and allowing us to perform explicit computations over Z[H1(L)]. This integrally enhanced
package is then used to prove the above Floer-theoretical results concerning infinitely many
Lagrangian fillings.

1.1. Context. Legendrian links in contact 3-manifolds [Ben83, Ad90] are instrumental in
the study of 3-dimensional contact geometry [OS04, Gei08]. The study of their Lagrangian
fillings yields non-trivial DGA representations of the Legendrian contact DGA associated to
any Legendrian link, which themselves are effective invariants for distinguishing Legendrian
representatives in the same smooth type [Che02, Ng03, Siv11]. In particular, Floer theory
has provided far-reaching methods to address questions on Legendrian links; for instance,
along the lines of this paper, see [EP96, Etn03, Kál05, Cha10].

Recently, the first examples of Legendrian links in (S3, ξst) which admit infinitely many
Lagrangian fillings in (D4, λst) were discovered [CG21]. Indeed, [CG21, Corollary 1.5] shows
that the max-tb Legendrian (n,m)-torus link Λ(n,m) admits infinitely many Lagrangian
fillings if n ≥ 3,m ≥ 6 or (n,m) = (4, 4), (4, 5). The method of proof itself relies on the
theory of microlocal sheaves, and it remained unclear whether the existence of infinitely
many Lagrangian fillings, even for one Legendrian link, could also be proven via Floer-
theoretic methods. It also remained unknown whether (typically smaller) links which were
not rainbow closures of positive braids – from which the current sheaf methods do not apply
– could actually admit infinitely many Lagrangian fillings.

(i) First, we show that the Legendrian DGA detects infinitely many fillings and it does so for
new Legendrian links (including links that are not the rainbow closure of a positive braid).
In fact, we significantly improve on [CG21, Corollary 1.5] by showing that simpler classes
of Legendrian braids already admit infinitely many exact Lagrangian fillings, and doing so
Floer-theoretically. For instance, the family of Legendrian braids of affine Dn-type depicted
in Figure 1 (right) is one such class. This also gives an alternative Floer-theoretical proof
that the torus links in [CG21, Corollary 1.5] admit infinitely many Lagrangian fillings.

1Previously known methods to build infinite Lagrangian fillings, including the techniques from microlocal
sheaf theory, do not apply in this general setting.

2Note that, before this manuscript, none of the infinite Lagrangian fillings in [CG21] or [CZ21] was known
to be distinguished via Floer theory.

3In all cases being considered, the max-tb condition is a necessary condition on the Legendrian links in
order to admit an embedded exact Lagrangian filling, see e.g. [Cha10].
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Figure 1. The family of Legendrian links Λn ⊂ (S3, ξst), n ≥ 1, on the left.
The Legendrian links of affine Dn-type are depicted on the right, n ≥ 4. All
of these have infinitely many fillings. The boxes indicate a series of positive
crossings.

Note that, since the appearance of [CG21], the articles [CZ21, GSW20a, GSW20b] have also
continued to develop various cluster and sheaf-theoretic methods that detect infinitely many
Lagrangian fillings for a Legendrian link Λ ⊂ (S3, ξst). Nevertheless, all these techniques are
currently only effective at studying Legendrian links which are positive braids, i.e. when
Λ ⊂ (S3, ξst) admits a Legendrian front given by the rainbow closure of a positive braid,
and do not apply to several of our smallest links. In contrast, the Floer-theoretic argument
we develop also applies to certain Legendrian links Λ ⊂ (S3, ξst) which are not the rainbow
closure of positive braids. For instance, we show that each of the Legendrian links Λn, n ∈ N,
depicted in Figure 1 (left) admits infinitely many Lagrangian fillings. For n = 1, this yields
a Legendrian link Λ1 which is not the rainbow closure of a positive braid because it contains
a tb = −3 stabilized unknot component.

(ii) Second, the existence of infinitely many Lagrangian fillings for our families of Legendrian
links Λ ⊂ (S3, ξst) is deduced from a stronger result on Legendrian loops, Theorem 1.1, as
we explain shortly. In particular, we provide the first examples of Legendrian loops whose
induced monodromy action on the Legendrian contact DGA has infinite order. In addition, we
present the first example of a Weinstein 4-manifold homotopic to the 2-sphere with infinitely
many Hamiltonian isotopy classes of exact Lagrangian surfaces of genus 2 (and no Lagrangian
2-spheres nor exact Lagrangian tori). This is part of the family of Weinstein 4-manifolds in
Corollaries 1.6 and 1.7, which construct such Weinstein 4-manifolds for all genera g ≥ 2. Note
that, at the level of smooth topology, the concatenation of these Legendrian loops with any
decomposable Lagrangian filling does not change the smooth type of the Lagrangian filling.
Thus, we can use these Legendrian loops to produce infinitely many Lagrangian fillings (and
surfaces in Weinstein 4-manifolds) which are distinct up to Hamiltonian isotopy, but these
surfaces are all smoothly isotopic.

(iii) Third, at a technical level, we study the lifts of the DGA maps induced by exact La-
grangian cobordisms to Z-coefficients, which is required to argue the infinite order in our
argument. This is interesting on its own, as it provides correct signs for Floer theoretical
invariants, such as augmentations, and it is a necessary ingredient for the study of cluster
structures4 on augmentation varieties and their holomorphic symplectic structures, as this
requires Floer theory in characteristic 0. In particular, these results from this manuscript
are used in the recent article [CGGS20] to construct a holomorphic symplectic structure on
the augmentation varieties associated to Legendrian positive braids.

4In characteristic different from 2. In particular, the correct signs are needed for arguing in characteristic
0, the most studied case in cluster theory.
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Figure 2. On the left, Lagrangian projection of the Legendrian links Λn, n ≥
1, and the purple box, which contains n positive crossings. The purple-box
Legendrian loop ϑ : S1 → L(Λn) is depicted by the dashed purple trajectory.

On the right, Lagrangian projection of the Legendrian link Λ(D̃n), n ≥ 4,
and the purple box, which contains (n−2) positive crossings. The purple-box

Legendrian loop ϑ : S1 → L(Λ(D̃n)) is also illustrated by the dashed purple
trajectory.

1.2. Main Results. Let β be a positive braid, representing an element in the N -stranded
positive braid monoid Br+

N , N ∈ N. We can associate a Legendrian link Λ(β) ⊂ (S3, ξst) to
β such that Λ(β) is topologically the (−1)-framed closure of β: this is achieved by placing β
in a standard contact neighborhood of the standard Legendrian unknot in S3 of Thurston–
Bennequin number tb = −1. See Figure 3 for a depiction of Λ(β), where throughout this
paper we will describe Legendrian links through their front and/or Lagrangian projections
(see Section 2 for a review). We now define the Legendrian links that we will study in this
paper.

Figure 3. The general front for the Legendrian links Λ(β), on the left, and
the specific example of the Legendrian link Λ(β11), on the right.

By definition, the D̃n–Legendrian link is the Legendrian Λ(β(D̃n)) ⊂ (S3, ξst) associated to

β(D̃n) = (σ2σ1σ3σ2σ2σ3σ1σ2)σn−4
1 ∆2, n ≥ 4,

where ∆ = σ1(σ2σ1)(σ3σ2σ1) is the 4-stranded half-twist. Figure 1 (right) shows a Legendrian

front projection for Λ(D̃n), and the terminology will be explained in Section 2.5

Similarly, the Legendrian link Λn ⊂ (S3, ξst) is the Legendrian link Λn = Λ(βn) associated to
the braid word

βn = (σ2σ1σ1σ2)3σn1 , n ≥ 1.

Figure 1 (left) shows a Legendrian front projection for Λn. These are two distinct families

of Legendrian links, with the exception of the accidental Legendrian isotopy Λ2
∼= Λ(D̃5).

5The D̃n-Legendrian should be read as the affine Dn-Legendrian.
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Finally, we will also consider the Legendrian links associated to the following braids:

βab = (σ2σ1σ3σ2)4σa3σ
b
1, a, b ∈ {1, 2}.

Note that Λ(β22) is Legendrian isotopic to Λ(D̃4). See Figure 3 (right) for a drawing of
Λ(β11). Following the above Dynkin-diagram notation, Λ(β11) can also be referred to as the

Λ(Ã2,1)-Legendrian link. From now onwards, we denote by

H = {Λn}n≥1 ∪ {Λ(D̃m)}m≥4 ∪ {Λ(β11),Λ(β12),Λ(β21)}

the set-theoretic union of the Legendrian links in the Λn and Λ(D̃n) families described above
and the three Legendrians links Λ(β11),Λ(β12),Λ(β21). The Legendrian links in H allow us
to tackle a wide range of additional Legendrian links, thanks to Corollary 1.3 below. This
includes torus links, as in Corollary 1.4, and the knots discussed in Section 7, see Remark
1.5 below.

Let L(Λ) be the space of Legendrian links isotopic to the Legendrian link Λ ⊂ (S3, ξst), with
base point an arbitrary but fixed Legendrian representative. In Section 2, for each of the
links Λ ∈ H, we will define a certain loop ϑ of Legendrians based at Λ: that is, a continuous
map ϑ : (S1,pt) → (L(Λ),Λ). For instance, for the Legendrians in Figure 2, the loop arises
from moving the purple box around the link in the manner depicted. We will refer to this
Legendrian loop ϑ as the purple-box Legendrian loop.

The graph of the Legendrian loop ϑ produces an exact Lagrangian concordance Lϑ in the
symplectization of (S3, ξst) from Λ to itself. Given any filling L ⊂ (D4, λst) of Λ, which we
can view as an exact Lagrangian cobordism from the empty link to Λ, we can concatenate L
with any number of copies of Lϑ to produce an infinite family of fillings

L#Lnϑ, n ∈ N,

of Λ. What we will show is that for Λ ∈ H, we can choose a filling L of Λ such that all of
these fillings L#Lnϑ are distinct.

As discussed earlier, our method of proof involves the Legendrian contact DGA AΛ of Λ,
which is an invariant of the Legendrian isotopy class of Λ ⊂ (S3, ξst), up to stable tame DGA
isomorphism. The concordance Lϑ induces a DGA isomorphism

A(Lϑ) : AΛ → AΛ

while the filling L induces a DGA morphism (“augmentation”)

εL : AΛ → (Z[H1(L)], 0),

where (Z[H1(L)], 0) is the DGA with trivial differential, concentrated in degree 0. Functorial-
ity then implies that the filling L#Lnϑ induces the augmentation εL ◦A(Lϑ)n. To distinguish
the fillings L#Lnϑ from each other, we will distinguish the augmentations εL ◦ A(Lϑ)n, even
allowing for different choices of local systems on the fillings.

To be precise, we say that the ϑ-orbit of the augmentation εL is entire if for any k, l ∈ N
distinct, there is no automorphism ϕ ∈ Aut(Z[H1(L)]) such that

ϕ(εL ◦ A(Lϑ)k) = εL ◦ A(Lϑ)l : AΛ → Z[H1(L)].

The first result in our article is the following:

Theorem 1.1. Let Λ ∈ H be a Legendrian link. The purple-box Legendrian loop ϑ : S1 →
L(Λ) induces a DGA map A(Lϑ) : A(Λ) → A(Λ) of infinite order. In fact, there exists an
exact Lagrangian filling L ⊂ (D4, λst) such that the ϑ-orbit of the corresponding augmentation
εL : AΛ → Z[H1(L)] is entire.

To our knowledge, Theorem 1.1 presents the first Legendrian loops which induce an infinite
order action on the augmentations of a Legendrian contact DGA AΛ. Our work is a spiritual
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successor to the work of T. Kálmán [Kál05], who studied Legendrian loops for positive torus
links Λ(n,m) whose induced action on A(Λ(n,m)) has finite order (n+m).

Theorem 1.1 implies the following:

Corollary 1.2. Let Λ ∈ H. Then the purple-box Legendrian loop ϑ generates an infinite
subgroup Z〈ϑ〉 ⊂ π1(L(Λ)). In addition, the graph of the Legendrian loop ϑ produces a
Lagrangian self-concordance of Λ which has infinite order as an element of the Lagrangian
concordance monoid based at Λ.

Let us now focus on Lagrangian fillings. Theorem 1.1 implies that each of the Legendrian links
Λ ∈ H admits infinitely many Lagrangian fillings, up to Hamiltonian isotopy. More precisely,
there exists a countably infinite collection {Li}i∈N of oriented embedded exact Lagrangian
fillings Li ⊂ (D4, λst) of the Legendrian link Λ in the boundary S3 = ∂D4 such that all Li
are smoothly isotopic for i ∈ N, relative to a neighborhood of the boundary Λ, but none of
the Li are Hamiltonian isotopic to each other; that is, if i 6= j, there exists no compactly
supported Hamiltonian isotopy {ϕt} ∈ Hamc(D4, λst), ϕ0 = Id, such that ϕ1(Li) = Lj .

We note that among the Legendrian links in H, four links—Λ1, Λ(β11), Λ(β12), and Λ(β21)—
have a component which is a stabilized unknot with Thurston–Bennequin number −3. (In
fact Λ(β11) has two such components.) It follows that none of these four links is the rainbow
closure of a positive braid. We emphasize that the methods developed in [CG21, CZ21,
GSW20a, GSW20b] for the detecting of infinitely many Lagrangian fillings only apply to
rainbow closures of positive braids, and thus our Floer-theoretic techniques provide new
results that we currently do not know how to address through cluster algebras [GSW20a,
GSW20b] or the study of microlocal sheaves [CG21, CZ21].6

We can use Legendrian links with infinitely many fillings to produce other Legendrian links
with infinitely many fillings. Roughly speaking, if there is an exact Lagrangian cobordism
from Λ− to Λ+ and Λ− has infinitely many fillings, then Λ+ does as well. (We only prove this
statement subject to some important hypotheses; see Proposition 7.5 for the precise result.)
In particular, we have the following consequence of Theorem 1.1.

Corollary 1.3 (see Proposition 7.5). Let Λ0,Λ ⊂ (S3, ξst) be Legendrian links with Λ0 in
the list H, and suppose that there is a Lagrangian cobordism from Λ0 to Λ consisting of a
sequence of saddle moves at contractible Reeb chords of degree 0. Then the Legendrian link
Λ admits infinitely many exact Lagrangian fillings, distinct up to Hamiltonian isotopy.

As a special case, since there are such cobordisms to the max-tb Legendrian (n,m) torus links

Λ(n,m) from Λ1 for n = 3,m ≥ 6, and from Λ(D̃4) for n,m ≥ 4, we recover the following
result of [CG21].

Corollary 1.4 ([CG21]). The Legendrian torus links Λ(n,m) each admit infinitely many
exact Lagrangian fillings if n ≥ 3,m ≥ 6 or (n,m) = (4, 4), (4, 5).

Remark 1.5. As we will discuss in Section 7.2, among the universe of Legendrian links with
infinitely many fillings, a sensible notion of “simplicity” is given by the Thurston–Bennequin
number, or equivalently the sum 2g +m, where g is the genus of an exact Lagrangian filling
and m is the number of connected components of the link: the smaller 2g+m is, the simpler
the link is. Among the Legendrian links that we can prove have infinitely many fillings, the
simplest by this measure is Λ(β11), which has (m, g) = (2, 1) and thus 2g +m = 4.

If we focus on Legendrian knots, rather than Legendrian links, Corollary 1.3 implies that, for
instance, the knot types 10139, m(10145), m(10152), 10154, and m(10161) all have Legendrian
representatives with infinitely many fillings; see Proposition 7.7. Among these, the simplest

6By Corollary 1.3, we can in fact construct an infinite family of links with infinitely many fillings that are
not the rainbow closure of a positive braid: Λ((σ2σ1σ3σ2)4σa3σ1) for n ≥ N.
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is m(10145), with g = 2 and 2g+m = 5. Two of these knots, 10139 and m(10152), are positive
braid closures and indeed their Legendrian representatives are rainbow closures of positive
braids. We remark that the only other knots with crossing number ≤ 10 that are positive
braid closures are the torus knots T (2, 3), T (2, 5), T (2, 7), T (3, 4), T (2, 9), and T (3, 5); it is
conjectured that the (max-tb) Legendrian representatives of each of these knots has finitely
many fillings [Cas21, Conjecture 5.1]. �

The above results on Lagrangian fillings also have consequences in the study of Stein surfaces.
For each g ∈ N and g ≥ 6, the article [CG21] gave the first examples of Stein surfaces
homotopic to the 2-sphere S2 with infinitely many Hamiltonian isotopy classes of embedded
exact Lagrangian surfaces of genus g (and none of genus less than g). The lower bound was
recently improved to g ≥ 4 in [GSW20b]. In the present work, we can further improve this
bound:

Corollary 1.6. Let g ∈ N and g ≥ 2. Then, there exists a Stein surface W homotopic to
the 2-sphere S2 which admits infinitely many Hamiltonian isotopy classes of embedded exact
Lagrangian surfaces of genus g. In addition, W contains no embedded exact Lagrangian
surfaces of genus h, h ≤ g − 1.

In Corollary 1.6, the Stein surface W for g = 2 can be constructed by attaching a Weinstein
2-handle to the standard symplectic 4-ball (D4, λst) along a max-tb Legendrian representative
of the smooth knot m(10145). The results we prove also allow us achieve g = 1 if we allow
ourselves a bouquet of just two 2-spheres as the given homotopy type, instead of the 2-sphere
S2:

Corollary 1.7. The Stein surface W obtained by attaching two Weinstein 2-handles along
Λ(β11) ⊂ (∂D4, ξst), one per connected component, contains infinitely many Hamiltonian
isotopy classes of embedded exact Lagrangian tori.

Corollaries 1.6 and 1.7 are proven in Section 7. It remains an outstanding problem to con-
struct a Legendrian knot with infinitely many distinct embedded Lagrangian 2-disk fillings
(pairwise smoothly isotopic), or show no such knot exists.7

Organization. Here is an outline of the rest of the paper. In Section 2, we review some nec-
essary background and formally describe the Legendrian links discussed in this introduction.
The Floer-theoretical core of the article is developed in Sections 3, 4, and 5. In particu-
lar, Sections 3 and 4, jointly with Appendix A, develop a new combinatorial model for the
maps between Legendrian contact DGAs with integral coefficients associated to a decompos-
able exact Lagrangian cobordism. We believe these results are of independent interest for
3-dimensional contact topology and Floer theory. We then apply these maps in Sections 6 to
prove Theorem 1.1, and prove a number of corollaries and other ancillary results in Section 7.

Acknowledgements. We thank Tobias Ekholm, Honghao Gao, Eugene Gorsky, Linhui
Shen, and Daping Weng for illuminating conversations. R. Casals is supported by the NSF
grant DMS-1841913, the NSF CAREER grant DMS-1942363 and the Alfred P. Sloan Foun-
dation. L. Ng is partially supported by the NSF grants DMS-1707652 and DMS-2003404. �

7The case of a link with infinitely many planar Lagrangian fillings (pairwise smoothly isotopic) might
already be an interesting start. In terms of Stein surfaces, the analogue of the knot case would be to construct
a Stein surface homotopic to S2 with infinitely many Hamiltonian isotopy classes of pairwise smoothly isotopic
Lagrangian 2-spheres.
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2. Legendrian Links and ϑ-loops

In this section we describe the classes of Legendrian links Λ ⊂ (R3, ξst) and Legendrian loops
that we study in this article. We begin in Section 2.1 with a review of Legendrian links
and exact Lagrangian cobordisms, and then proceed in Sections 2.2 and 2.3 to describe the
particular links of interest to us, which include the links in H presented in the introduction.
We conclude in Section 2.4 by describing the purple-box Legendrian loops that are a key
ingredient in our constructions.

2.1. Legendrian links, exact Lagrangian cobordisms, and fillings. Here we briefly
review the basic geometric terminology that we will need for this paper. There is now
an extensive literature on exact Lagrangian cobordisms, including the papers cited in the
introduction, to which we refer the reader for further details; specifically, the paper [EHK16]
has a full exposition of the setting we will use here.

Rather than work with the contact manifold (S3, ξst) directly, it is convenient to remove a
point and work in the contact manifold (R3, ξst), where ξst is the contact structure given by
the kernel of the standard contact 1-form αst := dz − y dx on R3, endowed with Cartesian
coordinates (x, y, z) ∈ R3. By definition, a link Λ ⊂ (R3, ξst) is Legendrian if it is everywhere
tangent to ξst, or equivalently if αst|Λ = 0; all Legendrian links in this paper are oriented.

As is customary, we will describe Legendrian links in (R3, ξst) by their front and Lagrangian
projections. These are the images of the link under the projections Πxz,Πxy : R3 → R2 to the
xz and xy planes, respectively. Given a Legendrian link Λ, the Reeb chords of Λ are integral
curves of the Reeb vector field ∂z with endpoints on Λ; these correspond to the crossings
of the Lagrangian projection Πxy(Λ). One numerical invariant associated to a Legendrian
link Λ is the Thurston–Bennequin number tb(Λ), which is the number of crossings of Πxy(Λ)
counted with sign.

Example 2.1. The simplest Legendrian knot in R3 is the standard Legendrian unknot with
tb = −1, which we will denote by U . The front projection Πxz(U) is a “flying saucer” with
two cusps, while the Lagrangian projection Πxy(U) is a “figure eight” diagram with a single
crossing; see the top left of Figure 5. �

The symplectization of R3 is the 4-manifold R4 = Rt×R3 equipped with the exact symplectic
form ωst = dλst with λst = etαst. Note that this symplectic manifold is symplectomorphic to
(R4, dλ0), where λ0 := 1

2(x1dy1 − y1dx1 + x2dy2 − y2dx2), (x1, y1, x2, y2) ∈ R4, is the radial

Liouville form in R4. Given that (R4, dλst) is symplectomorphic to the Liouville completion
of the standard symplectic Darboux ball (D4, dλ0), we will also write λst for λ0 and denote
by (D4, λst) the unique exact symplectic filling of (S3, ξst), with a radial primitive Liouville
form.

We will be interested in Lagrangian submanifolds of (R4, dλst), which are surfaces L ⊂ R4 such
that ωst|L = 0. One class of Lagrangian submanifolds is given by cylinders over Legendrians:
if Λ ⊂ R3 is Legendrian, then R× Λ ⊂ R4 is Lagrangian.

More generally, suppose that Λ+,Λ− are Legendrian links in R3. A Lagrangian cobordism
from Λ− to Λ+ is a Lagrangian L ⊂ R4 such that, for some T > 0,

L ∩ ((−∞,−T )× R3) = (−∞,−T )× Λ− and L ∩ ((T,∞)× R3) = (T,∞)× Λ+.

The Lagrangian cobordism L is exact if there is a function f : L → R such that λst|L = df
and f is constant on each of the ends (−∞,−T ) × Λ− and (T,∞) × Λ+ separately. All
Lagrangian cobordisms considered in this paper will be oriented, embedded, and exact. In
the special case where the negative end is empty, an exact Lagrangian cobordism from ∅ to
Λ is called a filling of Λ. See Figure 4.
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Figure 4. A Lagrangian cobordism from Λ− to Λ+ (left) and a filling of Λ (right).

We will be interested in Lagrangian cobordisms and fillings up to exact Lagrangian isotopy,
which is an isotopy through exact Lagrangian cobordisms that fixes the two cylindrical ends
(or the positive cylindrical end, in the case of fillings). In the setting of R4, this is the same as
a Hamiltonian isotopy, see e.g. [Oh15, Section 3.6], which is an isotopy through Hamiltonian
diffeomorphisms fixing the two ends (−∞,−T )× R3 and (T,∞)× R3.

Remark 2.2. Associated to a Legendrian link in R3 or a Lagrangian surface in R4 is its
Maslov number, which takes values in Z. For a Lagrangian surface L, this is the greatest
common divisor of the Maslov numbers of all closed loops in L, where the Maslov number of a
loop in L is understood to be the Maslov number of the corresponding loop in the Lagrangian
Grassmannian of R4. For a Legendrian link Λ, the Maslov number is the Maslov number of
the surface R×Λ. All Legendrians and Lagrangians that we consider in this paper will have
Maslov number 0. �

We will construct exact Lagrangian cobordisms out of key building blocks called elemen-
tary cobordisms, due to [EHK16]. There are three types of elementary cobordisms between
Legendrian links, which we describe in turn.

(i) Isotopy cobordisms. If Λ− and Λ+ are Legendrian links that are related by a Leg-
endrian isotopy Λt, then the trace of this isotopy (the union of {t} × Λt over all t) can be
perturbed to an exact Lagrangian cobordism from Λ− to Λ+, which we will call the isotopy
cobordism associated to this isotopy. The isotopy represents a path in the space of Legen-
drian links from Λ− to Λ+, and homotopic paths lead to isotopy cobordisms that are exact
Lagrangian isotopic.

(ii) Minimum cobordisms. Let U denote a standard Legendrian unknot as in Example 2.1.
By [EP96], U has a filling by a Lagrangian 2-disk, which is necessarily exact, and this filling
is unique up to exact Lagrangian isotopy. Thus if Λ− is any Legendrian link and Λ+ is the
split union of Λ− and a standard unknot U , then there is an exact Lagrangian cobordism
from Λ− to Λ+ given by the union of the filling of U and the cylinder R×Λ−. This cobordism
is called a minimum cobordism and corresponds topologically to the addition of a 0-handle.

(iii) Saddle cobordisms. Let Λ+ be a Legendrian link. Reeb chords of Λ+ correspond
to crossings in the Lagrangian projection Πxy(Λ+). A Reeb chord is called contractible if
there is a Legendrian isotopy of Λ+ inducing a planar isotopy of Πxy(Λ+) and ending in a
Legendrian where the height of the Reeb chord is arbitrarily small. Suppose that we have
a contractible Reeb chord a of Λ+ that corresponds to a positive crossing of Πxy(Λ+) (in
symplectic terms, the Conley–Zehnder index of a is even). One can modify the diagram
Πxy(Λ+) by replacing the corresponding crossing by its oriented resolution to produce the
Lagrangian projection of another Legendrian link Λ−; see Figure 5. There is then an exact
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Lagrangian cobordism from Λ− to Λ+ called a saddle cobordism. This is sometimes called a
pinch move because of what it looks like in the front projection, and we will also sometimes
refer to this as “resolving” the Reeb chord; it corresponds topologically to the addition of a
1-handle.

Figure 5. Two elementary Lagrangian cobordisms, depicted in terms of their
xy projections: a minimum cobordism (left) and a saddle cobordism (right).
The dotted arrows go from the bottom to the top of the cobordisms. The
diagram on the top left is the standard Legendrian unknot U .

We can build more cobordisms out of elementary pieces through the operation of concatena-
tion. Suppose that L1 and L2 are exact Lagrangian cobordisms that go from Λ0 to Λ1 and
from Λ1 to Λ2, respectively. We can remove the top cylinder of L1 and the bottom cylinder
of L2 and glue the resulting Lagrangians along their common boundary Λ1 to produce a new
exact Lagrangian cobordism L1#L2 from Λ0 to Λ2, the concatenation of L1 and L2. An
exact Lagrangian cobordism is decomposable if it is the concatenation of some number of
elementary cobordisms. All of the cobordisms and fillings that we consider in this paper will
be decomposable. Now that we have reviewed the basic geometric concepts and terminology,
let us delve into the specific objects of interest with a view towards the new contributions of
this manuscript.

2.2. Legendrian links associated to positive braids. We now describe the specific Leg-
endrian links in (R3, ξst) that we will consider in this paper. These are a natural family of
Legendrian links associated to positive braids, topologically given by the closures of these
braids with one full negative twist.

Let BrN denote the N -strand braid group, N ∈ N. The standard presentation of BrN is
given by Artin generators σ1, . . . , σN−1, where σi corresponds to a single positive crossing
between strands i and i + 1 of the braid, with relations σiσi+1σi = σi+1σiσi+1 for all i and
σiσj = σjσi for |i − j| > 1. Within BrN , let Br+

N denote the monoid of positive braids; any

element β of Br+
N can be written as a braid word

β :=

l(β)∏
j=0

σij , ij ∈ [1, N − 1],

where l(β) is the length of β ∈ Br+
N , equivalently its number of crossings.

Given a positive braid β, the rainbow closure of β is the Legendrian link whose front projection
is given by drawing β horizontally and joining the left and right ends of β by a nested set
of non-intersecting arcs with a single left and right cusp; see the top diagrams in Figure 7.
Topologically this link is the 0-framed closure of β. As mentioned in the introduction, rainbow
closures are the subject of several other papers on fillings of Legendrian links, including
[CG21, CZ21, GSW20a, GSW20b].
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We note that not all Legendrian links are (isotopic to) rainbow closures of positive braids.
In particular, if Λ is the rainbow closure of a positive braid β ∈ Br+

N , then Λ has Thurston–
Bennequin number tb(Λ) = l(β)−N . If we write g(Λ) for the Seifert genus of the topological
link type of Λ, then there is an obvious Seifert surface for Λ whose Euler characteristic is
N − l(β). It follows that the Bennequin inequality tb(Λ) ≤ 2g(Λ) − 1 must be sharp in
this case, and in particular that Λ must maximize Thurston–Bennequin number within its
topological type. Thus even if Λ represents a topological link that is a positive braid closure,
it can only be a rainbow closure if it maximizes tb.

We will focus on another Legendrian link associated to a positive braid β, which we describe
next and call the (−1)-closure of β. This is topologically the closure of β with a full negative
twist, and is arguably more naturally associated to β than the rainbow closure, due to its
connection to Legendrian satellites as described below. We remark that any rainbow closure
of a positive braid is also (Legendrian isotopic to) the (−1)-closure of another braid, namely
the concatenation of the original braid with a full positive twist.

There is a well-defined (up to isotopy) Legendrian link Λ̃(β) ⊂ (J1S1, ξst) associated to β

(cf. [EV18]). By definition, the Legendrian Λ̃(β) ⊂ (J1S1, ξst) is the Legendrian link whose
front in S1 × R (image of the projection map J1S1 = T ∗S1 × R → S1 × R) consists of the
N horizontal strands S1 × {j}, j = 1, . . . , N , where (positive) crossings are added left to

right according to the braid word β. Figure 6 depicts Λ̃(β) with an explicit example: the
S1-coordinate is horizontal, and the two vertical yellow walls are identified with each other.

Figure 6. The front for the Legendrian link Λ̃(β) ⊂ (J1S1, ξst) associated

to the braid word β (left). Explicit example of Λ̃(β) associated to the braid
word β = σ1σ5σ4σ2σ3σ5σ4σ3σ4σ3σ2σ4σ3σ

2
2σ4σ5σ3σ4σ2σ5σ1σ2 ∈ Br+

6 (right).

Given a Legendrian link Λ̃(β) ⊂ (J1S1, ξst), we denote by Λ(β) ⊂ (R3, ξst) the Legendrian link

obtained by satelliting Λ̃(β) along the standard Legendrian unknot U ⊂ R3. To be precise,
(J1S1, ξst) is contactomorphic to a standard contact neighborhood Op(Λ0) ⊂ (R3, ξst) of

Λ0 ⊂ (R3, ξst), and Λ(β) is the image of Λ̃(β) under the resulting inclusion J1S1 ↪→ R3; this
is a special case of the Legendrian satellite construction [NT04].

Figure 7 (bottom left) shows the front projection for the Legendrian link Λ(β). The transition
from Πxz(Λ) to Πxy(Λ) (“resolution”) can be performed as in [Ng03, Proposition 2.2] and it is
also depicted in Figure 7, both for rainbow and (−1)-closures. In this Lagrangian projection,
a combinatorial advantage is that Reeb chords for Λ(β) ⊂ (R3, ξst) are in bijection with the
(positive) crossings of Πxy(Λ(β)).

We will be interested in the Legendrian contact DGA and associated monodromy of Λ(β),
both of which can be combinatorially described via the xy projection of Λ(β). Rather than
use the xy projection shown in the bottom right of Figure 7, it will significantly simplify
our computations to change Λ(β) by a Legendrian isotopy to have a slightly different xy
projection, as we describe next.
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Figure 7. Two different Legendrian links Λ associated to a positive braid
β, depicted in their front projection (left) and Lagrangian projection (right).
The top row depicts the rainbow closure of β; the bottom row is Λ(β). The
Lagrangian projections are obtained by resolving the corresponding front pro-
jections. The arrows indicate the orientation of the link.

Definition 2.3. Let β be a positive braid. Consider the link diagram in R2 given by the
blackboard-framed satellite closure of β around the figure-eight unknot diagram Πxy(U), as
depicted in the rightmost diagram of Figure 8. If this diagram is the Lagrangian projection
of a Legendrian link, then we call this Legendrian link the (−1)-closure of β. �

It is apparent that Λ(β) and the (−1)-closure of β represent smoothly isotopic links, as they
are both the (−1)-framed closures of the braid β. Furthermore, their Lagrangian projections
are regularly homotopic: an isotopy between them is indicated in Figure 8. The first step in
this isotopy is just a planar isotopy moving the

(
N
2

)
negative crossings to the left of β to the

top of the diagram. We then use a sequence of Reidemeister II and III moves to obtain the
square-grid configuration of crossings shown in the blue box in Figure 8 (right). However,
the smooth isotopy from the center diagram to the right diagram does not always represent a
Legendrian isotopy—and in particular the right diagram does not even necessarily represent
a Legendrian link—as we illustrate by an example.

Figure 8. An isotopy from the Lagrangian projection obtained by the reso-
lution of a front projection (left) to the (−1)-closure (right). The red excla-
mation mark indicates that the smooth isotopy between the center and right
diagrams does not necessarily represent a Legendrian isotopy, depending on
the choice of β.

Example 2.4. Consider the Legendrian link Λ(e) where e is the trivial 2-stranded braid
[∅] ∈ Br+

2 . Following the resolution procedure as in Figure 7, we find that the Lagrangian
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projection of Λ(e) is the exact Lagrangian L ⊂ R2 depicted in Figure 9.(i). In what follows,
we use D. Sauvaget’s calculus [Sau04, Section II.2] for exact Lagrangian projections – see also
[Lin16, Section 2] for an introduction. Let A,B,C, P1, P2 ∈ R+ be the areas of the bounded
regions R2 \ L, as shown in Figure 9.(i); we may and do assume that we have B < C. The
two area constraints for this projection read

P1 = A+B, P2 = A+ C.

In order to perform a Reidemeister III in the region with area B, we first empty the area in
that region, leading to Figure 9.(ii), and the corresponding exactness constraints are satisfied:

P1 = 0 + (A+B), P2 = (A+B)− (A+ C).

The Reidemeister III move leads to Figure 9.(iii) and an additional Reidemeister II move,
creating a canceling pair of crossings, to Figure 9.(iv). A second Reidemeister III move,
which is admissible due to the zero area in its triangular region, yields Figure 9.(v). The
area constraints are still satisfied, as they coincide with those in Figure 9.(ii). These moves
concatenate to a Hamiltonian isotopy from Figure 9.(i) to Figure 9.(v), through exact La-
grangians. Now, we claim that the transition from Figure 8 (Center) to Figure 8 (right)
cannot exist through exact Lagrangians: the resulting Lagrangian – shown in Figure 9 – is
not an exact Lagrangian. This can be directly seen by the area constraints:

α = γ + δ + ε, α+ β + ε = γ, α, β, γ, δ, ε ∈ R+,

which imply δ + β + 2ε = 0, contradicting positivity of the areas δ, β, ε ∈ R+. Alternatively,
it is rather immediate that the two curves in Figure 9.(vi) bound an immersed annulus, with
positive area. Hence, the conclusion is that a constraint on β needs to be imposed, should
we want to work with a Legendrian link through a Lagrangian projection of the form shown
in Figure 8 (right). �

We will want to consider braids where the isotopy in Figure 8 is legal. In the following
definition, let π : J1S1 → T ∗S1 denote the projection to the first factor, where J1S1 =
T ∗S1 × Rz with the standard contact form dz − λst.

Definition 2.5. Let β ∈ Br+
N , N ∈ N, and consider its smooth braid closure c(β) in S1×R ∼=

T ∗S1, depicted as a (horizontal) link diagram. Then β ∈ Br+
N is said to be admissible if c(β)

is the Lagrangian projection of a Legendrian link Λ ⊂ (J1S1, ξst): that is, if there exists a
Legendrian link Λ ⊂ (J1S1, ξst) such that c(β) = π(Λ) as link diagrams, where crossings are
taken into account. �

As we now explain, if β is admissible, then the isotopy in Figure 8 is legal and in particular
it makes sense to refer to the (−1)-closure of β.

Proposition 2.6. Suppose that β is admissible. Then the diagram on the right of Figure 8 is
the Lagrangian projection of a Legendrian link in R3, and the sequence of moves in Figure 8
represents a Legendrian isotopy.

Proof. Suppose β is admissible, and let Λ be the Legendrian link in J1S1 whose Lagrangian
projection is c(β). If we cut Λ at a point in S1 then we obtain a Legendrian braid in
J1([0, 1]) in the terminology of [EV18]. By the classification of positive Legendrian braids
[EV18, Theorem 3.4], this braid is Legendrian isotopic to the Legendrian braid whose front
projection is β. It follows that this remains true when we satellite these braids around the
standard Legendrian unknot U ⊂ R3. The satellite of the latter braid is Λ(β) as defined in
Section 2.2, which in the Lagrangian projection is the leftmost diagram in Figure 8. On the
other hand, one directly sees (without passing to the front projection) that the Lagrangian
projection of the satellite of Λ is the rightmost diagram in Figure 8. The result follows. �
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Figure 9. The sequence of Lagrangian projections discussed in Example
2.4. The transitions from (i) to (v) are all realized by Hamiltonian isotopies,
preserving the exactness of the immersed Lagrangian. Item (vi) displays an
example of a Lagrangian which is not exact. The consequence of (v) not being
necessarily Legendrian isotopic to (vi) leads to Definition 2.5.

Example 2.4 shows that not every braid β ∈ Br+
N is admissible. Let us introduce a sufficiency

criterion for a braid β ∈ Br+
N to be admissible. For that, let

∆N =
N−1∏
i=1

N−i∏
j=1

σj ∈ Br+
N

denote the half-twist on N strands, i.e., the Garside element of the N -stranded braid group
BrN .

Proposition 2.7. Any positive braid containing a half-twist is admissible, i.e. if β1, β2 are
braids in Br+

N , then β1∆Nβ2 is admissible.

Proof. Since admissibility depends only on the closure of the braid in the solid torus, we
may move β2 to the beginning of the braid; it thus suffices to show that if β ∈ Br+

N then

β∆N is admissible. For this, consider the standard front for Λ̃(β∆N ) in S1 × R and deform
it, scanning left-to-right, using the resolution procedure in [Ng03, Section 2.1]: see [Ng03,
Figure 3] and Figure 10 (left). The procedure described in [Ng03] uses a front projection in
Rq×Rz, instead of S1

q×Rz, but can still be used with this latter base S1×R by using the half-

twist ∆N ∈ Br+
N , which is part of the braid β∆N by hypothesis. Indeed, this is depicted in

Figure 10 (left), where the half-twist is shown in the yellow box. The Lagrangian projection
associated to this deformed front is depicted in Figure 10 (right), where the half-twist ∆N

now appears thanks to the crossings associated to the (green) Reeb chords that appear at
the right-most part of the front in S1

q × Rz. This concludes the statement. �
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Figure 10. Deforming the front projection for Λ̃(β∆N ) in S1 × R (left) so
that the corresponding Lagrangian projection in T ∗S1 is as shown on the right.

For future reference we note the following variant on Proposition 2.7. Each crossing in the
Lagrangian projection in T ∗S1 of a Legendrian link in J1S1 corresponds to a Reeb chord
of the link. A Reeb chord is called contractible if its height can be made arbitrarily small
without changing the Lagrangian projection of the link (up to planar isotopy).

Proposition 2.8. If β1, β2 are braids in Br+
N , then any crossing coming from β1 or β2 in

the admissible braid β1∆Nβ2 is contractible.

Proof. First consider the special case where β2 consists of a single crossing. We claim that
this crossing is contractible. Indeed, a slight variant on the construction from Figure 10
involving swapping two of the strands in the yellow box in the front projection gives the
desired contractible crossing: see Figure 11.

Figure 11. A variant on the argument from Proposition 2.7. Here two of
the strands passing through the yellow ∆N box in the front projection swap
places, producing a contractible crossing in the Lagrangian projection: the
red dot on the right, corresponding to the single crossing of β2.

In the general case, cut the closure of the braid β1∆Nβ2 at the specified crossing. Push ∆N

to the end of the resulting braid by a sequence of Reidemeister III moves. From the above
special case, we can realize the resulting braid as the Lagrangian projection of a Legendrian
link in such a way that the distinguished crossing is contractible. Then push ∆N back into
its original position without disturbing a neighborhood of the contractible crossing; this is a
braid isotopy and thus corresponds to a Legendrian isotopy by the classification of positive
Legendrian braids [EV18]. �

2.3. A class of Legendrian (−1)-closures. The Legendrian links that we use in this man-
uscript are particular examples of (−1)-closures, obtained by the following procedure. Let
w(β) ∈ SN be the permutation given by the Coxeter projection w : BrN → SN of β onto
the symmetric group, where the relations σ2

i = 1 are imposed for the Artin generators
i = 1, . . . , N − 1. Suppose that the bijection w(β) : [1, N ] → [1, N ] has a fixed point
i, for some i ∈ [1, N ]. Then the Legendrian Λ(β) contains a connected component Λ(β)i
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which is a standard Legendrian unknot. Since Λ(β)i ⊂ (R3, ξst) is a Legendrian link, there
exists a neighborhood Op(Λ(β)i), disjoint from Λ(β) \ Λ(β)i, which is contactomorphic to
Op(Λ(β)i) ∼= (J1Λ(β)i, ξst), where the contactomorphism sends Λ(β)i ⊂ Op(Λ(β)i) to the
zero section Λ(β)i ⊂ (J1Λ(β)i, ξst).

Now, let γ ∈ Br+
M be a positive M -stranded braid, M ∈ N. Let us denote by Λ(γ)i ⊂

Op(Λ(β)i) the Legendrian link obtained by satelliting Λ̃(γ) ⊂ (J1S1, ξst) along the standard
Legendrian unknot Λ(β)i ⊂ Op(Λ(β)i).

Definition 2.9. Let β ∈ Br+
N be such that i ∈ [1, N ] is a fixed point of w(β), and γ ∈ Br+

M

be an M -stranded braid, M ∈ N. The Legendrian link Λ(β, i; γ) ⊂ (R3, ξst) is the Legendrian
link (Λ(β)\Λ(β)i)∪Λ(γ)i ⊂ (R3, ξst), where Λ(γ)i ⊂ Op(Λ(β)i) is embedded in an arbitrarily
but fixed neighborhood of the component Λ(β)i. Colloquially, Λ(β, i; γ) is the result of
satelliting the braid γ around the component of the Legendrian link Λ(β) labeled by i. �

The Legendrian links in Theorem 1.1 are of the form Λ(β, i; γ) for γ ∈ Br+
2 and β ∈ Br+

N ,
where N = 2, 3. For instance, the Legendrian links Λn come from setting β = σ6

1 and γ = σn1
with N = M = 2:

Λn ∼= Λ(σ6
1, 1;σn1 ).

Similarly, the Legendrian links Λ(D̃n), n ≥ 4, come from setting β = (σ1σ2σ2σ1)2σ2
2 and

γ = σn−2
1 with N = 3,M = 2:

Λ(D̃n) ∼= Λ((σ1σ2σ2σ1)2σ2
1, 1;σn−2

1 ).

Remark 2.10. As noted in the introduction, the Legendrian links Λ(D̃n), n ≥ 4, are also
the rainbow closures of the positive braids

ηn = (σ2σ1σ3σ2σ2σ3σ1σ2)σn−4
1 , n ≥ 4, ηn ∈ Br+

4 .

The brick diagram [Rud92, BLL18] associated to this positive braid word ηn coincides with

the CoxeterDynkin diagrams D̃n associated to the affine Coxeter group of D-type. This affine
Coxeter diagram also arises from two natural constructions starting with ηn. First, the quiver
associated to the positive braid ηn, according to the algorithm in [BFZ05], and second, as
the diagram for the intersection form associated to a set of (distinguished) generators in the
first homology group of a minimal-genus Seifert surface associated to the link given by ηn
[Mis17, BLL18]. In addition, the augmentation variety associated to Λ(D̃n) admits a cluster

structure of D̃n-type. These reasons lead us to the notation Λ(D̃n) and referring to these
braids as the (maximal-tb) affine Dn-Legendrian links. �

Definition 2.9 is rather direct diagrammatically. Indeed, given the front diagram for Λ(β) ⊂
(R3, ξst) shown in Figure 7 (left), a front diagram for Λ(β, i; γ) ⊂ (R3, ξst) is obtained by
taking the M -copy Reeb push-off of the i-th component of Λ(β), corresponding to the i-th

strand in Br+
N , and inserting the front diagram for Λ̃(γ). This is shown in Figure 12.

Figure 12. Front projections for the Legendrian links Λ(β) ⊂ (R3, ξst) (left)
and Λ(β, i; γ) ⊂ (R3, ξst) (right).

17



Similarly, this construction is depicted in the Lagrangian projection in Figure 13.

Figure 13. Lagrangian projections for the Legendrian links Λ(β) ⊂ (R3, ξst)
(left) and Λ(β, i; γ) ⊂ (R3, ξst) (right). These are the Lagrangian projections
that we use in order to compute the Legendrian contact DGA.

The crucial property of the Legendrian links Λ(β, i; γ) ⊂ (R3, ξst) is the existence of a specific
contact isotopy ϕt : (R3, ξst) → (R3, ξst), t ∈ [0, 1], such that ϕ1(Λ(β, i; γ)) = Λ(β, i; γ) and
ϕt|R3\Op(Λ(β)i) = Id for all t ∈ [0, 1], as we now explain.

2.4. The purple-box Legendrian loop. Let β ∈ Br+
N , γ ∈ Br+

M and consider the Legen-
drian link Λ(β, i; γ) ⊂ (R3, ξst). We construct a Legendrian loop ϑ : S1 → L(Λ(β, i; γ)) based
at Λ(β, i; γ), whose action on the Legendrian contact DGA of Λ(β, i; γ) will be studied in
Section 5, and subsequently lead to Theorem 1.1. Intuitively, the Legendrian loop ϑ will fix
the components of the Legendrian link Λ(β) which do not belong to the satellite Λ(γ) ⊂ Λ(β),
and induce a rotation of Λ(γ) corresponding to one full revolution of the S1 direction in J1S1.
Let us provide the details for its rigorous description.

Consider the component Λ(β)i ⊂ Λ(β) with a standard neighborhood Op(Λ(β)i) and the

Legendrian link Λ̃(γ) ⊂ Op(Λ(β)i). Fix a contactomorphism

Op(Λ(β)i) ∼= (J1S1
θ, ker(dz − pθdθ)),

where (J1S1
θ, ker(dz − pθdθ)) is the 1-jet space with coordinates (θ, pθ) ∈ T ∗S1, z ∈ R.

Fix the standard round metric in S1, and choose R ∈ R+ such that Λ̃(γ) ⊂ BR, where
BR = DR(T ∗S1) × [−R,R] ⊂ T ∗S1 × R, with DR(T ∗S1) being the radius R (open) disk
bundle.

Now, consider the Hamiltonian pθ : J1S1
θ → R and its associated contact vector field Xpθ =

−∂θ. Let ε ∈ R+, and choose a smooth cut-off function χ : J1S1 → R such that

χ|BR+ε
≡ 1, χ|BR+2ε\BR+ε

≡ 0.

The contact vector field Xϑ associated to the Hamiltonian χ · pθ : J1S1 → R restricts to −∂θ
in the tube BR containing Λ̃(γ), and it vanishes away from BR. The contact flow of Xϑ yields

a compactly supported contact isotopy Θ̃t : (J1S1, ξst) → (J1S1, ξst), which we parametrize

such that t = 1 is the smallest t ∈ R+ with Θ̃t(Λ̃(γ)) = Λ̃(γ) pointwise.

Definition 2.11. Let β ∈ Br+
N be such that i ∈ [1, N ] is a fixed point of w(β), and let

γ ∈ Br+
M be an M -stranded braid, M ∈ N. The Θt-contact isotopy associated to Λ(β, i; γ) ⊂

(R3, ξst), t ∈ [0, 1], is the compactly supported isotopy obtained by extending the compactly

supported contact isotopy Θ̃t : Op(Λ(β)i) → Op(Λ(β)i), t ∈ [0, 1], by the identity map on
the complement of Op(Λ(β)i). A Legendrian loop ϑ : S1 → L(Λ(β, i; γ)) is said to be a
ϑ-loop if it is obtained as Θt(Λ(β, i; γ)), t ∈ [0, 1], for a Θt-contact isotopy associated to
Λ(β, i; γ) ⊂ (R3, ξst). �
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We will also call the Legendrian ϑ-loops in Definition 2.11 purple-box Legendrian loops, as
they are obtained by moving the purple box which contains the braid γ clockwise around
until it comes back to itself. Figure 14 (left) provides a schematic picture of such a ϑ-loop.

Figure 14. Left: a Legendrian ϑ-loop for the Legendrian link Λ(β, i; γ) ⊂
(R3, ξst), where the purple γ-box moves around clockwise around the β-box
and comes back to itself using the upper strands). Right: the local move,
consisting of a sequence of l(γ) Reidemeister III moves, which we use in order
to push the purple γ-box, right to left, through the β-box.

From a computational viewpoint, it is important to stress that a Legendrian ϑ-loop can be
described in the Lagrangian projection strictly in terms of Reidemeister III moves and planar
isotopies.8 In precise terms, a Legendrian ϑ-loop consists of two pieces:

(i) Transferring the purple γ-box through the β-box, through a sequence of Reidemeister
III moves. Indeed, it suffices to notice that moving the purple γ-box through one
strand is achieved by l(γ) consecutive Reidemeister III moves, one per each crossing
of γ. This local move, past one strand, is shown in Figure 14 (right). Thus, the
purple γ-box can be pushed through the β-box, right to left, by performing l(β) · l(γ)
Reidemeister III moves.

(ii) Moving the purple γ-box from the left of the β-box to its right using the upper strands.
This is achieved by a planar isotopy, which moves the purple γ-box up and to the
right (leaving the β-box beneath and passing above it), and then applying N2 · l(γ)
Reidemeister III moves to make the purple γ-box go around the pig-tailed loop until
it returns to its initial position.

Hence, using a total of l(γ) ·(N2 + l(β)) Reidemeister III moves in the Lagrangian projection,
we can realize the Legendrian ϑ-loops in Definition 2.11.

Remark 2.12. Legendrian ϑ-loops can be considered as elements in π1(L(Λ(β, i; γ))), or we
can graph them in the symplectization as Lagrangian self-concordances Lϑ ⊂ (R × R3, λst)
from the Legendrian link Λ(β, i; γ) ⊂ (R3, ξst) to itself. Most interestingly, given an exact
Lagrangian filling L ⊂ (D4, λst) of Λ(β, i; γ) ⊂ (S3, ξst), we can concatenate L with Lϑ, at the
convex end of L and the concave end of Lϑ. One may ask whether concatenating Lagrangian
fillings with Lϑ yields new Lagrangian fillings not Hamiltonian isotopic to L. Theorem 1.1
shows that there are Legendrian links where concatenating certain Lagrangian fillings with
k consecutive copies of Lϑ yields (infinitely many) pairwise distinct Lagrangian fillings, for
different values of k ∈ N. �

Example 2.13. Legendrian ϑ-loops behave differently depending on the choice of braids
β ∈ Br+

N and γ ∈ Br+
M . For example, if γ ∈ Br+

1 is the trivial 1-stranded braid, then
the ϑ-loop is constant on the entire link Λ(β, i; γ) ⊂ (R3, ξst), regardless of the choice of

8One could instead use the resolution of the front projection as in Figure 7, and similarly push the purple
γ-box around the front projection; this is e.g. what Kálmán does in [Kál05]. However, this version of the
isotopy requires the use of both Reidemeister III and II moves. Our setup does not require Reidemeister II
moves and this consequently simplifies our computations with the Legendrian contact DGA.
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β ∈ Br+
N . On the other hand, if we choose the braid β to be 1-stranded and the purple box

γ = σn+2
1 ∈ Br+

2 to be 2-stranded, then we recover Kálmán’s Legendrian loop of (2, n)-torus
links [Kál05]. In this case, [Kál05, Theorem 1.3] shows that the action of the ϑ-loop on
the degree-0 Legendrian contact homology of Λ(β, i; γ) is nontrivial but of finite order. See
Section 5.3 for further discussion of the Kálmán loop. �

3. Legendrian Contact DGAs and Cobordism Maps

In this section, we review the definition of the Legendrian contact DGA, with particular
attention paid to integer and group-ring coefficients and the role of spin structures. We then
proceed to discuss maps between DGAs induced by exact Lagrangian cobordisms, including
exact Lagrangian fillings. There is now a reasonably large literature about these cobordism
maps, beginning with work of Ekholm, Honda, and Kálmán [EHK16] defining the maps over
Z2; we will need to compute a lift of these maps to Z, which abstractly exists by work
of Karlsson [Kar17, Kar20]. In this section we will present a framework that will allow
us to perform explicit combinatorial computations of the cobordism maps over Z, building
them out of maps corresponding to particular elementary cobordisms. The maps for these
elementary cobordisms are then presented in the following section, Section 4.

3.1. The Legendrian contact DGA. The Legendrian contact DGA, also known as the
Chekanov–Eliashberg DGA, has been well-studied in the literature, especially in the setting
of (R3, ξst). For the definition of the DGA in this setting, we refer the reader e.g. to [Che02]
for the original definition over Z2, [ENS02] for the definition over Z[t±1] (see also the survey
[EN18]), and [NR13, NRS+20] for an upgraded definition with multiple base points. Here
we will briefly review the definition that we will use, with Z coefficients and multiple base
points.

Let Λ be an oriented Legendrian link in (R3, ξst) equipped with a number of base points, such
that there is at least one base point on each component. We will assume that Λ is sufficiently
generic that the xy projection Πxy(Λ) in R2 is immersed with only transverse double point
singularities, and no base point lies at one of these double points. We label the crossings of
Πxy(Λ), which correspond to Reeb chords of Λ, as a1, . . . , ar, and decorate each base point

with a monomial of the form ±s±1
i . Let {s1, . . . , sq} be the collection of indeterminates that

appear in the labeling of the base points. To this decorated oriented Legendrian link Λ, we
can associate the Legendrian contact DGA (AΛ, ∂), as follows.

Generators. The algebraAΛ is the unital tensor algebra over the coefficient ring Z[s±1
1 , . . . , s±1

q ]
generated by a1, . . . , ar. (One can lift this to the “fully noncommutative” algebra where the
coefficients s±1

i do not commute with Reeb chords ai, and in our computations we will some-
times order our monomials accordingly. However, for the purposes of this paper, we will
always assume that coefficients and Reeb chords commute.)

Grading. We assume for simplicity that each component of Λ has rotation number 0, which
will be the case for the Legendrian links we study. The algebra AΛ is then graded over
the integers Z; if Λ has a single component, then this grading is well-defined, while if Λ has
multiple components, the grading depends on some additional choices. We will fix the grading
by choosing a collection of distinguished base points, one on each component, such that the
oriented tangent vectors to Πxy(Λ) at these points are all parallel in R2. Label these base
points by t1, . . . , tm, where m is the number of components of Λ and the base point tj is on
the j-th component. Consider a Reeb chord a ∈ AΛ that ends on component r(a) and begins
on component c(a); we define a capping path γa along Λ to be the concatenation of a path
from the beginning point (undercrossing) of a to tc(a), and a path from tr(a) to the ending
point of a, following the orientation of Λ for both paths. As we traverse γa, the unit tangent
vector to Πxy(γa) changes continuously from the tangent vector to the undercrossing at a to
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the tangent vector to the overcrossing; let r(γa) ∈ R denote the number of counter-clockwise
revolutions around S1 that the tangent vector makes during this process, and note that
r(γa) 6∈ 1

2Z because of transversality. Then the grading of a is defined to be −d2r(γa)e ∈ Z.
We also place all the marked point monomials si in grading 0, which completes the grading
of AΛ.

Differential. In order to set up the differential ∂ on AΛ, we first decorate the four quadrants
at each crossing of Πxy(Λ) by two signs, a Reeb sign and an orientation sign. At each
crossing, two opposite quadrants have Reeb sign + and the others have Reeb sign −, while
the orientation signs depend on whether the crossing is positive (even degree) or negative
(odd degree): for positive crossings, two quadrants have orientation sign + and two have −,
while for negative crossings, all four quadrants have orientation sign +. See Figure 15.

Figure 15. In the top row, the Reeb signs (left diagram) and orientation
signs (two right diagrams) at a crossing. Quadrants that have − orientation
sign are shaded, while all other quadrants have + orientation sign. In the
bottom row, two examples of disks in ∆(a). Both disks have sgn = +1 (on
the right, the corner with negative orientation sign cancels the − in −s−1

1 )

and they contribute +1 and +s−1
2 a2a1s

−1
1 a3, respectively, to ∂(a).

The differential now counts immersions of a disk D2 with boundary punctures to R2, mapping
the boundary of D2 to Πxy(Λ), such that a neighborhood of each boundary puncture is
mapped to one of the four quadrants at a crossing of Πxy(Λ). We call such a disk an immersed
disk for short; each corner of an immersed disk is a positive (+) corner or a negative (−)
corner depending on the Reeb sign of the quadrant. For a Reeb chord a, define ∆(a) to
be the set of immersed disks (up to reparametrization) with a single + corner at a and no
other + corners. To any such disk ∆ ∈ ∆(a), we can define two quantities. One is the
sign sgn(∆) ∈ {±1}, given by the product of the orientation signs over all corners of ∆,
multiplied by the signs of any base points traversed by the boundary of the disk (+1 for any
base point labeled by s±1

i and −1 for any base point labeled by −s±1
i ). The other is the word

w(∆) ∈ AΛ, which is the product, in order, of the Reeb chords at the − corners and the
base points that are encountered as we traverse the boundary of the disk counterclockwise,
beginning and ending at the corner at a. A base point labeled by ±s±1

i contributes s±1
i if it

is traversed along the orientation of Λ and s∓1
i if it is traversed oppositely. The differential

∂(a) is now defined to be:

∂(a) :=
∑

∆∈∆(a)

sgn(∆)w(∆).

See Figure 15 for an example.
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Remark 3.1 (multiple base points). In order to count augmentations over Z, it is important
that each component of Λ have at least one base point. Adding extra base points beyond
one per component changes the DGA in a simple way. First note that moving a base point
labeled ±s±1

i along Λ and through a crossing a has the effect of replacing a by (±s±1
i )±1a:

that is, the algebra is the same before and after the move, and the differential changes by
conjugation by the automorphism that sends a to (±s±1

i )±1a and fixes all other generators.

Thus if we have multiple base points on a single component, then up to a Z[s±1
1 , . . . , s±1

q ]-
algebra isomorphism of the DGA, we can assume that all of the base points lie on the same
segment of Πxy(Λ). In this case we can replace the multiple base points by a single base
point labeled by the product of their labels, and the differential is unchanged. �

Remark 3.2 (dependence on spin structure). In the differential over Z of the Legendrian
contact DGA (AΛ, ∂) of a link Λ, the signs depend on a choice of spin structure on Λ, as laid
out by the construction of Ekholm, Etnyre, and Sullivan [EES05]. For each S1 connected
component of the Legendrian link Λ, there are two spin structures: the Lie group spin
structure, induced by the fact that the 1-sphere S1 is a Lie group, and the null-cobordant
spin structure, induced by the fact that S1 bounds a 2-disk D2 and we can restrict the unique
spin structure on D2 to the boundary S1. Here we review the discussion in [EES05] about
how the choice of spin structure affects the differential ∂ in (AΛ, ∂).

Choose one base point on each of the m components of Λ, so that AΛ is an algebra over
R = Z[t±1

1 , . . . , t±1
m ], and write ∂comb for the combinatorial differential on AΛ as defined

above. The set of spin structures on Λ is an affine space based on H1(Λ,Z2) ∼= Zm2 ; of interest
to us will be two spin structures differing by (1, . . . , 1), given by choosing the Lie group spin
structure or the null-cobordant spin structure on all components of Λ. We will write ∂Lie and
∂NC for the geometric differentials on AΛ corresponding to these two spin structures.9 The
two differentials ∂Lie and ∂NC depend on a number of auxiliary choices, including capping
operators for Reeb chords—see Section 3.4 below for further discussion—but up to R-algebra
isomorphism, (AΛ, ∂

Lie) and (AΛ, ∂
NC) are well-defined.

The combinatorial differential ∂comb comes from the Lie group spin structure on Λ. To be
precise, in [EES05, Theorem 4.32] it is shown that one can make choices so that ∂Lie agrees
with our definition of ∂comb with signs as in Figure 15, except that for positive crossings
(the left diagram on the top right of Figure 15), the opposite two quadrants are shaded.10

This change of shading corresponds to the R-algebra isomorphism of AΛ sending each Reeb
chord a to −a for even-graded Reeb chords and +a for odd-graded Reeb chords, and so this

isomorphism sends (AΛ, ∂
comb)

∼=−→ (AΛ, ∂
Lie).

For cobordisms, the null-cobordant spin structure is more natural than the Lie group spin
structure. To compute ∂NC, we can appeal to [EES05, Theorem 4.29] (see also Remark 4.35
from the same paper), which implies that changing the spin structure by (c1, . . . , cm) ∈ Zm2
has the effect of replacing ti by (−1)citi for i = 1, . . . ,m. In particular, define the Z-algebra
isomorphism φ : AΛ → AΛ by φ(a) = a for all Reeb chords a and φ(ti) = −ti for all i; then

φ : (AΛ, ∂
Lie)

∼=−→ (AΛ, ∂
NC).

More generally, suppose that we have multiple base points on each component of Λ as in
Remark 3.1, each decorated by a monomial of the form s±1

i . Then, since no base point

introduces a sign, the resulting combinatorial DGA (AΛ, ∂
comb) over Z[s±1

1 , . . . , s±1
q ] has

signs corresponding to the Lie group spin structure. Now suppose that S is any subset of
these base points. If we replace the decoration s±1

i of each base point in S by −s±1
i , we

obtain a new differential ∂S on AΛ. Then ∂S gives the differential corresponding to the spin

9The superscript ∂NC stands for Null-Cobordant.
10In fact [EES05, Theorem 4.32] presents two choices of signs for ∂Lie, of which we are describing one;

however, it was subsequently proven in [Ng10] that the two choices lead to isomorphic DGAs.
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structure that differs from the Lie group spin structure by (c1, . . . , cm) ∈ Zm2 , where ci is the
number of base points in S that lie on component i. In particular, if S has an odd number
of points on each component11, then we have an isomorphism of DGAs over Z[s±1

1 , . . . , s±1
q ]:

(AΛ, ∂
S) ∼= (AΛ, ∂

NC).

�

3.2. Link automorphisms. In the case where Λ is a multi-component Legendrian link,
rather than a knot, there is a structure on the Legendrian contact DGA of Λ that is hidden
in the knot case. This is the “link grading” first introduced by K. Mishachev [Mis03], which
essentially gives the DGA the structure of a path algebra (the “composable algebra”) on
a graph whose vertices are components of Λ and whose edges are Reeb chords of Λ. This
structure leads to a family of automorphisms of the DGA of the Legendrian link Λ, which
we call link automorphisms. These will feature in our discussion at various points, and we
discuss them now in detail.

Let Λ = Λ1∪· · ·∪Λm be an m-component Legendrian link. For any Reeb chord a of Λ, define
r(a), c(a) ∈ {1, . . . ,m} to be the number of the component containing the endpoint (for r(a))
or beginning point (for c(a)) of a. The key observation of Mishachev is the following: in the
DGA for Λ, any term in the differential ∂a of a Reeb chord a must be of the form ai1 · · · aik ,
where r(a) = r(ai1), c(ai1) = r(ai2), . . . , c(aik−1

) = r(aik), c(aik) = c(a). This motivates the
following definition.

Definition 3.3. Let Λ be an m-component Legendrian link and (AΛ, ∂) its DGA. A link
automorphism of Λ is an algebra automorphism Ω : AΛ → AΛ of the following form: there
exist units u1, . . . , um in the coefficient ring of AΛ such that for all Reeb chords a,

Ω(a) = ur(a)u
−1
c(a)a.

�

The following is an immediate consequence of Mishachev’s observation.

Proposition 3.4. Let Λ be a Legendrian link. Any link automorphism Ω : AΛ → AΛ is a
chain map of the Legendrian DGA (AΛ, ∂). �

In addition, Mishachev’s link grading structure is preserved by Legendrian isotopy, as can
be checked by keeping track of components in the DGA chain maps induced by Legendrian
isotopy. See [Mis03], and see Section 4.1 below for explicit formulas for these chain maps.
As a consequence, link automorphisms persist under Legendrian isotopy:

Proposition 3.5. Suppose Λ and Λ′ are Legendrian isotopic links with respective DGAs
(AΛ, ∂) and (AΛ′ , ∂). Suppose that Ψ : (AΛ, ∂) → (AΛ′ , ∂) is the DGA map induced by a
Legendrian isotopy. If Ω : AΛ → AΛ is a link automorphism of Λ, then there is a corre-
sponding link automorphism Ω′ : A′Λ → A′Λ of Λ′ such that Ω′ ◦Ψ = Ψ ◦ Ω.

Proof. The numbering of the components of the Legendrian link Λ induces a corresponding
numbering of the components of the link Λ′. If Ω is defined by Ω(a) = ur(a)u

−1
c(a)a for some

(u1, . . . , um), then we define Ω′ in the same way: Ω′(a) := ur(a)u
−1
c(a)a. Since Ψ preserves the

link grading, it follows that it intertwines Ω and Ω′, as desired. �

11From a geometric viewpoint, S indicates points where we add a π-rotation to the Lie group trivialization
of the stabilized tangent bundle to S1. Doing this an odd number of times on each component yields the
null-cobordant trivialization. See [EES05, Remark 4.35].
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Link automorphisms will appear in our discussion in two related ways. First, they naturally
arise when considering the family of augmentations induced by an exact Lagrangian filling,
as we will next describe in Section 3.3. Second, in Section 4.2 below, we describe a formula
for the cobordism map over Z associated to a saddle cobordism; our proof that the formula is
correct is indirect and essentially reduces to arguing that there is only one possible candidate
for the cobordism map that is actually a chain map over Z. However, the existence of link
automorphisms forces us to qualify this statement, since composing a chain map with a link
automorphism produces another chain map. See Proposition 4.8 and Appendix A.

3.3. The geometric map induced by an exact Lagrangian cobordism. Suppose that
Λ is a Legendrian link in (R3, ξst) and that L ⊂ (R4, λst) is a Lagrangian filling of Λ. Then
L induces an augmentation of the Legendrian contact DGA (AΛ, ∂). More precisely, the
filling L equipped with a rank 1 local system induces an augmentation; put another way, the
filling gives a family of augmentations and the additional choice of a local system picks out
one of these. In the setting of (R3, ξst), the study of augmentations coming from fillings was
initiated by Ekholm, Honda, and Kálmán [EHK16], who proved that an exact filling induces
an augmentation over the group ring Z2[H1(L)] through a count of rigid holomorphic disks in
the symplectization of R3 with boundary on L. Karlsson [Kar20] subsequently lifted Z2 to Z
by showing that the relevant moduli spaces of holomorphic disks can be coherently oriented.
We summarize all of this work as follows.

Theorem 3.6 ([EHK16, Kar20]). Suppose that L is an (oriented, embedded, exact) La-
grangian filling of the Legendrian link Λ ⊂ (R3, ξst) with Maslov number 0. Then L induces
a DGA map

εL : (AΛ, ∂)→ (Z[H1(L)], 0)

where Z[H1(L)] lies entirely in grading 0. (The map εL is referred to as an augmentation.)
Furthermore, if L and L′ are Lagrangian fillings of Λ which are isotopic through exact La-
grangian fillings of Λ, then the corresponding augmentations εL and εL′ are DGA homotopic
maps. �

Note that an exact Lagrangian isotopy extends to an ambient Hamiltonian isotopy, e.g. by
[Oh15, Section 3.6], especially [Oh15, Theorem 3.6.7], and see also [Pol01, Exercise 6.1.A].
Conversely, the image of an exact Lagrangian submanifold under a Hamiltonian diffeomor-
phism remains exact, and thus exact Lagrangian isotopies are equivalent to Hamiltonian
isotopies. In fact, this also holds with compact support: [Oh15, Theorem 3.6.7] implies that
a compactly supported exact Lagrangian isotopy extends to a compactly supported Hamil-
tonian isotopy.

Remark 3.7. For the definition of DGA homotopic maps, see e.g. [Kál05, EHK16, NRS+20];
we omit the definition here because for the Legendrian links that we consider in this paper,
we can replace “DGA homotopic” by “the same”. All of our links Λ have rotation number
0 on each component, and all of the fillings that we construct are composed of minimum
cobordisms and saddle cobordisms at Reeb chords with degree 0. It follows that each of
these fillings has Maslov number 0. In addition, for all choices of Λ in this paper, all Reeb
chords lie in nonnegative degree (in fact, in degree 0 or 1), and so AΛ is supported entirely
in nonnegative degree. In this setting, two DGA maps (AΛ, ∂) → (Z[H1(L)], 0) are DGA
homotopic if and only if they are equal. Thus if two fillings L,L′ produce augmentations to
Z[H1(L)] that are distinct (under an isomorphism identifying H1(L) and H1(L′)), then we
can use Theorem 3.6 to conclude that L,L′ are not exact Lagrangian isotopic (or, equivalently
in this setting, not Hamiltonian isotopic). �

Remark 3.8. The augmentation εL depends on a choice of spin structure on the filling L, as
explained in [Kar20]. If we change the spin structure by an element ϑ ∈ H1(L;Z2), then we

can define an isomorphism Z[H1(L)] → Z[H1(L)] by x 7→ (−1)ϑ(x)x, and the augmentation
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changes by composition with this isomorphism. This does not change the augmentation up
to equivalence, in the sense of Definition 3.9 below. �

It will be convenient for us to enlarge the coefficient ring Z[H1(L)] to incorporate link au-
tomorphisms, as introduced in Section 3.2 above. Suppose that Λ is a Legendrian link
with m components. Recall that given units u1, . . . , um, we can define a link automorphism
Ω : (AΛ, ∂) → (AΛ, ∂). Any augmentation of (AΛ, ∂) can be composed with this link au-
tomorphism to produce another augmentation, and so a single augmentation produces an
(m − 1)-parameter family of augmentations. This family is parametrized by s1, . . . , sm−1,
where we define si = ui/um for i ≤ m− 1. We restate this observation as follows.

Consider the ring Z[H1(L)][s±1
1 , . . . , s±1

m−1] ∼= Z[H1(L) ⊕ Zm−1]. Then the augmentation
εL : (AΛ, ∂)→ (Z[H1(L)], 0) lifts to an augmentation

ε̃L : (AΛ, ∂)→ (Z[H1(L)⊕ Zm−1], 0)

defined as follows: for any Reeb chord a of Λ ending on component r(a) and beginning on
component c(a), we define ε̃L(a) := ur(a)u

−1
c(a)εL(a), where ui = si for i ≤ m− 1 and um = 1.

The augmentation ε̃L to Z[H1(L) ⊕ Zm−1] incorporates both the geometry of the filling L
and link automorphisms; henceforth we will view it as “the” augmentation coming from the
filling L and will drop the tilde. We will also not need the distinction between generators of
H1(L) and generators of Zm−1. It is then convenient to recast the augmentation εL in the
following definition.

Definition 3.9. A k-system of augmentations of Λ is an algebra map

ε : AΛ → Z[s±1
1 , . . . , s±1

k ]

such that ε ◦ ∂ = 0. By definition, two k-systems of augmentations

ε : AΛ → Z[s±1
1 , . . . , s±1

k ], ε′ : AΛ → Z[(s′1)±1, . . . , (s′k)
±1]

are considered to be equivalent if there exists a Z-algebra isomorphism

ψ : Z[s±1
1 , . . . , s±1

k ]→ Z[(s′1)±1, . . . , (s′k)
±1]

such that ε′ = ψ◦ε. Note that the space of such isomorphisms is parametrized by Zk2×GLk(Z).
�

Finally, we now recast Theorem 3.6 for our purposes in the following proposition; note that
if L has genus g then H1(L)⊕ Zm−1 has rank 2g + 2m− 2.

Proposition 3.10. Let Λ be an m-component Legendrian link. Let L be a connected, ori-
entable exact Lagrangian filling of Λ of genus g and Maslov number 0. Then L gives rise to
a (2g + 2m− 2)-system of augmentations of Λ, and this system is well-defined, independent
of choices, up to equivalence. Furthermore, if all Reeb chords of Λ have nonnegative degree,
then isotopic fillings of Λ give rise to equivalent systems of augmentations. �

3.4. Signs and functoriality of the cobordism map. In order to establish our main
results, such as Theorem 1.1, we will apply Proposition 3.10 to systems of augmentations
that we will explicitly compute for particular fillings. For that, we will divide our fillings into
elementary cobordism pieces, calculate the cobordism map for each elementary piece, and
compose the resulting cobordism maps, using the fact that the cobordism map is functorial.
This functoriality over Z is established in the work of Karlsson [Kar20], and we summarize
in this subsection the results from [Kar20] that we need.

Given an orientable exact Lagrangian cobordism L between Λ+ and Λ−, we choose a spin
structure on L that restricts on each component of Λ+ and Λ− to the null-cobordant spin

structure. Note that there are |H1(L̂;Z2)| such spin structures, where L̂ is the closed surface
obtained from L by gluing a disk to each boundary component, and any such spin structure
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will do. Besides a spin structure on L, the other pieces of auxiliary data that Karlsson uses
to define the cobordism maps are systems of capping operators for Λ+ and Λ− satisfying
certain technical conditions. These capping operators are used by Karlsson to define the
signs in the DGAs (AΛ+ , ∂

NC
+ ) and (AΛ− , ∂

NC
− ), where ∂NC

± are the differentials associated to
the null-cobordant spin structures on Λ±, as well as the signs in the cobordism map between
the DGAs.

In our setting, for any Legendrian Λ with the Lie group spin structure, a suitable system of
capping operators has been constructed in [EES05, Section 4.5], compare [Kar20, Remark
2.9]. These capping operators give precisely the signs for the DGA differential on Λ that we
have presented combinatorially in Section 3.1 above and written as ∂comb, see Remark 3.2.
However, for the cobordism maps we need the signs from the null-cobordant rather than the
Lie group spin structure. As explained in Remark 3.2, we can express this combinatorially
by choosing a set S of marked points on Λ with an odd number of marked points on each
component, resulting in a differential ∂S on AΛ such that we have an isomorphism

φS : (AΛ, ∂
S)

∼=−→ (AΛ, ∂
NC).

To return to the setting of a cobordism L between Λ+ and Λ−, Theorem 2.5 in [Kar20] gives
a DGA map over Z, ΦL : (AΛ+ , ∂

NC)→ (AΛ− , ∂
NC). If we choose sets of marked points S±

on Λ± with an odd number of marked points on each component of Λ±, then ΦL induces a
DGA map from (AΛ+ , ∂

S+) to (AΛ− , ∂
S−). We also denote this map by ΦL, and it satisfies

that the following diagram commutes:

(AΛ+ , ∂
S+)

φS+

∼=
//

ΦL
��

(AΛ+ , ∂
NC)

ΦL
��

(AΛ− , ∂
S−)

φS−

∼=
// (AΛ− , ∂

NC).

Furthermore, the cobordism maps ΦL constructed by Karlsson are functorial. To state this
property, suppose that L1 and L2 are exact Lagrangian cobordisms that go from Λ0 to Λ1

and from Λ1 to Λ2 (from bottom to top), respectively. We can concatenate these to produce
an exact cobordism L1#L2 from Λ0 to Λ2. As before, equip L1, L2 with spin structures
that restrict to the null-cobordant spin structures on their boundaries. Choices of capping
operators on Λ0,Λ1,Λ2 now produce DGA maps ΦL1 : (AΛ1 , ∂

NC) → (AΛ0 , ∂
NC), ΦL2 :

(AΛ2 , ∂
NC) → (AΛ1 , ∂

NC), and ΦL1#L2 : (AΛ2 , ∂
NC) → (AΛ0 , ∂

NC), and [Kar20, Theorem
2.6] states that:

ΦL1 ◦ ΦL2 = ΦL1#L2 .

Let us choose collections of marked points S0,S1,S2 on Λ0,Λ1,Λ2 such that each component
has an odd number of marked points (as usual). Then, we can use the isomorphisms be-
tween (AΛi , ∂

Si) and (AΛi , ∂
NC) to produce DGA maps ΦL1 ,ΦL2 ,ΦL1#L2 between the DGAs

(AΛi , ∂
Si) such that the following diagram commutes:

(AΛ2 , ∂
S2)

φS2

∼=
//

ΦL2
��

ΦL1#L2

&&

(AΛ2 , ∂
NC)

ΦL2
��

ΦL1#L2

xx

(AΛ1 , ∂
S1)

φS1

∼=
//

ΦL1
��

(AΛ1 , ∂
NC)

ΦL1
��

(AΛ0 , ∂
S0)

φS0

∼=
// (AΛ0 , ∂

NC).

(3.1)

Note that all of the horizontal maps in this diagram are algebra maps over the relevant
coefficient ring. Colloquially, they send each homology coefficient si to si, and not to −si.
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This discussion above is summarized in the following result.

Proposition 3.11. Given an exact Lagrangian cobordism L between Λ+ and Λ+, and choices
of marked points S± on Λ± with an odd number on each component, we can write the cobor-
dism map ΦL as a DGA map from (AΛ+ , ∂

S+) to (AΛ− , ∂
S−). If we have exact cobordisms

L1 from Λ0 to Λ1 and L2 from Λ1 to Λ2, and marked points S0,S1,S2 on Λ0,Λ1,Λ2 with an
odd number on each component, then the cobordism maps for L1, L2, and their concatenation
L1#L2 satisfy ΦL1 ◦ ΦL2 = ΦL1#L2. �

3.5. System of augmentations for a decomposable filling. All the Lagrangian fillings
that we consider in this paper are decomposable in the sense of [EHK16] (see Section 2.1).
For a decomposable filling, one can explicitly construct the corresponding system of augmen-
tations by composing the cobordism maps induced by each of the elementary cobordisms.
These elementary cobordism maps are described in Sections 4.1 and 4.2 below. To combine
them into the desired system of augmentations, we additionally need to keep track of base
points and discuss how they produce the parameters in the system of augmentations. This
is the content of the discussion that now follows.12

First, consider a general exact Lagrangian cobordism L between Legendrians Λ+ and Λ−,
inducing a chain map ΦL between the DGAs of Λ+ and Λ−. Recall from Section 3.1 that in
the setting of the DGA of a Legendrian Λ, it is convenient to choose base points on Λ and
use these points to keep track of the homology classes of the boundaries of the holomorphic
disks that contribute to the differential. In a similar manner, we will keep track of homology
classes contributing to ΦL by placing arcs on L and counting intersections of holomorphic
disks with these arcs.

To this end, suppose that we have a collection of oriented arcs and circles on L, such that
all circles lie in the interior of L, the endpoints of all arcs lie on Λ+ ∪ Λ−, and the arcs
are transverse to Λ+ ∪ Λ− at their endpoints. Label these arcs γ1, . . . , γk. Some subset
{γi1 , . . . , γip} has at least one endpoint on Λ+, and we view these endpoints as base points on
Λ+; similarly some subset {γj1 , . . . , γjq} has at least one endpoint on Λ−, and we view these
endpoints as base points on Λ−. The chain map ΦL between the DGAs of Λ+ and Λ− is
defined by counting a finite collection of holomorphic disks with boundary on L and boundary
punctures mapping to Reeb chords for Λ+ and Λ−; we make the (generic) assumption that
our curves γi intersect the boundaries of these disks transversely, and that no endpoint of an
arc γi lies at the endpoint of a Reeb chord of Λ+ or Λ−.

In this setting, ΦL is a map of algebras over the coefficient ring Z[s±1
1 , . . . , s±1

k ]. More
precisely, the DGA for Λ+ equipped with the base points from γi1 , . . . , γip has coefficient ring

Z[s±1
i1
, . . . , s±1

ip
], and we can tensor this DGA over Z[s±1

i1
, . . . , s±1

ip
] with Z[s±1

1 , . . . , s±1
k ] to

obtain a DGA over Z[s±1
1 , . . . , s±1

k ], which we write as (AΛ+ , ∂+). Similarly we can define the

DGA (AΛ− , ∂−) over Z[s±1
1 , . . . , s±1

k ]. Then we can define the chain map ΦL : AΛ+ → AΛ−

as a map of Z[s±1
1 , . . . , s±1

k ]-algebras: each holomorphic disk ∆ contributing to ΦL is given

the coefficient s
n1(∆)
1 · · · snk(∆)

k ∈ Z[s±1
1 , . . . , s±1

k ], where ni(∆) counts the number of signed
intersections of ∂∆ with the curve γi.

We now apply this discussion to describe how to concretely construct a system of augmen-
tations for a Legendrian link Λ associated to a connected, decomposable exact Lagrangian
filling L of Λ. Let m denote the number of components of Λ and g the genus of L. By assump-
tion, L is a union of 0-handles (minimum cobordisms) and 1-handles (saddle cobordisms); let
k denote the number of 0-handles, and note that it follows that there are 2g+m+ k− 2 =: `
1-handles. We can cut off a small neighborhood of each minimum of L to produce a new

12We note that a similar treatment of base points on Lagrangian cobordisms and the induced DGA maps
(over Z2) appears in [GSW20a, section 2].
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cobordism L′ whose top end is Λ and whose bottom end is a k-component unlink Λ0, such
that L′ is assembled out of just the 1-handles of L.

We can view L′ through slices from top to bottom, so that it becomes a movie of embedded
Legendrian links (except at finitely many times) starting with Λ, at the top, and ending with
the k-component unlink Λ0, at the bottom. In the Lagrangian projection, each saddle move
is then represented by replacing a (contractible) crossing by its 0-resolution. We can now
add base points to this movie as follows. Place base points t1, . . . , tm on the m components
of Λ. Each time we pass through a saddle, add two more base points labeled si and −s−1

i .
All base points persist to the bottom of the cobordism, Λ0. See Figure 16.

Figure 16. On the left, placing a pair of base points at the bottom of a saddle
cobordism, representing opposite sides of an arc passing through the saddle
point in the cobordism. On the right, dividing a decomposable filling of Λ
into elementary pieces: from top to bottom, a sequence of saddle cobordisms
ending at an unlink Λ0, and then filling in each unknot component.

On the Lagrangian cobordism L′, the base points t1, . . . , tm trace out arcs joining Λ to Λ0,
while for each i = 1, . . . , `, the base points si,−s−1

i together trace out an arc joining Λ0 to
itself. We call these arcs τ1, . . . , τm and σ1, . . . , σ`, respectively. Orient the τi arcs upwards,
and orient the σi arcs so that in each slice the arc is oriented upwards at the point labeled si
and downwards at the point labeled −s−1

i . This places the decomposable cobordism between
Λ0 and Λ in the general picture described above of a cobordism equipped with oriented arcs.

Label the slices of L′ from bottom to top by Λ0,Λ1, . . . ,Λ` = Λ, and divide L′ into saddle
cobordisms L1, . . . , L`, where Lj is the piece of L′ between Λj−1 and Λj ; note that the saddle
of Lj is associated to the arc σ`+1−j . Each Λj is equipped with a collection of base points

each labeled by either ti or ±s±1
i . For j = 1, . . . , `, let (AΛj , ∂

comb) denote the DGA of

Λj over Z[t±1
1 , . . . , t±1

m , s±1
1 , . . . , s±1

` ] with the differential ∂comb defined combinatorially as in
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Section 3.1 (note that some of the si parameters may not correspond to base points of Λj
and thus may not appear in the definition of ∂comb).

We next relate the DGAs (AΛj , ∂
comb) to the discussion from Section 3.4. To this end, for

each j = 0, . . . , `, we identify a subset Sj of the base points on Λj such that each component
of Λj contains an odd number of points in Sj ; we abbreviate this condition by calling such a
subset odd-cardinality. We define Sj by backwards induction on j. Let S` be the collection of
all of the base points t1, . . . , tm on Λ` = Λ, and note that this is odd-cardinality. Given Sj ,
each base point on Λj descends to a corresponding base point on Λj−1, and so we may view
Sj as a collection of base points on Λj−1. On Λj−1, we can add to Sj one more base point,

from the two new base points labeled by ±s±1
`+1−j , such that the resulting collection Sj−1 is

odd-cardinality: if Λj−1 has one more component than Λj , then the choice of this extra base
point is forced by the odd-cardinality condition, while if Λj−1 has one fewer component than
Λj , then we can choose either.

The choice of base points Sj on Λj produces a differential ∂Sj on AΛj as follows: first remove

the − signs at the front of any base points on Λj labeled by −s−1
i , so that all base points

are labeled by ti or s±1
i ; then negate any base point in Sj , and let ∂Sj be the resulting

combinatorial differential as in Remark 3.2. Note that each ti is negated in this process,
while exactly one of si or s−1

i is negated, depending on which of these base points is in Sj .
Thus we can define a Z-algebra isomorphism

ψ : Z[t±1
1 , . . . , t±1

m , s±1
1 , . . . , s±1

` ]→ Z[t±1
1 , . . . , t±1

m , s±1
1 , . . . , s±1

` ]

by ψ(ti) = −ti for all i = 1, . . . ,m and ψ(si) = ±si for each i = 1, . . . , ` (with the sign
determined by whether si or s−1

i is in S0), which extends to a map ψ : AΛj → AΛj by
specifying ψ(a) = a for all Reeb chords a. This map ψ now intertwines the differentials
∂comb and ∂Sj :

ψ : (AΛj , ∂
comb)

∼=−→ (AΛj , ∂
Sj ).

We can combine this with the isomorphism φSj : (AΛj , ∂
Sj )

∼=−→ (AΛj , ∂
NC) from Section 3.4

to obtain an isomorphism φSj ◦ ψ from (AΛj , ∂
comb) to the DGA (AΛj , ∂

NC) with the null-
cobordant spin structure.

Recall from Section 3.4 that since each Sj is odd-cardinality, each cobordism Lj induces a
cobordism map ΦLj : (AΛj , ∂

Sj )→ (AΛj−1 , ∂
Sj−1). By combining this with the isomorphism

ψ, we can view the cobordism map as a map (AΛj , ∂
comb) → (AΛj−1 , ∂

comb), which we also
write as ΦLj , so that the following diagram commutes:

(AΛj , ∂
comb)

ψ

∼=
//

ΦLj
��

(AΛj , ∂
Sj )

ΦLj
��

(AΛj−1 , ∂
comb)

ψ

∼=
// (AΛj−1 , ∂

Sj−1).

Similarly, we can view the cobordism map ΦL′ as a DGA map (AΛ, ∂
comb) → (AΛ0 , ∂

comb).
By the functoriality property from Proposition 3.11, we have

ΦL′ = ΦL1 ◦ · · · ◦ ΦL` : (AΛ, ∂
comb)→ (AΛ0 , ∂

comb).

We obtain the filling L of Λ from the cobordism L′ by filling in the k components of the
unlink Λ0 with disjoint Lagrangian disks. Each disk filling produces a unique augmentation,
as we record in the following statement.

Proposition 3.12. Let U denote the standard Legendrian unknot with a collection of base
points with labels l1, . . . , lp (where typically each label is of the form ±s±1

i or ±t±1
i ). If

l1 · · · lp = −1 then the DGA (AU , ∂U ) has a unique augmentation.
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Proof. Let a denote the Reeb chord of U . If l1, . . . , lq are the base points on one lobe of
the figure eight in Πxy(U) and lq+1, . . . , lp are the base points on the other, then ∂U (a) =

l1 · · · lq + l−1
p · · · l−1

q+1. The condition for ε to be an augmentation is that ε(∂U (a)) = 0, in

which case ε is uniquely determined since ε(a) = 0 for grading reasons. �

Now let w1, . . . , wk denote the product of the labels of the base points on each of the k
components of the unlink Λ0, and write R for the ring

R = (Z[t±1
1 , . . . , t±1

m , s±1
1 , . . . , s±1

` ])/(w1 = · · · = wk = −1).

Then the filling of Λ0 by disks yields an augmentation

ε0 : AΛ0 → R.

Composing with ΦL′ now gives the augmentation of Λ induced by L:

ΦL = ε0 ◦ ΦL′ : AΛ → R.

We will already call this ΦL the combinatorial system of augmentations of Λ induced by L,
even though it will not become fully combinatorial until we present the combinatorial cobor-
dism maps for isotopy cylinders and saddle cobordisms in Section 4. This is to temporarily
distinguish ΦL from the geometric system of augmentations of Λ from Proposition 3.10. In
fact, the two systems agree up to equivalence, as we will show next.

3.6. The systems of augmentations agree. In this subsection, we prove that the com-
binatorial and geometric systems of augmentations of a decomposable filling L are equiv-
alent. This result generalizes a result of Y. Pan from [Pan17b, section 3], which uses Z2

coefficients and treats the case where Λ has a single component. We use the same no-
tation as in the previous subsection: ΦL is a map from AΛ to R, where R is the ring
R = (Z[t±1

1 , . . . , t±1
m , s±1

1 , . . . , s±1
` ])/(w1 = · · · = wk = −1) with w1, . . . , wk being words asso-

ciated to the k minima of L. The desired equivalence is shown in the following result, which
will be proven momentarily:

Proposition 3.13. Suppose that the filling L of Λ is connected. Then we have R ∼=
Z[Z2g+2m−2] and consequently ΦL is a (2g + 2m − 2)-system of augmentations of Λ. Fur-
thermore, up to equivalence, ΦL agrees with the geometric system of augmentations from
Proposition 3.10.

The crucial consequence of Proposition 3.13 is that since geometric systems of augmentations
are invariant under Hamiltonian isotopy of the filling, the same is true of the combinatorial
system of augmentations ΦL. This is the fact that will allow us to distinguish fillings through
a combinatorial calculation of their augmentations. Indeed, the following result is a direct
consequence of Propositions 3.10 and 3.13:

Proposition 3.14. Let L be a connected filling of Λ, and suppose that all Reeb chords of
Λ have nonnegative degree. Then the combinatorial system of augmentations ΦL of AΛ is
invariant, up to equivalence, under exact Lagrangian isotopy of L. �

The argument for Proposition 3.13 above occupies the remainder of this section.

Proof of Proposition 3.13. By functoriality, ΦL and the system of augmentations from Propo-
sition 3.10 agree over Z. What we need to do is keep track of the homology coefficients that
appear in the definitions of the two families of augmentations, and show that the two agree
up to equivalence. Thus, we reduce mod 2 and work with group rings over Z2. In the course
of tracking the homology coefficients, we will see that the abelian group generated multi-
plicatively by t1, . . . , tm, s1, . . . , s` with relations w1 = · · · = wk = 1 is isomorphic to a free
abelian group with 2g + 2m− 2 generators, whence it will follow that R ∼= Z2[Z2g+2m−2].
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As in Section 3.5, let τi and σi denote the oriented arcs on L′ corresponding to ti and si. The
map ΦL counts intersections with τi and σi; what we will show is that these counts keep track
of homology classes in H1(L) along with link automorphisms. If a is a degree-0 Reeb chord
of Λ, let M(a) denote the moduli space of (rigid) holomorphic disks ∆ with boundary on L
and a single positive boundary puncture mapping to a. We may assume that L is generic, so
that none of the minima of L lies on the boundary of a holomorphic disk in any of theM(a).
Recall that L′ is obtained from L by removing a neighborhood of each minimum of L. By
making these neighborhoods sufficiently small, we may assume that the boundary of each
of the holomorphic disks ∆ ∈ M(a) lies entirely in L′ and does not intersect the negative
boundary Λ0 of L′: that is, ∂∆ is an oriented arc on L′ with endpoints at the endpoints of a.

The cobordism map ΦL′ is then given as follows, for all degree 0 Reeb chords a of Λ:

ΦL′(a) =
∑

∆∈M(a)

w(∆) ∈ Z2[t±1
1 , . . . , t±1

m , s±1
1 , . . . , s±1

` ],

where

(3.2) w(∆) =
m∏
i=1

t
#(∂∆∩τi)
i

∏̀
i=1

s
#(∂∆∩σi)
i .

By the discussion preceding the proposition, the augmentation ΦL is the composition of ΦL′

with the quotient map

Z2[t±1
1 , . . . , t±1

m , s±1
1 , . . . , s±1

` ]→ Z2[t±1
1 , . . . , t±1

m , s±1
1 , . . . , s±1

` ]/(w1 = · · · = wk = 1).

We want to compare ΦL with the geometric setup from Section 3.3. Recall from Theorem 3.6
that L induces an augmentation εL : AΛ → Z2[H1(L)]. This map agrees over Z2 with ΦL

but the group-ring coefficients are given by:

εL(a) =
∑

∆∈M(a)

exp([∂∆]) ∈ Z2[H1(L)].

The notation here is as follows. Choose a capping path γa for each Reeb chord a of Λ: a
path in the connected surface L whose endpoints are the same as the endpoints of γa. For
each disk ∆ ∈ M(a), close up the arc ∂∆ by adding the reverse of γa to give a closed loop
∂∆ = (∂∆) ∪ (−γa). Then ∂∆ represents a homology class in H1(L), and we denote this
class in Z2[H1(L)] by exp([∂∆]) (the exponential changes addition to multiplication).

We specify particular capping paths γa as follows. For i = 0, . . . , `−1, let L>i := Li+1∪· · ·∪L`
denote the portion of L above Λi, and L>` := Λ. Note that L>` has m components while
L>0 has 1 component, and there are exactly m− 1 values of i for which L>(i−1) has 1 fewer
component than L>i. For notational simplicity we will assume that these are the largest
possible values: i = ` − m + 2, . . . , `. (A similar argument holds in general.) In this case
the first m − 1 saddle moves from the top are all cobordisms that merge components. The
arcs σ1, . . . , σm−1 are the cores of these 1-handle attachments, and we write σ∨1 , . . . , σ

∨
m−1

for the corresponding cocores. (More explicitly, begin at the i-th saddle, place one point on
each strand of the crossing above this saddle, and trace this pair of points upwards through
the cobordism to Λ to produce σ∨i .) The paths σ∨1 , . . . , σ

∨
m−1 join the m components of Λ to

each other. For each Reeb chord a of Λ, we can now choose the capping path γa to lie on
Λ∪σ∨1 ∪ · · · ∪σ∨m−1 and to avoid the base points t1, . . . , t` on Λ. By construction, among the
arcs τ1, . . . , τm, σ1, . . . , σ`, the only ones that γa intersects are some subset of σ1, . . . , σm−1

determined by which components of Λ contain the endpoints of a.

Since the arcs σ∨1 , . . . , σ
∨
m−1 form a tree connecting the components of Λ, we can find units

u1, . . . , um ∈ Z2[s±1
1 , . . . , s±1

m−1] such that for each i = 1, . . . ,m− 1, if σ∨i ends on component

r(i) and begins on component c(i) of Λ, then si = ur(i)u
−1
c(i); furthermore, (u1, . . . , um) are

well-defined once we specify um = 1, and the induced map Z2[s±1
1 , . . . , s±1

m−1]→ Z2[u±1
1 , . . . , u±1

m−1]
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is an isomorphism. (Concretely, for any i there is a unique path from component m to com-
ponent i that traverses ±σ∨j1 , . . . ,±σ

∨
jk

, where the ± signs denote orientation, and then ui

is given by s±1
j1
· · · s±1

jk
.) It now follows by the construction of the capping paths γa that if

a is any Reeb chord of Λ and r(a), c(a) ∈ {1, . . . ,m} are the components of the ending and
beginning points of a, then

m−1∏
i=1

s
#(γa∩σi)
i = ur(a)u

−1
c(a).

Suppose for now that L has exactly one minimum; the general case will be considered after-
ward. Then Λ0 is a single-component unknot U , and the product of the labels of the base
points on Λ0 is t1 · · · tm since the si base points cancel in pairs. Note that the abelian group
generated by t1, . . . , tm, s1, . . . , s` with a single relation t1 · · · tm = 1 is free on m + ` − 1 =
2g + 2m− 2 generators; ΦL maps to the ring Z2[t±1

1 , . . . , t±1
m , s±1

1 , . . . , s±1
` ]/(t1 · · · tm = 1) ∼=

Z2[Z2g+2m−2].

When L has one minimum, the relative homology H1(L,Λ) is generated by σm, . . . , σ` and
τ2 − τ1, . . . , τm − τ1. (Strictly speaking all of these arcs end on Λ0; we extend these arcs by
adding arcs in the disk filling Λ0, so that any endpoint on Λ0 is replaced by an endpoint at the
minimum of L.) Since H1(L) is dual to H1(L,Λ), we can compute the homology class [∂∆]
for ∆ ∈ M(a) by counting intersections with the generating set of H1(L,Λ). To be precise,
we can identify Z2[H1(L)] ∼= Z2[t±1

2 , . . . , t±1
m , s±1

m , . . . , s±1
` ], and under this isomorphism we

have

exp[∂∆] =
m∏
i=2

t
#(∂∆∩τi)−#(∂∆∩τ1)
i

∏̀
i=m

s
#(∂∆∩σi)
i = (t2 · · · tm)−#(∂∆∩τ1)

m∏
i=2

t
#(∂∆∩τi)
i

∏̀
i=m

s
#(∂∆∩σi)
i .

We now compare this to the formula for w(∆) in equation (3.2):

w(∆)|t1=(t2···tm)−1 =

(
m∏
i=1

t
#(∂∆∩τi)
i

)∣∣∣∣∣
t1=(t2···tm)−1

m−1∏
i=1

s
#(∂∆∩σi)
i

∏̀
i=m

s
#(∂∆∩σi)
i

= (t2 · · · tm)−#(∂∆∩τ1)
m∏
i=2

t
#(∂∆∩τi)
i

m−1∏
i=1

s
#(γa∩σi)
i

∏̀
i=m

s
#(∂∆∩σi)
i

= ur(a)u
−1
c(a) exp[∂∆],

where in the second equality we use the fact that ∂∆ and γa have the same endpoints and
σi is a separating curve in L. Now, we extend

εL : AΛ → Z2[H1(L)] ∼= Z2[t±1
2 , . . . , t±1

m , s±1
m , . . . , s±1

` ]

by a link automorphism to

ε̃L : AΛ → Z2[H1(L)⊕ Zm−1] ∼= Z2[t±1
2 , . . . , t±1

m , s±1
m , . . . , s±1

` , u±1
1 , . . . , u±1

m−1]

defined by ε̃L(a) := ur(a)u
−1
c(a)εL(a), as in Section 3.3. Then, we have

ε̃L(a) =
∑

∆∈M(a)

ur(a)u
−1
c(a) exp([∂∆]) =

∑
∆∈M(a)

w(∆)|t1=(t2···tm)−1 .

That is, the following diagram commutes:

AΛ
ε̃L //

ΦL ++

Z2[t±1
2 , . . . , t±1

m , s±1
m , . . . , s±1

` , u±1
1 , . . . , u±1

m−1]

∼=
��

Z2[t±2
1 , . . . , t±1

m , s±1
1 , . . . , s±1

` ]/(t1 · · · tm = 1).
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This shows that the combinatorial cobordism map ΦL and the geometric cobordism map ε̃L
agree up to isomorphism when L has one minimum.

Now suppose that L has k > 1 minima. We claim that we can reduce to the above case
of a single minimum. The arcs σi have endpoints at the minima; since L is connected,
there is a spanning tree of k − 1 arcs that connects all of the minima to each other. For
notational simplicity, we assume that these arcs are σ`−k+2, . . . , σ`. Now imagine deforming
L by homotopy equivalence by successively contracting each arc σ`−k+2, . . . , σ` to a point.

The result is a new surface L̃ with a single minimum, which inherits the arcs τ1, . . . , τm and
σi, i ≤ ` − k + 1. The geometric cobordism map εL is defined homologically and does not

change when we replace L by L̃.

We now examine what happens to the cobordism map ΦL as we pass from L to L̃. Recall
that ΦL is an augmentation taking values in the ring

Z2[t±1
1 , . . . , t±1

m , s±1
1 , . . . , s±1

` ]/(w1 = · · · = wk = 1),

where for j = 1, . . . , k, wj is the word given by the product of the arcs having an end-

point at the j-th minimum (each endpoint contributes t±1
i or s±1

i depending on the ori-
entation of the corresponding arc at the minimum). At the step where we contract σi,
note that si appears in exactly two words wi1 and wi2 corresponding to the endpoints of
σi. We use the relation for one of these words, wi1 = 1, to solve for si, and substitute
into wi2 = 1; the result is exactly the relation corresponding to the new minimum given
by contracting σi. Once we have contracted all of σ`−k+2, . . . , σ`, we are left with a single
word w for the unique remaining minimum, and this process gives an isomorphism between
the coefficient ring Z2[t±1

1 , . . . , t±1
m , s±1

1 , . . . , s±1
` ]/(w1 = · · · = wk = 1) for L and the ring

Z2[t±1
1 , . . . , t±1

m , s±1
1 , . . . , s±1

`−k+1]/(w = 1) for L̃. In particular, note that the abelian group
generated by t1, . . . , tm, s1, . . . , s` with relations w1 = · · · = wk = 1 is again free on 2g+2m−2
generators, just as in the case where L has one minimum.

Figure 17. Sliding the arc ∂∆ to avoid intersections with σi, and then con-
tracting σi.

Now in L̃, the boundaries ∂∆ of some holomorphic disks may pass through the minimum.
To restore transversality, we perturb each ∂∆ as follows: at the step where we contract σi,
we homotop ∂∆ near any intersection with σi so that it wraps around one of the endpoints
of σi instead; see Figure 17. This removes any intersections of ∂∆ with σi, and it does not
change the word w(∂∆) as given in (3.2) because of the relations wj = 1. The end result

is the surface L̃ where all boundaries ∂∆ are disjoint from the minimum of L̃, and we have
reduced to the case of a single minimum. This completes the proof. �

Remark 3.15. The above proof shows that the augmentation/cobordism map ΦL : AΛ →
Z2[t±1

1 , . . . , t±1
m , s±1

1 , . . . , s±1
` ]/(w1 = · · · = wk = 1) sends the product t1 · · · tm to 1, since the

product w1 · · ·wk is equal to t1 · · · tm: each σ arc contributes endpoints that cancel, and each
τ arc ends at exactly one of the minima.

We can lift this statement to Z coefficients: if AΛ is the DGA of Λ with the Lie group spin
structure, then ΦL : AΛ → Z[t±1

1 , . . . , t±1
m , s±1

1 , . . . , s±1
` ]/(w1 = · · · = wk = 1) sends t1 · · · tm
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to (−1)m. This follows from a result of Leverson [Lev17] that any augmentation of AΛ to a
field (whether or not it comes from a filling) must send t1 · · · tm to (−1)m, whence this must
be true of ΦL. �

4. Cobordism Maps for Elementary Cobordisms

Given a decomposable Lagrangian filling L of a Legendrian link Λ, we have described in
Section 3 the general theory of how to build a system of augmentations for L. In order to
apply this theory, we will use combinatorial formulas for cobordism maps corresponding to
elementary cobordisms, which we can then compose to produce a formula for the cobordism
map of an arbitrary decomposable filling. Of the three elementary cobordisms in Section 2.1,
we have already discussed the DGA map for a minimum cobordism; see Proposition 3.12.
In this section we present combinatorial formulas for the cobordism maps for the other two
elementary cobordisms: isotopy cobordisms and saddle cobordisms.

The map for an isotopy cobordism (Section 4.1) is not new and dates back originally to
work of Kálmán [Kál05]. The map for a saddle cobordism (Section 4.2) occupies the bulk
of Section 4, with some technical details postponed to Appendix A. It builds on work of
Ekholm–Honda–Kálmán [EHK16], but introduces two new features:

1. A combinatorial lift to integer coefficients Z,
2. A formula that (even) over Z2 works for some saddle cobordisms (where the combi-

natorial EHK map over Z2 does not).

In order to lift the saddle cobordism map to Z, rather than directly constructing explicit
orientations of the relevant moduli spaces, we use an ad hoc argument that allows us to
deduce signs for a particularly simple saddle cobordism from the fact, due to work of Karlsson
[Kar20], that the map must be a chain map over Z. In fact we conclude a slightly weaker
result: namely, we show that the cobordism map agrees with our combinatorial formula
up to a link automorphism. Nevertheless, this additional choice of link automorphism will
not affect our computations, and the statement we obtain is sufficient for the purposes of
calculating augmentations for fillings. This is explained in Section 4.3.

4.1. The cobordism map for a Legendrian isotopy. In this subsection we review the
cobordism map for an isotopy cobordism. Suppose that Λ+ and Λ− are Legendrian links
related by a Legendrian isotopy. There is then a quasi-isomorphism between the DGAs
(AΛ+ , ∂) and (AΛ− , ∂), as first constructed by Chekanov [Che02] over Z2 and then lifted to
Z in [ENS02]. More precisely, these quasi-isomorphisms are DGA maps that are constructed
for certain elementary Legendrian isotopies, to be described below. Any general Legendrian
isotopy can be broken down into a sequence of elementary isotopies, and we compose the
DGA maps for the elementary pieces to produce a DGA map for the isotopy.

This picture fits in a natural way with cobordism maps. Given a Legendrian isotopy between
Λ+ and Λ−, let L denote the corresponding Lagrangian cobordism between Λ+ and Λ−.
Then Ekholm–Honda–Kálmán [EHK16, section 6.3] show that over Z2, the cobordism map
ΦL : (AΛ+ , ∂)→ (AΛ− , ∂) agrees with the DGA map associated to the isotopy; note that by
functoriality, it suffices to show this when L is the cobordism for an elementary isotopy. This
result was subsequently upgraded to Z coefficients by the combined work of Kálmán [Kál05],
who showed that the map of DGAs over Z associated to an isotopy (a path in the space of
Legendrian links) is invariant under homotopy of the path; Ekholm–Kálmán [EK08], who
showed that over Z2, this DGA map gives the differential for the Legendrian contact DGA
of the Legendrian surface given by the lift of L; and Karlsson [Kar20, section 6], who showed
that one can assign signs to the differential of this Legendrian surface to induce signs for the
cobordism map ΦL. For our purposes, we summarize this work as follows.
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Proposition 4.1 ([Kál05, EK08, EHK16, Kar20]). Suppose that Λ+ and Λ− are related
by an elementary Legendrian isotopy, with corresponding Lagrangian cobordism L. Choose
base points, a spin structure, and capping operators on Λ+; these induce, via the isotopy,
a corresponding choice of base points, spin structure, and capping operators on Λ−. Then,
the cobordism map ΦL : (AΛ+ , ∂) → (AΛ− , ∂) is equal to the DGA map for the isotopy as
constructed in [Che02, ENS02].

By “elementary Legendrian isotopy”, we will mean one of the following three isotopies be-
tween Legendrian links with base points, all described in terms of their xy projections:

• Base point moves: fix the xy projection and move a base point across a crossing,
• Reidemeister III moves (triple point moves),
• Reidemeister II moves.

Any Legendrian isotopy can be decomposed into these elementary isotopies, along with planar
isotopies of the xy projection in R2.

In the remainder of this subsection, we review the combinatorial formulas from [Che02,
ENS02] for the DGA maps for elementary isotopies. As usual, to compute the cobordism
map for a general Legendrian isotopy, we can divide the isotopy into elementary isotopies
and compose the resulting cobordism maps.

4.1.1. Base point moves. Suppose that Λ and Λ′ are Legendrian links that are related by a
base point move: outside of a neighborhood of a Reeb chord a, their xy projections agree,
and inside this neighborhood, a base point moves across the crossing. See Figure 18. Then
the DGA map for this move is Ψ : (AΛ, ∂) → (AΛ′ , ∂

′) defined as follows: Ψ acts as the
identity on all Reeb chords besides a and on all base point variables including s, and

Ψ(a) = sa (left diagram) Ψ(a) = as−1 (right diagram).

Note that Ψ is an isomorphism, and the DGA map for the reverse of one of these base point
moves is Ψ−1.

Figure 18. A base point move.

We observe that if we move a base point (or collection of base points) all the way around
a component of Λ until it returns to where it started, the corresponding automorphism of
(AΛ, ∂) is the identity map. (This uses the fact that the variable s associated to the base
point commutes with Reeb chord generators of AΛ; in the fully noncommutative setting
where s does not commute with Reeb chords, the automorphism is conjugation by s.) As
a consequence, when calculating the cobordism map for an isotopy cobordism L, we do not
need to specify an arc on L joining corresponding base points on the ends of L, since any
two choices of such an arc will yield the same map.

4.1.2. Reidemeister III moves. Suppose that Λ and Λ′ are related by a Reidemeister III move:
see Figure 19. There are two types of Reidemeister III moves, IIIa (left diagram) and IIIb
(right diagram); these are called “Move II” and “Move I” in [ENS02], respectively, and “L1a”
and “L1b” in [EHK16]. There is a one-to-one correspondence between the Reeb chords of Λ
and Λ′, with the correspondence between the three crossings involved in the move shown in
Figure 19. Under this identification, AΛ and AΛ′ are identical.
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Figure 19. The two types of Reidemeister III moves.

The DGA map for Reidemeister IIIa, which we will actually not need in this paper, is simply
the identity map on AΛ. To describe the DGA map for Reidemeister IIIb, let σ ∈ {±1}
denote the product of the orientation signs of the three quadrants of Πxy(Λ) indicated in
Figure 19: this is +1 or −1 depending on whether an even or odd number of those quadrants
are shaded. Then the DGA map Ψ : (AΛ, δ) → (AΛ′ , δ

′) is defined to be the identity on all
Reeb chords except for a1 and on all base point variables, and

Ψ(a1) = a1 + σa3a2.

4.1.3. Reidemeister II moves.

Figure 20. A Reidemeister II move.

The DGA maps for a Reidemeister II move are more involved than for the other elementary
isotopies. Suppose that Λ and Λ′ are related by a Reidemeister II move, with Πxy(Λ

′) having
two more crossings than Πxy(Λ), as shown in Figure 20.

Let a1, . . . , ar be the Reeb chords of Λ, and let b1, b2 denote the two new Reeb chords of Λ′.
Write (AΛ, ∂) and (AΛ′ , ∂

′) for the DGAs of Λ and Λ′. Let |b1| = i = |b2| + 1 in AΛ′ , and
construct the stabilization (S(AΛ), ∂) by adding two generators e1, e2 with |e1| = i = |e2|+ 1
to AΛ and extending the differential ∂ by ∂(e1) = e2, ∂(e2) = 0. There is a chain isomorphism
Ψ : AΛ′ → S(AΛ) whose definition we recall below. We can then compose Ψ−1 with the
inclusion map i : AΛ → S(AΛ) to get a chain map Ψ−1◦i : AΛ → AΛ′ . In the other direction,
we can compose Ψ with the projection map p : S(AΛ) → AΛ sending each generator of AΛ

to itself and sending e1, e2 to 0, to get a chain map p ◦Ψ : AΛ′ → AΛ:

AΛ

i //

Ψ−1◦i

$$
S(AΛ)

p
oo AΛ′ .

Ψ
∼=

oo

p◦Ψ

cc

Then Ψ−1 ◦ i and p ◦ Ψ are the cobordism maps for the cobordisms from Λ′ to Λ and from
Λ to Λ′, respectively, induced by the Reidemeister II isotopy.

We will need the precise definition of Ψ from [ENS02], and we recall it now. Let a1, . . . , ar
be the Reeb chords of Λ, ordered in increasing height. Inductively construct a sequence of
algebra isomorphisms Ψ1,Ψ2, . . . ,Ψr : AΛ′ → S(AΛ) as follows. By inspecting Figure 20, we
see that there is a bigon for Λ′ with + corner at b1 and − corner at b2, and so we can write
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∂′(b1) = σb2 + v where σ ∈ {±1} and v counts disks with + corner in the leftmost quadrant
at b1. The map Ψ1 (written as Φ0 in [ENS02]) is defined by

Ψ1(b1) = e1 Ψ1(b2) = σ(e2 − v) Ψ1(a`) = a`.

Given Ψ`−1, we define Ψ` = g` ◦ Ψ`−1, where g` : S(AΛ) → S(AΛ) is the identity on all
generators except a`, and

g`(a`) = a` +H(∂a` −Ψ`−1∂
′a`).

Here H is the map on S(AΛ) (a module map, not an algebra map) defined by H(w) = 0 if w
is any word that either does not contain e1 or e2, or for which the leftmost ei appearing in w
is e1, and H(w1e2w2) = (−1)|w1|+1w1e1w2 if w1 does not contain e1 or e2. Finally, Ψ = Ψr.

Noting that for each `, Ψ(a`) = Ψ`(a`) = g`(a`), we can restate the definition of Ψ more
succinctly as follows:

Ψ(b1) = e1

Ψ(b2) = σ(e2 − v)

Ψ(a`) = a` −H(Ψ∂′a`).

(4.1)

This definition looks circular since Ψ occurs on the right hand side of the definition of Ψ(a`),
but in fact the height ordering and Stokes’ Theorem imply that for any `, ∂′a` involves only
b1, b2, a1, . . . , a`−1 and not a`+1, . . . , ar, and so (4.1) can be used to recursively define Ψ(a`).
Note that the height ordering does not appear explicitly in (4.1); however, the existence of
the height filtration means that the recursive definition (4.1) terminates and thus produces
a well-defined result.

Remark 4.2. It follows from the definition of Ψ that the chain map p ◦Ψ : AΛ′ → AΛ has
the following simple form:

(p ◦Ψ)(b1) = 0 (p ◦Ψ)(b2) = −σv (p ◦Ψ)(a`) = a`.

�

This concludes our description of the DGA maps associated to isotopy cobordisms.

4.2. The cobordism map for a saddle cobordism. We now address the cobordism map
associated to a saddle cobordism. Let Λ+ be a Legendrian link with a contractible Reeb
chord a of degree 0; contractible chords of even degree can be similarly treated with suitable
modification to the grading. In the xy projection, replacing the crossing a by its oriented
resolution yields a Legendrian link Λ−, and we write La for the saddle cobordism between
Λ− and Λ+.

Our goal in this subsection is to write down a combinatorial formula for the cobordism map
ΦLa : (AΛ+ , ∂) → (AΛ− , ∂). In [EHK16], Ekholm–Honda–Kálmán describe such a formula
for this map over Z2, subject to the assumption that the Reeb chord a is what they call
“simple”. Our goal here is to describe the EHK map over Z and for what we call “proper
chords”, which are a different (and apparently larger) class of contractible Reeb chords than
simple chords. The proof that our map is indeed the geometric cobordism map ΦLa (stated
as Proposition 4.8 below) is deferred to Appendix A.

Recall from Section 3.1 that the Legendrian contact differential ∂ for a Legendrian Λ counts
immersed disks with a single + corner, where “immersed disk” in our terminology includes
the condition that all punctures are mapped to single quadrants (i.e., all corners are convex).
We will now need to consider more general disks, which we call immersed disks with concave
corners. These are immersed disks where each boundary puncture is again mapped to a
crossing of the Lagrangian projection Πxy(Λ), but where we now allow a neighborhood of
each boundary puncture to be mapped to either a single quadrant at the crossing (a convex
corner) or the union of three quadrants (a concave corner). As with convex corners, we can
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label each concave corner as positive or negative, depending on whether 2 of the 3 quadrants
covered by the corner are positive or negative, respectively.

Definition 4.3. A contractible Reeb chord a of Λ+ is proper if the following condition holds.
For any immersed disk ∆, possibly with concave corners, such that:

• ∆ has a positive convex corner at some Reeb chord besides a,
• ∆ has at least one positive convex corner at a,
• all other convex corners of ∆ are negative, and
• the only possible concave corners of ∆ are positive concave corners at a,

then it must be the case that the (closure of the) boundary of ∆ in Πxy(Λ+) passes through
the crossing Πxy(a) only once. That is, any immersed disk ∆ with the given properties
must have no concave corners, ∆ must have exactly one positive convex corner at a, and the
boundary of ∆ never passes through a except at that corner. �

Remark 4.4. We remark that being proper and being simple in the sense of [EHK16] are
not the same. We refer to [EHK16, Definition 6.16] for the index condition that defines
the latter property. In our language, the condition for a Reeb chord a to be simple can be
restated as follows: for any immersed disk ∆ such that ∆ has k positive convex corners at
a, a positive convex corner at some Reeb chord besides a, and all other corners (including
concave corners) being negative, it must be the case that ∆ has at least k concave corners.13

The contractible Reeb chord a9 in Figure 22 below is proper but not simple; the necessity of
considering saddle moves at Reeb chords like a9 in this paper is what motivated our definition
of proper chords. We do not know if all simple contractible chords must be proper. �

All of the Reeb chords that we use in this paper to perform saddle cobordisms are contractible
and proper. This is a consequence of the following result.

Proposition 4.5. If β ∈ Br+
N is an admissible braid and a is a crossing of β such that β\{a}

contains a half-twist, then as a Reeb chord of the (−1)-closure Λ(β), a is contractible and
proper.

Proof. Contractibility has already been shown in Proposition 2.8; we need to show properness.
Suppose that ∆ is a disk as in Definition 4.3. Because ∆ has a positive convex corner at
a, it must be “thin” in the sense that it lies in the neighborhood of the Legendrian unknot
that contains the satellite Λ(β). The presence of the half-twist, and the fact that ∆ has
no concave corners in the half-twist, prevents ∆ from passing through the half-twist. This
forces ∆ to be embedded in the neighborhood of the unknot, and so its boundary only passes
through a once. �

We will next present a formula for the map for a saddle cobordism at a Reeb chord a when
a is contractible and proper. As in [EHK16], the key is to consider immersed disks with two
+ corners, one of which is at a. We break these into two types.

Let ai be a Reeb chord of Λ+ not equal to a. Define ∆→a (ai), respectively ∆←a (ai), to be the
set of immersed disks for Λ+, such that:

• all corners are convex, and there are exactly two positive corners, one at ai and one
at a;
• at the corner at a, the orientation of Λ points toward, respectively away from (for

∆←a (ai)), the disk.

13In conversation with T. Ekholm, it emerged that there is a typo in [EHK16, Definition 6.16]: the
inequality ind(u) ≥ k in that definition should be ind(u) ≥ k + 1. The revised inequality corresponds to our
condition of having at least k concave corners.
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Figure 21. A disk in ∆→a (ai) (left) and a disk in ∆←a (ai) (right). For the
disk on the left, w1(∆) = a3a1 and w2(∆) = a2. For the disk on the right,
w1(∆) = 1 and w2(∆) = a4.

See Figure 21. For any ∆ ∈ ∆→a (ai)∪∆←a (ai), we can define three quantities. One is the sign
sgn(∆) ∈ {±1}, which is the product of the orientation signs over all corners of Λ, multiplied
by the signs of any base points traversed by the boundary of the disk. The other are two
words w1(∆), w2(∆) ∈ AΛ+ , defined as follows: w1(∆) is the product of the − corners and
base points that we encounter as we traverse the boundary of ∆ counterclockwise from ai to
a, and w2(∆) is the analogous product as we traverse the boundary counterclockwise from a
to ai. See Figure 21 for an example.

Definition 4.6. The combinatorial cobordism map, denoted Φcomb
La

: AΛ+ → AΛ− , is the
composition of three algebra maps:

Φcomb
La := Φ← ◦ Φ→ ◦ Φ0,

where Φ0 : AΛ+ → AΛ− is defined by Φ0(a) = s and Φ0(ai) = ai for any Reeb chord ai
besides a, and Φ→,Φ← : AΛ− → AΛ− are defined as follows. Let ai be a generator of AΛ− ,
that is, a Reeb chord of Λ−, which is then also a Reeb chord of Λ+. Then,

Φ→(ai) := ai +
∑

∆∈∆→a (ai)

(−1)|w1(∆)| sgn(∆)Φ→(w1(∆))s−1w2(∆)

Φ←(ai) := ai +
∑

∆∈∆←a (ai)

(−1)|w1(∆)| sgn(∆)Φ←(w1(∆))s−1w2(∆).

�

Remark 4.7. As with the definition of the Reidemeister II cobordism map, equation (4.1)
in Section 4.1, these definitions may appear circular but can be used to recursively define
Φ→ and Φ←. The reason is that if we order the Reeb chords a1, . . . , ar in increasing order
of height, then all disks with positive punctures at a and aj can only have negative corners
at a1, . . . , aj−1 and not at aj+1, . . . , air : in particular, if ∆ ∈ ∆→a (aj) ∪∆←a (aj) then w1(∆)
only involves a1, . . . , aj−1. �

The key result in this subsection is the relation between Φcomb
La

, as defined above, and ΦLa .
This is the content of the following result:

Proposition 4.8. If a ∈ AΛ+ is a proper contractible Reeb chord, then the cobordism map

ΦLa : AΛ+ → AΛ− is equal to the combinatorial map Φcomb
La

, up to a link automorphism of

Λ−. That is, there is a link automorphism Ω : AΛ− → AΛ− such that ΦLa = Ω ◦ Φcomb
La

.

Proposition 4.8 is proved in Appendix A below. Let us illustrate how to compute Φcomb
La

in
an explicit example, which will also appear as part of our later computations.

Example 4.9. Consider the configuration shown in Figure 22, this appears as part of our

calculations for the D̃4-Legendrian in Section 6.2. The first step in that calculation is a saddle
39



Figure 22. Calculating the cobordism map for a saddle cobordism at a9.
Left, the Legendrian link at the top of the cobordism; right, an immersed disk
showing that a9 is not simple.

move at a9, and we calculate the corresponding map Φ← here. By inspection we see that
∆←a9(ai) = ∅ for 10 ≤ i ≤ 13, while ∆←a9(a14) and ∆←a9(a15) each contain one disk apiece, with
negative corners at a13, a11 and a10, a13 respectively. For a16, ∆←a9(a16) contains three disks,
one with no negative corners, one with negative corners at a10, a14, and one with negative
corners at a15, a11. It follows from this that Φ←(ai) = ai for 10 ≤ i ≤ 13 and

Φ←(a14) = a14 − Φ←(a13a11)s−1 = a14 − a13a11s
−1

Φ←(a15) = a15 − Φ←(1)s−1a10a13 = a15 − s−1a10a13

Φ←(a16) = a16 − s−1 − s−1a10a14 − Φ←(a15a11)s−1 =

= a16 − s−1 − s−1a10a14 − (a15 − s−1a10a13)a11s
−1.

For the complete Legendrian that we study in Section 6.2, an inspection of Figure 28 shows
that ∆→a9(ai) = ∅ and thus Φ→(ai) = ai for 10 ≤ i ≤ 16. It follows that the map Φcomb

La9
sends

a9 to s and agrees with Φ← for ai, 10 ≤ i ≤ 16.

We note that in this example, a9 is contractible and proper but not simple, and thus even
over Z2 we cannot directly apply the combinatorial formula from [EHK16]. The reason a9 is
not simple (cf. Remark 4.4) is the disk shown in Figure 22, which has 2 positive corners at
a9, 1 positive corner at a16, and a single concave corner at a13. �

Remark 4.10. If a is not just proper but also simple, then our definition of Φcomb
La

can be
stated in an easier way, to match [EHK16]. In this case, write ∆a(ai) = ∆→a (ai) ∪∆←a (ai).
If ∆ is any disk in ∆a(ai) and aj is a negative corner of ∆, then it must be the case
that ∆a(aj) = ∅; otherwise the union of ∆ and a disk ∆′ ∈ ∆a(aj) is an immersed disk
with concave corner at aj and two positive (convex) corners at a, violating the simplicity
condition. Then we can drop the Φ→ and Φ← in Φ→(w1(∆)) and Φ←(w1(∆)), and conclude
directly that for all ai,

Φcomb
La (ai) = ai +

∑
∆∈∆a(ai)

sgn(∆)w1(∆)s−1w2(∆).

If we set s = 1 and reduce mod 2, this recovers the formula for the cobordism map from
[EHK16, Proposition 6.18]. �

4.3. Assembling elementary cobordism maps. Having described the cobordism maps
for elementary cobordisms, we can calculate the map associated to any decomposable cobor-
dism by composing the maps for its elementary pieces, and indeed this is what we do in
Sections 5 and 6 below. There is a possible difficulty with this approach: we have only
calculated the saddle cobordism map up to a link automorphism (see Proposition 4.8). How-
ever, for a filling, the extra flexibility provided by the basepoint parameters gets rid of this
problem, as we explain in this subsection.

Let L be a connected decomposable genus-g filling of an m-component Legendrian link Λ.
As in Section 3.5, we decorate L with arcs corresponding to base points t1, . . . , tm, s1, . . . , s`.
Divide L into elementary cobordisms L1, . . . , Lk, where:
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• Lj is a cobordism between Legendrians Λj−1 and Λj , with Λ0 = ∅ and Λk = Λ;
• L1 is a disjoint union of minimum cobordisms;
• for j = 2, . . . , k, Lj is either an isotopy cobordism or a saddle cobordism.

Note that this decomposition differs slightly from our simplified setup in Section 3.5, where
we suppressed isotopy cobordisms.

As in Section 3.5, let R be the ring

R := (Z[t±1
1 , . . . , t±1

m , s±1
1 , . . . , s±1

` ])/(w1 = · · · = wk = −1) ∼= Z[H1(L)⊕ Zm−1],

where w1, . . . , wk are words coming from the minima of L. For each j, let (AΛj , ∂
comb)

denote the DGA for Λj over R, with AΛ = AΛk . Then each elementary cobordism gives a

map ΦLj : (AΛj , ∂
comb) → (AΛj−1 , ∂

comb), and their composition is a (2g + 2m − 2)-system
of augmentations for Λ:

ΦL = ΦL1 ◦ · · · ◦ ΦLk : (AΛ, ∂
comb)→ (R, 0).

Now suppose that for j = 1, . . . , k, Ωj : AΛj−1 → AΛj−1 is a link automorphism of Λj−1, and

define Φ̃Lj = Ωj ◦ ΦLj .

Proposition 4.11. The maps ΦL = ΦL1 ◦ · · · ◦ΦLk and Φ̃L = Φ̃L1 ◦ · · · ◦ Φ̃Lk are equivalent
systems of augmentations of Λ.

Proof. We prove by induction that for j = 1, . . . , k, ΦL1 ◦ · · · ◦ ΦLj and Φ̃L1 ◦ · · · ◦ Φ̃Lj are

equivalent as maps (AΛj , ∂
comb) → (R, 0). The base case j = 1 is true since ΦL1 , and thus

Φ̃L1 , are both the zero map on Reeb chords of Λ1.

For the induction step, assume that ΦL1 ◦ · · · ◦ΦLj and Φ̃L1 ◦ · · · ◦ Φ̃Lj are equivalent, so that

there is an automorphism ψj of R such that Φ̃L1 ◦ · · · ◦ Φ̃Lj = ψj ◦ (ΦL1 ◦ · · · ◦ ΦLj ). Since
the map ΦL1 ◦ · · · ◦ΦLj agrees with the geometric system of augmentations for L1 ∪ · · · ∪Lj
by Proposition 3.13, and the geometric system incorporates link automorphisms of Λj , the
link automorphism Ωj of Λj induces an automorphism ωj of R such that

(ΦL1 ◦ · · · ◦ ΦLj ) ◦ Ωj = ωj ◦ (ΦL1 ◦ · · · ◦ ΦLj ).

(Note that Proposition 3.13 assumes that L1 ∪ · · · ∪ Lj is connected; however, the argu-
ment here extends to the disconnected case as well, since the system of augmentations of a
disconnected filling annihilates any Reeb chord with endpoints on different components.)

We conclude that the following diagram commutes:

AΛj+1

ΦLj+1

{{

Φ̃Lj+1

##
AΛj

Ωj

∼=
//

ΦL1
◦···◦ΦLj

}}

AΛj

ΦL1
◦···◦ΦLj

{{

Φ̃L1
◦···◦Φ̃Lj
!!

R
ωj

∼=
// R

ψj

∼=
// R.

It follows that ΦL1 ◦ · · · ◦ ΦLj ◦ ΦLj+1 and Φ̃L1 ◦ · · · ◦ Φ̃Lj ◦ Φ̃Lj+1 are equivalent since one is
the composition of the other with ψj ◦ ωj , and this completes the induction. �

By Proposition 4.11, when we build systems of augmentations for fillings by composing ele-
mentary cobordism maps, we can replace any elementary cobordism map by its composition
with a link automorphism. In particular, Proposition 4.8 implies that we can use the com-
binatorial saddle map Φcomb as the cobordism map for a saddle cobordism, and this is what
we will do in subsequent sections.
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5. Legendrian Contact DGA and Cobordism Maps for (−1)-closures

In this section we present an algebraically amenable description of the Legendrian contact
DGA for the (−1)-closure of an admissible braid, and detail the effect of the ϑ-loops and
saddle cobordisms on the DGA.

5.1. The DGA of the (−1)-closure of an admissible braid. Let σk1 · · ·σkr ∈ Br+
N be

an admissible positive braid. Henceforth we will write Λ(σk1 · · ·σkr) for the (−1)-closure of
this braid in the sense of Definition 2.3.14 We decorate the xy projection of Λ(σk1 · · ·σkr)
as follows; see Figure 23. Place a column of base points on the n strands of the braid
between braid crossings, as well as on either end of the braid, and label these base points t`,i,
1 ≤ i ≤ n, 0 ≤ ` ≤ r. (In practice we may only need some small subset of these base points;
in that case we formally set t`,i = 1 for all of the other base points and then remove them.)
The Reeb chords for Λ(σk1 · · ·σkr) consist of:

• a1, . . . , ar, of degree 0, corresponding to the crossings of the braid, and labeled in the
obvious way;
• cij , 1 ≤ i, j ≤ n, of degree 1, corresponding to the Reeb chord of the standard

Legendrian unknot U .

Recall from Section 3.1 that in order to calculate degrees of Reeb chords, we need to choose
a base point on each component of the link; any subset of the t`,i will do and produces the
degrees given above.

Figure 23. The Lagrangian projection of the Legendrian link Λ(σk1 · · ·σkr),
with crossings and base points labeled. The braid itself is in the blue box.
Arrows represent the orientation of the link.

The differential on the Legendrian contact DGA of Λ(σk1 · · ·σkr) can be expressed in a
compact way using the path matrices of Kálmán [Kál06].15 For k = 1, . . . , n − 1, define an
n× n matrix Pk(a) (as a function of an input a) as follows:

(Pk(a))ij =


1 i = j and i 6= k, k + 1

1 (i, j) = (k, k + 1) or (k + 1, k)

a i = j = k + 1

0 otherwise;

14Note that this differs from the notation Λ(β) in Section 2.2, but by Proposition 2.6, the two notations
represent links that are Legendrian isotopic.

15Note that we number our braid strands in increasing order from bottom to top, while Kálmán numbers
braid strands from top to bottom. We also incorporate base points while Kálmán does not.
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that is, Pk(a) is the identity matrix except for the 2×2 submatrix given by rows and columns
k and k+1, which is ( 0 1

1 a ). (These are the path matrices considered in [Kál06], but note that
we number our braid strands in increasing order from bottom to top, while Kálmán numbers
braid strands from top to bottom.) Also define t` = (t`,1, . . . , t`,n) and write D(t`) for the
diagonal n× n matrix with t`,1, . . . , t`,n along the diagonal.

Definition 5.1. Let β = σk1 · · ·σkr be an n-stranded braid decorated with base points, with
crossings and base points labeled as in Figure 23. The path matrix of β is the n× n matrix

Pβ = D(t0)Pk1(a1)D(t1)Pk2(a2)D(t2) · · ·Pkr(ar)D(tr).

Colloquially, the (i, j) entry of the path matrix P (β) counts paths beginning at the left of β
on strand i, ending at the right on strand j, and at each crossing the path encounters, either
passing straight through the crossing, or turning a corner if the path changes direction from
southeast to northeast at the corner. Each path produces a word by reading the base points
traversed and corners turned in order, and the (i, j) entry of P (β) is the sum of these words.

Proposition 5.2. The differential on the DGA (AΛ(σk1 ···σkr ), ∂) for Λ(σk1 · · ·σkr) is given

as follows: ∂(a`) = 0, and if we assemble the cij into an n× n matrix C = (cij) and write 1
for the n× n identity matrix, then:

∂(C) = 1 + Pβ.

Proof. Each degree-0 generator a` has vanishing differential for degree reasons. For cij , there
are two possible types of immersed disks (all of which are in fact embedded) with + corner
at cij , depending on which + quadrant at cij is covered by the disk. There is an embedded
disk with + puncture at the right quadrant of cij and no − puncture if i = j, and otherwise
there is no immersed disk with + puncture at this right quadrant. This produces the 1 term
in the formula. For embedded disks with + puncture at the left quadrant of cij , we need to
keep track of ways that the boundary of this disk can enter the braid from the left on strand
i and exit the braid to the right on strand j, with possible convex corners at some crossings
a`. The contribution of these disks to ∂(cij) is precisely the (i, j) entry of the path matrix
Pβ. �

5.2. ϑ-monodromy action on the DGA. Consider a Legendrian link Λ = Λ(β, k; γ) ⊂
(R3, ξst) and its ϑ-loop, as defined in Section 2.4. Here we compute the morphism

A(ϑ) : AΛ → AΛ

induced by this Legendrian isotopy, which we call the ϑ-monodromy or purple box mon-
odromy. To be precise, any Legendrian isotopy between Legendrian links induces a chain
isomorphism between the (suitably stabilized) DGAs of the links, as described in [Che02,
ENS02]. In the case of the isotopy given by the ϑ-loop, which consists entirely of Reide-
meister III moves, it is not necessary to stabilize the DGAs, and as a result we obtain the
aforementioned chain isomorphism A(ϑ), which we now compute explicitly.

The Lagrangian projection of Λ(β, k; γ) is given in the right diagram in Figure 13. Let n
denote the braid index of γ, and let N be the number of braid strands in Λ(β, k; γ), so that the
braid index of β is N −n+1. As in Section 5.1, the Reeb chords of Λ(β, i; γ), which generate
the Legendrian contact DGA AΛ, come in two types: the degree 1 chords cij , i, j ∈ [1, N ],
and the degree 0 chords in the braiding region. We can divide these Reeb chords into two
types in another way. Call the sublink of Λ(β, i; γ) corresponding to the i-th strand of β (and
containing the purple box γ) the satellite sublink ; this is depicted in purple in Figure 13.
We call crossings of Λ(β, i; γ) satellite crossings and non-satellite crossings depending on
whether or not they involve the satellite sublink. Note that the satellite crossings of degree
1 are precisely cij with i, j ∈ {k, . . . , k+n− 1}, while the satellite crossings of degree 0 come
in groups of n, with each group coming from a single crossing of β.
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We allow for the placement of arbitrarily many base points on Λ(β, k; γ), subject to the
restriction that any base points lying on the satellite sublink actually lie in the purple box
for γ. (In practice, there will be one base point per strand of Λ(β, k; γ), and the base points
in the purple box will lie on its right edge.) Let Pγ denote the n× n path matrix for γ with

its base points. Extend this to an N ×N matrix P̃γ by

P̃γ =

1 0 0
0 Pγ 0
0 0 1


where the central matrix Pγ corresponds to rows and columns k, . . . , k + n− 1.

Proposition 5.3. The purple-box monodromy map A(ϑ) : AΛ → AΛ is given on generators
as follows. Assemble the degree 1 generators cij into an N ×N matrix: then

A(ϑ)(C) = P̃γCP̃
−1
γ .

For degree 0 generators, A(ϑ) fixes all non-satellite crossings, while its action on degree 0
satellite crossings is as follows:

A(ϑ)

(
h1
...
hn

)
= Pγ

(
h1
...
hn

)

A(ϑ)

(
h′1
...
h′n

)
=
(
P Tγ
)−1

(
h′1
...
h′n

)
.

Here h1, . . . , hn is any group of satellite crossings coming from a crossing of β where the i-th
strand is the overcrossing, while h′1, . . . , h

′
n is any group of satellite crossings coming from a

crossing of β where the i-th strand is the undercrossing. See Figure 24.

Figure 24. A group of satellite crossings coming from an overcrossing (left)
and an undercrossing (right).

Proof. The ϑ-loop consists of a sequence of Reidemeister III moves that push the purple box
around, and consequently the map A(ϑ) is the composition of a sequence of algebra isomor-
phisms corresponding to these Reidemeister III moves, as given concretely in Section 4.1.2.
In particular, any non-satellite crossing does not participate in any of the Reidemeister III
moves and so it is fixed by A(ϑ).

Next consider a group of degree 0 satellite crossings h1, . . . , hn as in the statement of the
proposition (the argument for h′1, . . . , h

′
n is similar and will be omitted). The ϑ-loop pushes

the purple box containing γ through h1, . . . , hn from right to left. Since the path matrix Pγ
is a product of path matrices for individual crossings and columns of base points, and we can
factor the action of A(ϑ) on h1, . . . , hn by pushing each individual crossing and base point
column across h1, . . . , hn from right to left and composing the results, the key is to observe
what happens when we push a single crossing or base point column of γ across h1, . . . , hn.
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Figure 25. Pushing a crossing (left) or a column of base points (right) across
a group of satellite crossings.

If we push a crossing a from γ across h1, . . . , hn by a single Reidemeister III move as shown in
Figure 25 (left), then from Section 4.1.2, the associated isomorphism sends a 7→ a, hi 7→ hi+1,
and hi+1 7→ hi + ahi+1. (Note that compared to Figure 19, the crossings hi and hi+1 have
switched places after the Reidemeister III move.) This is precisely the matrix map(

hi
hi+1

)
7→
(

0 1
1 a

)(
hi
hi+1

)
.

Thus pushing the crossing a across h1, . . . , hn acts on

(
h1
...
hn

)
by left multiplication by the

path matrix for a. If instead we push a column of base points across h1, . . . , hn as shown
in Figure 25 (right), then from Section 4.1.1, the associated isomorphism sends hi to tihi
for i ∈ [1, n], which corresponds to left multiplication by the diagonal matrix with diagonal
entries t1, . . . , tn. Composing the individual isomorphisms, we conclude that the purple-box
monodromy indeed acts on h1, . . . , hn by left multiplication by the path matrix Pγ , as desired.

Figure 26. Pushing the purple box through the pigtail.

Finally, we consider the degree 1 crossings. As we perform the ϑ-loop, the purple box passes
through the “pigtail” region with the degree 1 crossings twice; see Figure 26. On the first
pass, when the purple box pushes through the strand containing crossings c1j , . . . , cnj , this

yields the map that sends

( c1j
...
cnj

)
7→ Pγ

( c1j
...
cnj

)
, by the same argument as for the degree 0

crossings h1, . . . , hn above. Thus the first pass of the purple box through the degree-1 region

cumulatively has the effect of sending C to P̃γC. Similarly the second pass (from upper right

to lower left) sends C to CP̃−1
γ . Together, the two passes send C to P̃γCP̃

−1
γ . �
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5.3. The Kálmán loop. The techniques of this section can be applied to compute the mon-
odromy of other loops of Legendrian links besides ϑ-loops. One case where it is particularly
simple to calculate the monodromy in our setting is the loop of Legendrian T (p, q)-torus
links originally studied by Kálmán in [Kál05]. For concreteness we focus here on the most
basic example of the Kálmán loop, which involves the max-tb Legendrian right handed trefoil
(p = 2, q = 3). Kálmán constructs a loop in the space of these Legendrian trefoils and proves
that the induced action on the degree-0 Legendrian contact homology has order 5. Here we
reinterpret this result in our setting.

In our language, the Legendrian trefoil is the (−1)-closure of the admissible 2-stranded braid
σ5

1; in other words, it is Λ(β, 1; γ) ⊂ (R3, ξst) where β ∈ Br+
1 is the 1-stranded braid and

γ = σ5
1 ∈ Br+

2 . We label the crossings of γ a1, . . . , a5 and place base points t1, t2 to the right
of γ, as shown in Figure 27 (left). The ϑ-loop moves the entire braid σ5

1 around the standard
unknot Λ(β) = U until it returns to its starting point. We can factor this loop as the fifth
power of another loop δ, which moves the single leftmost crossing of σ5

1 around the unknot
until it returns to γ as the rightmost crossing. Note that this move shifts the position of
the base points t1, t2; we then slide t1, t2 along the knot until they return to their original
positions. See Figure 27. The combination of the crossing move and the base point move
forms a loop beginning and ending at Λ(β, 1; γ), which is the Kálmán loop and which we
denote by δ.

Figure 27. The Legendrian trefoil is the (−1)-closure of the depicted braid
σ5

1. Left, the braiding region with base points; middle, the result of moving
the leftmost crossing to the right; right, the result of sliding the base points
back to their original position (with the slides shown in the middle diagram).

The action A(δ) of the loop δ on the Legendrian contact DGA A(Λ(β, 1; γ)) is easy to
describe. Moving a1 to the right simply permutes the ai: a1 7→ a2, . . . , a4 7→ a5, a5 7→ a1.
From Section 4.1.1, sliding the base points as indicated in Figure 27 fixes a1 and sends ai to
t−1
1 ait2 for i = 3, 5 and t−1

2 ait1 for i = 2, 4. Thus A(δ) acts on the DGA as follows:

a1 7→ t−1
2 a2t1 a2 7→ t−1

1 a3t2 a3 7→ t−1
2 a4t1 a4 7→ t−1

1 a5t2 a5 7→ a1.

(The degree 1 generators are fixed by A(δ).) By inspection we see that A(δ) has order 5, in
agreement with Kálmán’s result: A(δ)5 = A(ϑ) is the identity map.

This argument readily generalizes to (p, q)-torus links for arbitrary positive p, q. In the general
case, the Legendrian link is the (−1)-closure of the admissible braid (σ1 . . . σp−1)p+q ∈ Br+

p ,
and the Kálmán loop δ moves the leftmost p− 1 crossings around the unknot. As in the case
of the trefoil, we immediately see that δp+q acts as the identity on the Legendrian contact
DGA.

Remark 5.4. The original proof in [Kál05] that A(δ) has order p + q uses the Legendrian
link given by the resolution of the rainbow closure of the braid (σ1 · · ·σp−1)q. The DGA for
this link has (p− 1)q generators in degree 0, and Kálmán’s computation of the monodromy
of δ on this DGA is rather nontrivial, both because Reidemeister II moves are involved and
because the DGA differential itself is quite complicated due to the presence of non-embedded
disks. Kálmán then performs an intricate computation to show that this monodromy has
order p+q. The mere fact that p+q appears here, e.g. instead of p or q, is rather mysterious
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from the geometric viewpoint. By contrast, in our setup with (−1)-closures, the DGA has
(p − 1)(p + q) generators in degree 0, the monodromy of δ simply cyclically permutes these
generators, and it is evident without computation that this action has order p+ q. �

5.4. The saddle cobordism map for (−1)-closures. So far we have discussed the ϑ-
monodromy. We now turn to the other principal computational ingredient in our calculations
for the upcoming Section 6, namely the calculation of saddle cobordism maps: we will consider
augmentations corresponding to specific decomposable fillings, and these augmentations are
the composition of a number of saddle maps.

In Section 4.2, we defined a combinatorial cobordism map Φcomb : AΛ+ → AΛ− associated
to a saddle cobordism at any proper contractible Reeb chord. This combinatorial formula
allows us in Section 6 to calculate the augmentations corresponding to particular fillings of
(−1)-closures, and the reader may skip ahead to that section at this point. In the present
subsection, we take a slight detour and discuss what the formula for Φcomb looks like for
saddle cobordisms of (−1)-closures, in terms of the matrix formula for the DGA of a (−1)-
closure from Section 5.1. In particular, this will allow us to see combinatorially that Φcomb

is indeed a chain map in this case, without going through the general theory. The interested
reader may want to compare our discussion here with [GSW20a, section 3.3], which presents
an independent but rather similar matrix treatment of saddle cobordism maps.

Consider a saddle cobordism whose top end is a Legendrian (−1)-closure Λ+ = Λ(σk1 · · ·σkr),
and whose bottom end is the Legendrian link Λ− obtained by resolving a contractible proper
crossing of Λ+. For ease of notation, we will assume that the crossing is a1, corresponding
to the braid generator σk1 , and so Λ− = Λ(σk2 · · ·σkr). (The case of a saddle resolving an
arbitrary crossing a` is easy to deduce from this; just perform the cyclic-permutation isotopy
sending Λ+ = Λ(σk1 · · ·σkr) to Λ(σk` · · ·σkrσk1 · · ·σk`−1

) and similarly for Λ−.)

From Section 5.1 above, we can write down the differentials ∂± on Λ± in matrix form.
Specifically, as in Section 5.1, we place base points t`,i, 1 ≤ i ≤ n, 1 ≤ ` ≤ r, next to the
crossings of Λ+. Then Λ− inherits this same array of base points, along with two new base
points in place of the crossing a1, one on strand k1 + 1 labeled by s1 and one on strand k1

labeled by −s−1
1 . By Proposition 5.2, in the notation from Section 5.1, the differentials ∂+

and ∂− for the DGAs of Λ+ and Λ− are given by the matrix formulas:

∂+(C) = 1 + Pk1(a1)D(t1)Pk2(a2)D(t2) · · ·Pkr(ar)D(tr)

∂−(C) = 1 +D(t0)D(t1)Pk2(a2)D(t2) · · ·Pkr(ar)D(tr)

where t0 = (1, . . . , 1,−s−1
1 , s1, 1, . . . , 1) (with −s−1

1 and s1 in the k1 and k1 + 1 components
respectively).

Let Φcomb = Φ← ◦ Φ→ ◦ Φ0 : AΛ+ → AΛ− be the cobordism map from Proposition 4.8. We

first note that the action of Φcomb on degree-1 Reeb chords cij is easy to write down. Indeed,
write T←k1 (s1) for the n×n matrix equal to the identity matrix except with (k1, k1 + 1) entry

given by s−1
1 . Then we have

(5.1) Φcomb(C) = T←k1 (s1)C(T←k1 (s1))−1.

This can be seen directly from an inspection of Figure 23, using the fact that ∆→a1(cij) = ∅,
while the only possible disks in ∆←a1(cij) are thin disks heading left from their + corner at a1,
following the figure eight, and ending in the region containing the cij ’s. We omit the details
here.

The explicit nature of this algebraic model allows us to sketch a direct argument for why
Φcomb is a chain map. Note that this argument is mainly provided for context and is not
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needed in the rest of the paper,16 and so we do not provide full details; see also [GSW20a,
section 3.3] for a related discussion with more details.

Proposition 5.5. Φcomb ◦ ∂+ = ∂− ◦ Φcomb.

Proof. In order to show that Φcomb is a chain map, it suffices to show that Φcomb(∂+(C)) =
∂−(Φcomb(C)). Note that

Φcomb(Pk1(a1)) = Pk1(s1) = T←k1 (s1)D(t0)T→k1 (s1)

where T→k1 (s1) is the identity matrix except with (k1 + 1, k1) entry given by s−1
1 . Since Φ

acts on C by conjugation by T←k1 (s1), showing that Φ is a chain map reduces to verifying the
following:
(5.2)

Φcomb
(
T→k1 (s1)D(t1)Pk2(a2)D(t2) · · ·Pkr(ar)D(tr)T

←
k1 (s1)

)
= D(t1)Pk2(a2)D(t2) · · ·Pkr(ar)D(tr).

Call a matrix lower-unipotent if it is of the form 1 +N where N is a strictly lower triangular
matrix; that is, a lower-unipotent matrix is a lower triangular matrix with 1’s along the
diagonal. Note in particular that T→k1 (s1) is lower-unipotent. Next we observe that if T is
lower-unipotent then

T ′ = (Pk`(a` + Tk`+1,k`))
−1 TPk`(a`)

is again lower-unipotent: this follows from the identity of 2× 2 matrices(
0 1
1 a` + Tk`+1,k`

)−1(
1 0

Tk`+1,k` 1

)(
0 1
1 a`

)
=

(
1 0
0 1

)
.

We can thus inductively define a sequence of lower-unipotent matrices T ′1, T1, T
′
2, T2, . . . , T

′
r, Tr

as follows:

T ′1 = T→k1 (s1),

T` = D(t`)
−1T ′`D(t`),

T ′` = (Pk`(a` + (T`−1)k`+1,k`))
−1 TPk`(a`).

Then we have
T`−1Pk`(a`)D(t`) = Pk`(a` + (T`−1)k`+1,k`)D(t`)T`.

Write x` := (T`−1)k`+1,k` for short; we now have

T→k1 (s1)D(t1)Pk2(a2)D(t2) · · ·Pkr(ar)D(tr)

= D(t1)Pk2(a2 + x2)D(t2)Pk3(a3 + x3) · · ·Pkr(ar + xr)D(tr)Tr.

The key fact now, whose proof (and precise statement) we omit here, is that the matrices T`
have geometric meaning: for i > j, the (i, j) entry in T` counts embedded disks whose leftmost
end is a positive corner at a1 and whose rightmost end is a vertical line segment connecting
strands i and j just to the right of crossing a`. (In particular, Tr = 1.) Furthermore, the
map Φ→ from Section 4.2 is constructed exactly to satisfy

Φ→(a` + x`) = a`

for all ` = 2, . . . , r. As a consequence, we have

Φ→
(
T→k1 (s1)D(t1)Pk2(a2)D(t2) · · ·Pkr(ar)D(tr)

)
= D(t1)Pk2(a2)D(t2)Pk3(a3) · · ·Pkr(ar)D(tr).

Similarly, Φ← satisfies

Φ←
(
D(t1)Pk2(a2)D(t2) · · ·Pkr(ar)D(tr)T

←
k1 (s1)

)
= D(t1)Pk2(a2)D(t2)Pk3(a3) · · ·Pkr(ar)D(tr).

Combining this equation and the previous equation now yields (5.2), whence Φcomb is a chain
map. �

16The computation in the proof of Proposition 5.5 does contribute to the implementation of the program
[Ng], in the code calculating the augmentation associated to a filling of a (−1)-closure.
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6. Proof of Infinitely Many Fillings

In this section we prove Theorem 1.1. First, we describe the scheme of proof that we will

use for all the Legendrian links Λ ∈ H. The cases Λ(D̃4),Λ1,Λ2 and Λ(β11),Λ(β12),Λ(β21)

are then proven directly using this strategy. The general cases Λ(D̃n),Λn are concluded from

Proposition 6.5 and the proofs we give for the two cases Λ(D̃4),Λ2.

6.1. The argument. Let Λ ⊂ (R3, ξst) be a Legendrian link Λ = Λ(β, i; γ), β ∈ Br+
N , γ ∈

Br+
M , and consider its ϑ-loop, as introduced in Section 2.4. The general structure of our

proofs can be described in three steps, as follows:

(i) First, choose an ordered sequence of crossings for β and γ such that resolving these
crossings yields an orientable exact Lagrangian filling L ⊂ (R4, λst) of the Legendrian
link Λ.

(ii) Second, compute the augmentation εL : AΛ → Z[H1(L) ⊕ Zm−1] associated to the
exact Lagrangian filling L (where m is the number of components of Λ) and the in-
duced maps ϑk : AΛ → AΛ, k ∈ N. We note that all crossings chosen in (i) will have
the property that their complement contains a half-twist, and consequently they are
contractible and proper by Proposition 4.5. Thus we may apply the combinatorial
formulas from Section 4.2 in this step.

(iii) Third, fix a crossing a for the braid word β associated to the Legendrian link Λ,
which we consider as one of the generators a ∈ AΛ of the Legendrian contact DGA.
Consider the invariant

E(k, a) := max
η:R→Z

|(η ◦ εL ◦ ϑk)(a)|, k ∈ N,

where R = Z[H1(L) ⊕ Zm−1] and η : R → Z runs over all possible unital ring
morphisms. Note that the set of such morphisms is finite, as the first Betti number
b1(L) is finite, and thus E(k, a) is a well-defined maximum over a finite set of integers.
Finally, show that E(k, a) is a strictly increasing function of k ∈ N.

The different choices for the Lagrangian filling (and thus the augmentation εL) and crossing
a ∈ AΛ influence the computation of the invariant E(k, a). Finding the maximum over a
set whose cardinality grows exponentially in l(β) + l(γ) makes brute force computation a
difficult (though not unfeasible) route. Thus, particular care must be devoted in choosing
the augmentation εL and the crossing a ∈ AΛ: we will find crossings a ∈ AΛ and Lagrangian
fillings whose augmentations satisfy that (εL ◦ ϑk)(a) is a positive Laurent polynomial in
Z[H1(L)], for all k ∈ N, making the invariant E(k, a) readily computable.

Remark 6.1. Executing the argument laid out here for specific Legendrian links, including
all of the ones that we consider in this section, is readily amenable to calculation by computer.
A Mathematica notebook that performs the calculations contained in the remainder of this
section, and is suitable for calculations for general (−1)-closures, is available at the second

author’s web page [Ng]. We will work out the argument for D̃4 in detail, without recourse
to the computer program, in Section 6.2 below; we provide fewer details for subsequent
computations and refer the reader to the program. �

6.2. Augmentations for Λ(D̃4). We now turn to proving Theorem 1.1 for the Legendrian

link Λ(D̃n), n ≥ 4. In this subsection we present the argument for n = 4; the general n ≥ 4
case is deduced from this in Section 6.5.

As stated in the introduction, the Legendrian link Λ(D̃4) ⊂ (R3, ξst) ⊂ (S3, ξst) is defined to
be the rainbow closure of the positive braid (σ2σ1σ3σ2)2, which is also the (−1)-closure of
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the braid (σ2σ1σ3σ2)4σ2
3σ

2
1 = (σ2σ1σ3σ2)2∆2

4. A Lagrangian projection for Λ(D̃4) is depicted
in Figure 28. Let us prove the following result:

Theorem 6.2 (The D̃4–Legendrian). Let ϑ : S1 → L(Λ(D̃4)) be the purple-box Legendrian

loop. Then there exists a Lagrangian filling L ⊂ D4 of Λ(D̃4) such that the ϑ-orbit of the
system of augmentations εL is entire.

In order to prove Theorem 6.2, we set some notation and lay out the pieces that go into the
proof. Let us label the crossings of the positive braid (σ2σ1σ3σ2)4σ2

3σ
2
1 from left to right as

a16, . . . , a1, a17, a18, a19, a20.

Figure 28 shows the Lagrangian projection of Λ(D̃4) that we use for the proof, where the
labeled crossings are also depicted. These crossings are the degree-0 Reeb chords of a Leg-

endrian front for Λ(D̃4). The ϑ-monodromy is obtained by carrying around the purple box
containing the two crossings a19, a20 and the two base points t1, t2, as shown in Figure 28,
cf. Figure 2.

Figure 28. Lagrangian projection for the Legendrian link Λ(D̃4), as used in
the proof of Theorem 6.2. The crossings a11, a9, in blue, are used to detect the
infinite order of the ϑ-monodromy. In this case, the ϑ-monodromy is obtained
by moving the crossings a19, a20 around this projection.

The filling L of Λ(D̃4) that we will consider is the decomposable filling constructed as follows.

Resolve the following crossings of Λ(D̃4) in order:

a9, a10, a11, a12, a13, a14, a15, a16.

Note that at each step the remaining braid is admissible in the sense of Definition 2.5: this
follows from Proposition 2.7 and the fact that the crossings a4, a3, a2, a1, a17, a19 comprise
a half-twist. Thus each step produces a legal Lagrangian projection of a Legendrian link,
and each resolved crossing is contractible. The result of resolving these 8 crossings is the
(−1)-closure of a full positive twist, which we write as Λ0 and is precisely the standard 4-
component Legendrian unlink. We then fill in each of the 4 component unknots. This gives

the desired filling L of Λ(D̃4), expressed as 8 saddle cobordisms and 4 minimum cobordisms.

Following the discussion in Section 3.5, we use Z[t±1
1 , . . . , t±1

4 , s±1
9 , . . . , s±1

16 ] as the coeffi-

cient ring for the DGA A(Λ(D̃4)). We will need two maps on A(Λ(D̃4)), induced by the

ϑ-monodromy and the filling L. The former map is an automorphism ϑ : A(Λ(D̃4)) →
A(Λ(D̃4)). For the latter, as in Section 3.5, L induces an augmentation εL : A(Λ(D̃4))→ R.
Here R = Z[t±1

1 , . . . , t±1
4 , s±1

9 , . . . , s±1
16 ]/(w1 = w2 = w3 = w4 = −1), where w1, w2, w3, w4

are the product of the labels of the base points on each unknot in Λ0. Since by inspection
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t1, t2, t3, t4 appear on all distinct components of Λ0, the quotient allows us to solve for the
ti’s, and we conclude that R ∼= Z[s±1

9 , . . . , s±1
16 ].

Our aim is to pairwise distinguish the iterates εL ◦ ϑk : A(Λ(D̃4)) → R, k ∈ N, even up
to automorphisms of R. We will do this by computing the image of a9 under each of these
maps. In order to perform this computation, we need to partially compute the maps ϑ and
εL.

We first consider the monodromy automorphism ϑ, which we compute using Proposition 5.3.
First note that ϑ fixes the variables a19, a20, t1, t2 that appear inside the purple box. We will
be interested in what ϑ does to the two Reeb chords a9, a11, which are depicted in blue in
Figure 28. The path matrix associated to the purple box is given by

M =

(
0 1
1 a19

)
·
(

0 1
1 a20

)
·
(
t1 0
0 t2

)
=

(
t1 t2a20

t1a19 t2(1 + a19a20)

)
.

By Proposition 5.3, the effect of the DGA automorphism ϑ ∈ Aut(A(Λ(D̃4))) on the two
crossings a11, a9, which are depicted in blue in Figure 28, is(

a11

a9

)
7−→ ϑ

(
a11

a9

)
= M

(
a11

a9

)
.

Next consider the augmentation εL, which we can explicitly compute using the formulas from
Section 4. We will only need the following partial computation:

Lemma 6.3. We have εL(a9) = s9, εL(a11) = s11, and

εL(t1) = −s11s15,

εL(t2) = −s9s12s13s16

s11s15
,

εL(a19) =
s9

s11
− s9s12s13

s2
11s15

,

εL(a20) = − s3
11s

2
15

s2
9s12s13s16

+
s2

11s15

s9s12s13
− s2

11s
2
15

s9s10s13s16
+

s2
11s14s

2
15

s9s12s2
13s16

.

Proof. For i = 9, . . . , 16, let Φi = Φcomb
Lai

denote the combinatorial cobordism map associ-

ated to the saddle cobordism at ai, as described in Section 4.2; also let ε0 : AΛ0 → R ∼=
Z[s±1

9 , . . . , s±1
16 ] denote the augmentation associated to the disk filling of Λ0. We have

εL = ε0 ◦ Φ16 ◦ · · · ◦ Φ9.

We begin by computing ε0. Note that all Reeb chords of Λ0 either have degree 1 (for the
42 crossings on the right) or connect different components of Λ0 (for the crossings ai for
1 ≤ i ≤ 8 and 17 ≤ i ≤ 20). Since the filling of Λ0 consists of four disjoint disks, it follows
that ε0 sends all Reeb chords to 0. As for the ti parameters, an inspection of Figure 28 yields
that the unknot components of Λ0 containing t1 and t2 contain the following base points in
order: −s−1

15 ,−s
−1
11 , t1 and −s−1

16 , s15,−s−1
13 ,−s

−1
12 , s11,−s−1

9 , t2, respectively. Setting each of
the products of these base points equal to −1 gives t1 = −s11s15 and t2 = − s9s12s13s16

s11s15
, and

these are the respective images of t1 and t2 under ε0 (and thus under εL as well).

We now proceed to compute εL for a9, a11, a19, a20. The sequence of saddle moves has been
chosen to simplify the computation of εL(a9) and εL(a11): indeed, εL(a9) = Φ9(a9) = s9,
while Φ9 and Φ10 fix a11 and so εL(a11) = Φ11(a11) = s11.

For a19, we keep track of disks with two positive punctures, one at a19 and one at the crossing
being resolved. There are no such disks when we resolve a9 and a10. When we resolve a11,
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Figure 29. Disks with positive corners at a11, a19 (left) and a15, a19 (right),
contributing to Φ11(a19) and Φ15(a19) respectively. For these disks, the pos-
itive corner at a19 has positive orientation sign, while the positive corner at
a11 and a15 has negative orientation sign.

there is one disk ∆ ∈ ∆→a11(a19) passing through −s−1
9 (against the orientation) with no

negative corners; see Figure 29. From Definition 4.6, we read off Φ→(a19) = a19 + s9s
−1
11 and

Φ←(a19) = a19, and so Φ11(a19) = a19 + s9s
−1
11 . As we successively resolve a12, . . . , a16, the

only additional relevant disk with two positive punctures comes when we resolve a15 and is
shown in Figure 29; this gives Φ15(a19) = a19 − s9s

−1
11 s12s13s

−1
15 s
−1
11 . We conclude that

εL(a19) = ε0(Φ15(Φ11(a19)) = ε0

(
a19 +

s9

s11
− s9s12s13

s2
11s15

)
=

s9

s11
− s9s12s13

s2
11s15

.

The computation of εL(a20) is similar but slightly more involved. We compute that

Φ9(a20) = a20 − t1a11s
−1
9 t−1

2

Φ10(a20) = a20 − t1a12s
−1
10 t
−1
2

Φ13(a20) = a20 + t1s
−1
13 a14t

−1
2

Φ15(a20) = a20 + t1s
−1
15 a16t

−1
2 ;

piecing these together, along with Φi(ai) = si and the values computed above for ε0(t1) and
ε0(t2), gives the desired expression for εL(a20). �

We are now in position to prove Theorem 6.2.

Proof of Theorem 6.2. Consider the following matrices with entries in Z[s±1
9 , . . . , s±1

16 ]:

M0 := εL(M), v0 := εL

(
a11

a9

)
=

(
s11

s9

)
, N :=

(
s11 1
s9 0

)
, M1 := N−1M0N.

For k ∈ N, the augmentation εL ◦ ϑk sends the column vector ( a11a9 ) to

εL(M)k · εL
(
a11

a9

)
= Mk

0 v0 = N(N−1M0N)k ·
(

1
0

)
= NMk

1

(
1
0

)
.

We can explicitly write down M1 using Lemma 6.3. This leads to the following observation: if
we replace s11, s12, s15, s16 by their negatives −s11,−s12,−s15,−s16, the matrix M1 becomes

(M1)|{sj→−sj ,j=11,12,15,16} =

(
m11 m12

m21 m22

)
,

where the entries are

m11 =
s9s13s

2
12

s10s11
+
s9s14s12

s11
+
s9s15s12

s10
+
s9s14s15

s13
+ s9s16

m12 =
s12s13

s11
+ s15

m21 =
s9s13s

2
12

s10
+ s9s14s12

m22 = s12s13.
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Note that all the coefficients are positive Laurent polynomials in the variables s9, . . . , s16:
this is the algebraic reason for our choice of augmentation εL, and the change of signs for the
variables s11, s12, s15, s16.

Let us now finally conclude that the iterates εL ◦ ϑk are pairwise distinct. We do this by
studying the quantity

E(k, a9) := max
η:R→Z

|(η ◦ εL ◦ ϑk)(a9)|,

where η : R → Z runs over all possible 28 unital ring morphisms. This is an integer-valued
invariant of an augmentation εL : AΛ → R even up to post-composition of an automorphism
of R. That is, if E(k, a9) 6= E(l, a9) then there exists no automorphism ϕ ∈ Aut(R) such
that ϕ(εL ◦ ϑk) = εL ◦ ϑl, and thus the k-th and l-th ϑ-iterates of εL are distinct. In order
to compute E(k, a9), we note that

|(εL ◦ ϑk)(a9)| =
∣∣∣∣(s9 0

)
Mk

1

(
1
0

)∣∣∣∣ =

∣∣∣∣(1 0
)
Mk

1

(
1
0

)∣∣∣∣
is the absolute value of the upper-left entry of Mk

1 . A unital ring morphism η : R → Z
is uniquely determined by specifying the values s9, . . . , s16 ∈ {±1} and since the entries
m11,m12,m21,m22 are positive Laurent polynomials, the value |(εL ◦ ϑk)(a9)| is maximized
when si = −1 for i = 11, 12, 15, 16 and si = 1 for i = 9, 10, 13, 14. It follows that E(k, a9)

is equal to the upper-left entry of ( 5 2
2 1 )

k
, which is a strictly increasing function of k. This

proves that E(k, a9) 6= E(l, a9) if k 6= l, as required. �

6.3. Three Variations on the Affine D4-braid. Let us next consider the following three
Legendrian links from the Introduction:

Λ(β12) = Λ((σ1σ2σ2σ1)2σ1, 1;σ2
1), Λ(β21) = Λ((σ1σ2σ2σ1)2σ2

1, 1;σ1),

Λ(β11) = Λ((σ1σ2σ2σ1)2σ1, 1;σ1).

These are obtained from the D̃4-braid by removing the crossing a18, for β12, the crossing a20,
for β21 or the two crossings a18, a20, for the braid β11. See Figure 28 for the notation on the
crossings, we denote the crossings of these three braids by the same labels17 as in Figure 28.
In these three cases, we can use the template given by the proof of Theorem 6.2, again by
studying the crossings a9, a11. We will omit the details and just give the choice of Lagrangian
filling L, its corresponding augmentation εL as computed from the formulas in Section 4.2,
and the augmented matrices M1. These computations are also contained in the Mathematica
notebook [Ng].

- The link Λ(β12). The Lagrangian filling L is obtained by resolving the crossings
a9, a10, a11, a12, a13, a15, a16 in order. The augmentation εL sends

t1 → −s11s15, t2 → −
s9s12s13s16

s11s15
, a9 → s9, a11 → s11, a19 →

s9

s11
+
s12s13s9

s2
11s15

,

a20 → −
s2

15s
3
11

s2
9s12s13s16

− s15s
2
11

s9s12s13
− s2

15s
2
11

s9s10s13s16
.

The augmented matrix M1 = N−1M0N satisfies

M1|{sj→−sj ,j=11,12,15,16} =

(
s9s13s212
s10s11

+ s9s15s12
s10

+ s9s16
s12s13
s11

+ s15
s9s212s13
s10

s12s13

)
,

whose entries are all positive Laurent polynomials.

17That is, the crossing ai for the D̃4-braid is still denoted ai for the braids βij , 1 ≤ i, j ≤ 2, where β22 is

precisely the D̃4-braid.
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- The link Λ(β21). The Lagrangian filling L is obtained by resolving the crossings
a9, a10, a11, a12, a13, a14, a16 in order. This augmentation εL sends

t1 →
s9s12s13

s11
, t2 → −s11s16, a9 → s9, a11 → s11, a19 →

s9s13s
2
12

s10s2
11s16

+
s13s12

s11s16
− s9s14s12

s2
11s16

+
s9

s11
.

The augmented matrix M1 = N−1M0N satisfies

M1|{sj→−sj ,j=11,12,16} =

(
s9s13s212
s10s11

+ s9s14s12
s11

+ s9s16
s12s13
s11

s9s13s212
s10

+ s9s14s12 s12s13

)
,

whose entries are all positive Laurent polynomials.

- The link Λ(β11). The Lagrangian filling L is obtained by resolving the crossings
a9, a10, a11, a12, a13, a16 in order. This augmentation εL sends

t1 →
s9s12s13

s11
, t2 → −s11s16, a9 → s9, a11 → s11, a19 →

s9s13s
2
12

s10s2
11s16

+
s13s12

s11s16
+

s9

s11
.

The augmented matrix M1 = N−1M0N satisfies

M1|{sj→−sj ,j=11,12,16} =

(
s9s13s212
s10s11

+ s9s16
s12s13
s11

s9s212s13
s10

s12s13

)
,

whose entries are all positive Laurent polynomials.

This completes the proof of Theorem 1.1 for the Legendrian links Λ(β11),Λ(β12),Λ(β21). We
emphasize that these links all have a stabilized component (or two, in the case of Λ(β11)).
In particular, these Legendrian links are not the rainbow closure of a positive braid, and our
Floer-theoretic argument is presently the only known argument that shows the existence of
infinitely many Lagrangian fillings for these Legendrian links.

Figure 30. Lagrangian projection for the Legendrian link Λ1, as used in the
proof of Theorem 6.4. In this proof, the crossings a10, a9, in blue, are used to
detect the infinite order of the ϑ-monodromy. The ϑ-monodromy is obtained
by moving the purple box around this projection. To construct Λ2 instead,
add an additional crossing labeled a14 to the purple box, between a13 and the
base points t1, t2.
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6.4. Monodromy for the Braids Λ1 and Λ2. We next prove Theorem 1.1 for the Legen-
drian links Λ1 and Λ2 from the Introduction. Figure 30 depicts a Lagrangian projection of
Λ1; Λ2 comes from adding one additional crossing to the purple box.

Theorem 6.4 (The Λ1– and Λ2–Legendrians). Let Λ1 and Λ2 be the (−1)-closures of the 3-
braids (σ2σ1σ1σ2)3σ1 and (σ2σ1σ1σ2)3σ2

1, respectively. Let ϑ : S1 → L(Λ1) be the purple-box
Legendrian loop. Then for n = 1, 2, there exists a Lagrangian filling L ⊂ D4 of Λn such that
the ϑ-orbit of the system of augmentations εL is entire.

Proof. As in Section 6.3, this follows the proof of Theorem 6.2 and we will simply specify
the fillings and describe the corresponding augmentations and augmented matrices. The
computation of the augmentations can be found in [Ng].

We begin with Λ1, whose Lagrangian projection is shown in Figure 30. We choose the filling
L given by resolving the crossings

a10, a9, a8, a7, a6, a5, a12

in order. (As usual, this produces an unlink, and we then fill in each of the 3 unknot
components to complete the construction of L.) The augmentation εL sends

t1 →
s5s8s9

s6s7s10
, t2 → −s6s7s10s12, a9 → s9, a10 → s10,

a13 →
s5

s6
− s7

s8
+

s9

s10
+

s5s8

s2
6s

2
7s10s12

− s5

s2
6s

2
7s9s10s12

+
1

s6s7s8s9s10s12
.

Define M0 = εL

(
0 t2
t1 a13t2

)
, N = εL

(
a10 1
a9 0

)
, and M1 = N−1M0N ; then

M1|{sj→−sj ,j=5,7,8,10} =

(
m11 m12

m21 m22

)
,

and the entries

m11 =
s6s10s12s

2
7

s8
+ s6s9s12s7 + s5s10s12s7 +

s5

s6s7s9
+

1

s8s9

m12 =
s5s8

s6s7s10

m21 = s5s7s12s
2
10 +

s6s
2
7s12s

2
10

s8
+

s5s10

s6s7s9
+

s10

s8s9

m22 =
s5s8

s6s7

are all positive Laurent polynomials.

For Λ2, we start with the diagram for Λ1 in Figure 30, and add one more crossing labeled
a14 directly to the right of a13. Choose the filling L of Λ2 given by resolving the crossings

a10, a9, a8, a7, a6, a5, a12, a11

in order. The augmentation εL sends

t1 → −s6s7s10s11, t2 → −
s5s8s9s12

s6s7s10s11
, a9 → s9, a10 → s10, a13 →

s5

s6
− s7

s8
+

s9

s10
− s5s8s9

s2
6s

2
7s

2
10s11

,

a14 →
s2

6s
2
7s

2
10s11

s5s8s9
− s3

6s
3
7s

3
10s

2
11

s2
5s

3
8s

3
9s12

+
s2

6s
2
7s

3
10s

2
11

s5s2
8s

3
9s12

− s2
6s

2
7s

3
10s

2
11

s5s8s2
9s12

.
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Define M0 = εL

(
t1 a14t2

a13t1 (1 + a13a14)t2

)
, N = εL

(
a10 1
a9 0

)
, and M1 = N−1M0N ; then

M1|{sj→−sj ,j=5,7,8,10} =

(
m11 m12

m21 m22

)
, and the entries

m11 =
s2

6s
2
10s11s

3
7

s5s3
8s

2
9

+
2s6s

2
10s11s

2
7

s2
8s

2
9

+
s2

6s10s11s
2
7

s5s2
8s9

+
s6s10s12s

2
7

s8
+
s5s

2
10s11s7

s8s2
9

+
s6s10s11s7

s8s9
+

+ s6s9s12s7 + s5s10s12s7 +
s5

s6s7s9
+

1

s8s9
,

m12 =
s6s10s11s

2
7

s8s9
+ s6s11s7 +

s5s10s11s7

s9
+

s5s8

s6s7s10
,

m21 =
s5s7s11s

3
10

s8s2
9

+
2s6s

2
7s11s

3
10

s2
8s

2
9

+
s2

6s
3
7s11s

3
10

s5s3
8s

2
9

+ s5s7s12s
2
10 +

s6s
2
7s12s

2
10

s8
+

s5s10

s6s7s9
+

s10

s8s9
,

m22 =
s5s7s11s

2
10

s9
+
s6s

2
7s11s

2
10

s8s9
+
s5s8

s6s7
.

are all positive Laurent polynomials. �

Figure 31. Lagrangian projection for the Legendrian link Λn, n ≥ 1.

Figure 32. Lagrangian projection for the Legendrian link Λ(D̃n), n ≥ 4, as
used in the proof of Theorem 6.2.

6.5. The general case: Λ(D̃n) and Λn. We now turn to the Legendrian links Λ(D̃n),
n ≥ 5, and Λn, n ≥ 3, which are depicted in Figures 31 and 32. The action of the ϑ-loops on

the Legendrian contact DGA for Λ(D̃n), respectively Λn, can be studied directly thanks to

our understanding of the ϑ-loops for the Legendrian braids Λ(D̃4), respectively Λ2. The main
ingredient that allows us to deduce the general cases from a particular case is the following:
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Proposition 6.5. Let β ∈ Br+
N be an admissible braid, let k1, k2 ∈ N with 2 ≤ k1 ≤ k2, and

let L be an exact Lagrangian filling of Λ(β, 1;σk11 ). Consider an exact Lagrangian cobordism

Σ from Λ(β, 1;σk11 ) to Λ(β, 1;σk21 ) obtained by resolving any combination of (k2−k1) crossings

in the braid σk21 which are not the initial nor the final crossings. Let

ΦΣ : A(Λ(β, 1;σk21 ))→ A(Λ(β, 1;σk11 ))

denote the induced map between the Legendrian contact DGAs. Let a denote any Reeb chord
of Λ(β, 1;σk11 ) not in σk11 , as well as the corresponding Reeb chord of Λ(β, 1;σk21 ). Then for
all m ∈ N, we have

(εL ◦ ϑm1 )(a) = (εL ◦ ΦΣ ◦ ϑm2 )(a),

where ϑi denotes the ϑ-loop of Λ(β, 1;σki1 ), i = 1, 2.

Consequently, if the ϑ1-orbit of the augmentation εL of Λ(β, 1;σk21 ) is entire, then the ϑ2-orbit

of the augmentation εL◦Σ = εL ◦ ΦΣ of Λ(β, 1;σk21 ) is entire.

Proof. We begin by noting that fΣ fixes any Reeb chord of Λ(β, 1;σk21 ) outside of the braid

σk21 . This is because fΣ consists of a composition of saddle cobordism maps that count disks
with two positive corners, and the only such disks with a positive corner at one of the resolved
crossings must have its other positive corner at a crossing in the braid, by our assumption
that we do not resolve the two extreme crossings of σk21 .

There are two types of crossings in Λ(β, 1;σk21 ) besides the crossings in σk21 : the ones that
come from crossings of Λ(β) involving the satellited strand of β, and the ones that do not. If
a is of the latter type, then ϑ2 and ϑ1 both fix a. Since fΣ(a) = a, we are done in this case.

Now assume that a is of the former type, and note that crossings of this type come in pairs
corresponding to the two strands of σk21 . Recall that the action of the ϑ-monodromy on such
a pair of crossings is completely determined by the path matrix of the braid. If we write P1

and P2 for the path matrices for the braids σk11 and σk21 respectively, then it suffices to show
that

P1 = fΣ(P2).

Note that these path matrices incorporate all base points in the braid region; in particular,
the braid σk11 includes base points in its interior, coming from the resolved crossings of σk21 .

Figure 33. Resolving a crossing in σ3
1 to produce σ2

1.

To prove P1 = fΣ(P2), by functoriality we may assume that Σ consists of a single saddle
cobordism. Furthermore, since fΣ fixes any crossing besides the two crossings adjacent to
the saddle, it suffices to check the equality when k1 = 3 and k2 = 2; see Figure 33. In this
case, if a1, a2, a3 denote the crossings in σk1 as shown in Figure 33, we have fΣ(a1) = a1−s−1

2 ,

fΣ(a2) = s2, fΣ(a3) = a3 − s−1
2 , and we compute:

fΣ(P2) = fΣ

((
0 1
1 a1

)(
0 1
1 a2

)(
0 1
1 a3

))
=

(
0 1
1 a1

)(
−s−1

2 0
0 s2

)(
0 1
1 a3

)
= P1,

as desired.

The final sentence of the proposition follows from the fact that ΦΣ is surjective; see the proof
of Proposition 7.5 below. �
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From Proposition 6.5, and the fact that Λ(D̃4) and Λ2 have fillings for which the ϑ-orbit of

the associated augmentation is entire, it follows that the same is true for Λ(D̃n), n ≥ 5, and
Λn, n ≥ 3. This completes the proof of Theorem 1.1.

Remark 6.6. A consequence is that the Legendrian links Λ(D̃n), n ≥ 5, and Λn, n ≥ 3 have
infinitely many fillings. This conclusion also follows from just the existence of a cobordism

from Λ(D̃4) or Λ2 to these links, using Proposition 7.5 below. However, Theorem 1.1 is
stronger: we have actually constructed an infinite family of fillings of each of these links that
are all provably distinct from each other. �

7. Proof of Corollaries and Concluding Remarks

In this section we discuss some of the applications stated in the Introduction. First, we
show that the smooth isotopy type of the Lagrangian fillings we construct is independent of
the iteration of the ϑ-loop. Then, we precisely state the notion of aug-infinite Legendrians
(which implies the existence of infinitely many fillings) and prove some of its properties
under exact Lagrangian cobordisms. We also conclude Proposition 7.7, providing a gamut
of small smooth knots with a max-tb Legendrian representative that admits infinitely many
Lagrangian fillings. Finally, we prove Corollaries 1.6 and 1.7 regarding closed Lagrangians
surfaces in certain Weinstein 4-manifolds.

7.1. Smooth isotopy class of Lagrangian fillings. Let L ⊂ (D4, λst) be an exact La-
grangian filling of Λ ⊂ (S3, ξst) and ϑ : S1 → L(Λ) a Legendrian loop. The isotopy cobor-
dism gr(ϑ) ⊂ S3 × [0, 1] associated to the Legendrian loop ϑ is an exact Lagrangian self-
concordance of Λ, which we can concatenate with L. This yields another exact Lagrangian
filling Lϑ = L#gr(ϑ) of Λ. Theorem 1.1 shows that, for certain ϑ, Lϑ may not be Hamil-
tonian isotopic to L. For the Legendrian ϑ-loops we use in this article, let us prove that Lϑ
is always smoothly isotopic to L. The argument is the same as in (the updated version of)
[CG21]; we reproduce it here for convenience:

Proposition 7.1. Let Λ ⊂ (S3, ξst) be a Legendrian link of the form Λ = Λ(β, i; γ), where
β ∈ Br+

N , γ ∈ Br+
M . Let Lπ ⊂ (D4, λst) be an exact Lagrangian filling obtained by a pinching

sequence π ∈ S|β|, and ϑ : S1 → L(Λ) a Legendrian ϑ-loop. Then, the exact Lagrangian
fillings L and Lϑ are smoothly isotopic relative to their boundary Λ.

Proof. From the perspective of a positive braid representative β ∈ Br+
N of Λ = Λ(β), a

Legendrian ϑ-loop consists of two moves: Reidemeister III moves and conjugations. Let us
denote the ordered crossings of β by (aj), j ∈ [1, |β|], with aπ(k) being the k-th crossing
to be resolved. First, any pinching (resolution) sequence π ∈ S|β| yields a surface which is
smoothly isotopic to L. From the smooth perspective, resolving a crossing corresponds to
an elementary surface cobordism of index 1 and thus two consecutive such cobordisms can
be performed in either order without affecting the smooth type, see Figure 34 below. Since
any two different pinching sequences differ by a composition of transpositions, the smooth
isotopy class of Lπ is equal for any pinching sequence π ∈ S|β|. It thus suffices to consider
the case of the identity permutation π = e, and show that Le ∪Λ gr(ϑ) is smoothly isotopic
to Le.

Consider a Reidemeister III move for three (consecutive) crossings ai−1, ai, ai+1, which leads
to ai+1, ai, ai−1. For the Lagrangian filling Le, these three crossings are resolved left to right:
starting at ai−1, then ai and ai+1, in this order. Starting at ai+1, ai, ai−1 we can describe two
smooth cobordisms, both local to this piece of the braid (constant relative to its endpoints):
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Figure 34. A compactly supported smooth isotopy between two (local) exact
Lagrangian cobordisms which are not Hamiltonian isotopic. The coordinate
t ∈ R represents the symplectization direction Rt × R3

x,y,z and the diagrams

are Lagrangian projections in R2
x,y as indicated. The variable s ∈ [0, 1] is the

real coordinate associated to the isotopy itself.

(i) Apply a Reidemeister III move down to ai−1, ai, ai+1 and then resolve according to
π = e. Namely, first ai−1, then ai and finally ai+1.

(ii) Directly resolve the three crossings ai+1, ai, ai−1, using the transposition π = (i, i+2).
That is, we resolve ai+1 first, then ai and lastly ai−1.

These cobordisms are depicted in Figure 35. Both tangle cobordisms start at the tangle
ai+1, ai, ai−1 and end up in the trivial 3-stranded tangle. Since the crossings ai−1 and ai+1 are
interchanged in a Reidemeister III move (ai−1 before being geometrically the same as ai+1),
as are ai+1, ai−1, the two tangle cobordisms are smoothly isotopic. Hence, concatenating
with the graph of an isotopy given by a sequence of Reidemeister III moves, from Λ to itself,
does not affect the smooth isotopy type of a Lagrangian filling L.

Figure 35. The two (local) exact Lagrangian cobordisms associated to a
Reidemeister III move: the cobordism in Item (i) in the text is depicted on
the left, whereas the cobordism in Item (ii) is drawn on the right. These
cobordisms are to be compared smoothly, relative to their common ends.
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The same occurs for conjugation of the given positive braid β = (a1, a2, . . . , a|β|−1, a|β|).
Indeed, there are two smooth concordances starting with (a|β|, a1, a2, . . . , a|β|−1):

(i) Apply the cyclic shift from (a|β|, a1, a2, . . . , a|β|−1) down to (a1, a2, . . . , a|β|−1, a|β|) and
then resolve the crossings starting at a|β| and then left to right, that is, continuing
with a1, a2 and resolving through a|β|−1.

(ii) Directly resolve the crossings of (a|β|, a1, a2, . . . , a|β|−1) according to π = e: starting
at a|β|, then a1, a2 through a|β|−1.

These two concordances yield smoothly isotopic surfaces. In conclusion, starting with the
Lagrangian filling Le ⊂ (D4, λst), the concatenation Lϑ = L ∪Λ gr(ϑ) yields a Lagrangian
filling of the form Lπ, for a permutation π ∈ S|β|. Since Lπ and Le are smoothly isotopic,
the required statement follows. �

7.2. Aug-infinite Legendrian links and cobordisms. Here we describe a method for
starting with one Legendrian link known to have infinitely many fillings and producing others.
First we need to define a condition that implies having infinitely many fillings and is in turn
implied in our examples by the ϑ-orbit being entire.

Suppose that Λ is a Legendrian link with a (connected, orientable, exact Lagrangian) filling
L of Maslov number 0. As discussed in Section 3.3, L induces a (2g+ 2m−2)-system of aug-
mentations εL : AΛ → Z[s±1

1 , . . . , s±1
2g+2m−2], where g is the genus of L and m is the number

of components of Λ. Furthermore, up to equivalence (automorphism of Z[s±1
1 , . . . , s±1

2g+2m−2]),
this system is well-defined, independent of choices, and invariant under Hamiltonian isotopy
of L. Here, as in Section 3.1, we have assumed in defining the DGA (AΛ, ∂) that there is one
base point on each component of Λ.

There are 22g+2m−2 ring morphisms from Z[s±1
1 , . . . , s±1

2g+2m−2] to Z, each sending each si
to ±1. By composing εL with these homomorphisms, we obtain 22g+2m−2 augmentations
from AΛ to Z. In this way, the filling L of Λ induces finitely many Z-valued augmentations
(AΛ, ∂)→ (Z, 0). Note that this continues to hold even if L is not connected: the augmenta-
tions induced by a disconnected filling of Λ necessarily annihilate any Reeb chord of Λ whose
endpoints lie on different components of the filling, and each component of the filling induces
finitely many augmentations of the sublink of Λ given by the boundary of the component.

Definition 7.2. A Legendrian link Λ is aug-infinite if the collection of all Z-valued aug-
mentations (AΛ, ∂) → (Z, 0) induced by orientable exact Lagrangian fillings of Λ of Maslov
number 0, ranging over all possible such fillings, is infinite.

Note that the aug-infinite condition is independent of the choices made along the way, in-
cluding spin structure, capping paths and operators, and placement of base points. Adding
extra base points also does not affect the condition; cf. the proof of Proposition 7.5 below.

The following is an immediate consequence of the fact that each filling induces finitely many
Z-valued augmentations.

Proposition 7.3. If Λ is aug-infinite then it has infinitely many fillings.

In the conclusion of Proposition 7.3, infinitely many Lagrangian fillings refers to the fact that
there are infinitely many Lagrangian fillings up to Hamiltonian isotopy. A prior, they might
not be smoothly isotopic. Nevertheless, as proven in Proposition 7.1, this is the case for the
Lagrangian fillings we construct with ϑ-loops.

Next we observe that our arguments from Section 6 actually prove that the Legendrians

Λ(D̃n), Λn, and Λ(Ã2) satisfy this strengthened version of having infinitely many fillings.

Proposition 7.4. The three classes of Legendrian links Λ(D̃n) (n ≥ 4), Λn (n ≥ 1), and

Λ(β11) = Λ(Ã2),Λ(β12),Λ(β21) are aug-infinite.
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Now we claim that for particular decomposable Lagrangian cobordisms, if the bottom of the
cobordism is aug-infinite, then the top is as well. To be precise, we have the following.

Proposition 7.5. Let Λ+ and Λ− be Legendrian links with rotation number 0, and suppose
that Λ− is an aug-infinite Legendrian link. Suppose that the following two properties hold:

- The xy projection Πxy(Λ−) is obtained from Πxy(Λ+) by a sequence of saddle cobor-
disms at proper contractible Reeb chords of Λ+ of degree 0;

- All Reeb chords of Λ− (and thus of Λ+) are in nonnegative degree.

Then the Legendrian link Λ+ is aug-infinite.

Proof. It suffices to consider the case where Λ+ and Λ− are related by a single saddle move at
a Reeb chord a of Λ+. Suppose that Λ+ has m components, and place a base point on each;
these base points trace down to Λ−. As in Section 3.5, we place a pair of base points on Λ−
coming from the saddle at a. Then both AΛ+ and AΛ− are DGAs over Z[t±1

1 , . . . , t±1
m , s±1],

and the cobordism gives a map Φ : (AΛ+ , ∂)→ (AΛ− , ∂).

Any filling of Λ− produces a system of augmentations for Λ− as in the discussion in Sec-
tion 3.5; note that now one component of Λ− has more than one base point, but the construc-
tion from Section 3.5 works just as well in this case. From Remark 3.1, adding each extra
base point has the effect on (AΛ− , ∂) of replacing one generator t of the coefficient ring by two
generators t′, t′′ and setting t = t′t′′ in the differential. It follows that there is a two-to-one
correspondence between Z-valued augmentations of (AΛ− , ∂) after and before the extra base
point is added, and so adding extra base points does not affect the aug-infinite condition.
We conclude that (AΛ− , ∂) has infinitely many augmentations coming from fillings. Since
there are finitely many choices for the images of t1, . . . , tm, s under such an augmentation,
there exist t01, . . . , t

0
m, s

0 ∈ {±1} such that (AΛ− , ∂) has infinitely many augmentations from

fillings that send ti to t0i and s to s0.

Write AZ
Λ+

and AZ
Λ−

for the DGAs over Z obtained by setting ti = t0i and s = s0. The

cobordism map Φ induces a map ΦZ : AZ
Λ+
→ AZ

Λ−
satisfying ΦZ(a) = ±1 and for all

other Reeb chords ai of Λ+, ΦZ(ai) = ai + f(ai) for some f(ai) ∈ AΛ− determined by the
construction in Section 4.2. As observed in Section 4.2, this map respects the height filtration:
for each i, f(ai) only involves Reeb chords of strictly smaller height than ai. We conclude
from this that ΦZ is surjective.

Since AZ
Λ−

has infinitely many augmentations from fillings, there is some Reeb chord ai
of Λ− that is sent to infinitely many values in Z under these augmentations. Now use the
surjectivity of ΦZ and suppose that x ∈ AΛ+ satisfies ΦZ(x) = ai. Each augmentation of AZ

Λ−

from a filling of Λ− produces an augmentation of AZ
Λ+

from a filling of Λ+ by composition

with ΦZ, and x is sent to infinitely many values in Z under these augmentations. This shows
that AZ

Λ+
has infinitely many augmentations from fillings of Λ+, and consequently that Λ+

is aug-infinite. �

Remark 7.6. It is expected that Proposition 7.5 should hold whenever there is an exact
Lagrangian cobordism between Λ+ and Λ−, without the restriction of being composed strictly
of saddle moves (and not isotopy cylinders) or even of being decomposable. One approach
to proving the more general result is to show that exact cobordisms induce injective maps
on the augmentation categories of Legendrian links (over Z), in the spirit of previous work
of Pan [Pan17a] for Legendrian knots and the upcoming paper [CSLL+21] for links. �

As the first application of Proposition 7.5, we have Corollary 1.4:

Proof of Corollary 1.4. Observe that there is a decomposable Lagrangian cobordism to the
Legendrian (4, 4) torus link Λ(4, 4), which is the (−1)-closure of the 4-braid (σ1σ2σ3)8 =
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(σ2σ1σ3σ2)4σ4
3σ

4
1, from the link Λ(D̃4) = Λ((σ2σ1σ3σ2)4σ2

3σ
2
1, consisting of two saddle cobor-

disms at proper contractible degree 0 Reeb chords. Since Λ(D̃4) is aug-infinite, it follows that
Λ(4, 4) is aug-infinite as well. In addition, there is an another such cobordism from Λ(4, 4) to
the Legendrian (n,m) torus link Λ(n,m) for any n,m ≥ 4, and so by Proposition 7.5, Λ(n,m)
is aug-infinite for any n,m ≥ 4. Similarly, we can deduce that the Legendrian (3, 6) torus
link Λ(3, 6), which is the (−1)-closure of the 3-braid (σ1σ2)9 = (σ2σ

2
1σ2)3σ6

1, is aug-infinite
because there is a cobordism to Λ(3, 6) from Λ1; it then also follows that the (3,m)-torus
link Λ(3,m) is aug-infinite for all m ≥ 6. The proof is complete. �

We can also apply Proposition 7.5 to show that various other single-component Legendrian
knots have infinitely many fillings.

Proposition 7.7. The Legendrian knots given by the (−1)-closures of the following positive
braids have infinitely many fillings:

(i) (σ2σ1σ3σ2)4σ2σ1σ3, which has smooth type m(10145), Thurston–Bennequin number 3
and genus 2 fillings,

(ii) (σ2σ1σ3σ2)3σ2
2σ

2
1σ3σ2σ1σ

2
3 ∈ B4 which has smooth type 10154, Thurston–Bennequin

number 5 and genus 3 fillings,

(iii) σ2
2σ

2
1σ

2
2σ

2
1σ

2
2σ

2
1σ2σ1 ∈ B3, which has smooth type m(10161), Thurston–Bennequin

number 5 and genus 3 fillings,

(iv) σ2σ
2
1σ

2
2σ

2
1σ

2
2σ

2
1σ

2
2σ

3
1 ∈ B3, of smooth type 10139, Thurston–Bennequin number 7 and

genus 4 fillings,

(v) σ2σ
2
1σ

2
2σ

2
1σ

2
2σ1σ2σ

2
1σ

2
2σ1 ∈ B3, of smooth type m(10152), Thurston–Bennequin number

7 and genus 4 fillings.

Proof. The m(10145) and 10154 knots have a cobordism from the link Λ(β11), which is the
(−1)-closure of (σ2σ1σ3σ2)4σ1σ3. The other three knots have cobordisms from the link Λ1,
which is the (−1)-closure of σ2σ

2
1σ

2
2σ

2
1σ

2
2σ

2
1σ2σ1. �

In light of Proposition 7.5, given two Legendrian links Λ+,Λ− with infinitely many fillings,
we might consider Λ− to be “simpler” than Λ+ if there is a saddle cobordism from Λ− to Λ+.
Since such a cobordism increases Thurston–Bennequin number as we go from bottom to top,
a rough measure of the simplicity of a Legendrian link with infinitely many fillings is given
by its Thurston–Bennequin number: the lower the tb, the simpler the link. (Alternatively,
we could use 2g + m where g is the genus of a connected filling and m is the number of
components of the link, since tb = 2g + m− 2.) From this perspective, m(10145) (tb = 3) is

the simplest knot that is known to us to have infinitely many fillings, while Λ(Ã2) (tb = 2)
is the simplest known link.

Remark 7.8. We presently do not know of any Legendrian knots with infinitely many genus
1 fillings, or of any Legendrian links with infinitely many planar (genus 0) fillings. From the
perspective of cluster algebras, the existence of the former would be somewhat unexpected
if we restrict to the class of (−1)-closures of admissible braids. �

7.3. Lagrangian surfaces in Weinstein 4-manifolds. Here we prove Corollaries 1.6 and
1.7. Let Λ ⊂ (S3, ξst) be a Legendrian link with m := |π0(Λ)| components, and W (Λ) the
Weinstein 4-manifold obtained by attaching m Weinstein handles to (D4, λst), one along
each component of the Legendrian Λ ⊂ (S3, ξst) ∼= (∂D4, ker(λst|∂D4)). Given an embedded
exact Lagrangian filling L ⊂ (D4, λst), we denote by L ⊂ W (Λ) the closed embedded exact
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Lagrangian surface in W (Λ) given by the set-theoretic union L := L ∪ Lcap, where Lcap is
the (disjoint) union of the Lagrangian cores of the m Weinstein handles.

The augmentations εL : AΛ → Z[H1(L)] of the Legendrian contact DGA used in this manu-
script employ the system of coefficients Z[H1(L)], geometrically keeping track of local systems
in a Lagrangian filling L ⊂ (D4, λst). In the transition from L to L ⊂W (Λ), we must compare
Z[H1(L)] and Z[H1(L)], which are not isomorphic unless Λ has a single component. This
motivates the following definition.

Definition 7.9. Let L ⊂ (D4, λst) be a filling of a Legendrian link Λ ⊂ (S3, ξst), inducing the
system of augmentations εL : AΛ → Z[H1(L)], where Λ is equipped with the null-cobordant
spin structure. The restricted system of augmentations associated to L is the composition

εL : AΛ
εL−→ Z[H1(L)] −→ Z[H1(L)],

where the second map is induced by the quotient map H1(L)→ H1(L). �

If we place a single base point ti on each component Λi of Λ, then ti represents the homology
class of Λi in both H1(Λ) and H1(L), and the quotient map in Definition 7.9 sends each ti to
1 since Λi is null-homologous in L. For practical purposes, if L is a connected decomposable
filling of an m-component link Λ, we can compute the restricted system of augmentations εL
associated to L as follows.

Let us write (AΛ, ∂) for the DGA of Λ with the Lie group spin structure, which is a DGA
over Z[t±1

1 , . . . , t±1
m ]. Recall from Sections 3.5 and 3.6 the construction of the system of

augmentations εL : AΛ → R where R = (Z[t±1
1 , . . . , t±1

m , s±1
1 , . . . , s±1

` ])/(w1 = · · · = wk =
−1). We can further quotient the ring R by the relations t1 = · · · = tm = −1 to get
R := R/(t1 = · · · = tm = −1): this corresponds to passing from H1(L) to H1(L), where the
− sign comes from the fact that we are using the Lie group, rather than the null-cobordant
spin structure, on L. From Remark 3.15, t1 · · · tm = (−1)m in R, and this new quotient
imposes m − 1 new relations. We have R ∼= Z[H1(L) ⊕ Zm−1] and R ∼= Z[H1(L) ⊕ Zm−1];
imposing the conditions t1 = · · · = tm = −1 on the system of augmentations for L produces
the restricted system of augmentations εL for the Lagrangian filling L, enhanced by link
automorphisms in each case.

Remark 7.10. When Λ is a single-component Legendrian knot, there is no difference between
the system and the restricted system of augmentations for a filling L. This comes from the
result of Leverson [Lev16] that any augmentation in this case must necessarily send the unique
t variable to −1; geometrically, this correlates with the fact that Λ is already null-homologous
in L before we pass to L. �

The purpose of restricted systems of augmentations for L is that they correspond to local
systems that extend to local systems for the closed exact Lagangian surface L. Let L1, L2 ⊂
(D4, λst) be Lagrangian fillings of a Legendrian link Λ ⊂ (S3, ξst). If L1, L2 are Hamiltonian
isotopic, then their associated augmentations are DGA homotopic; see Theorem 3.6. As
noted in Remark 3.7, for the Legendrian links studied in this paper, we can replace “DGA
homotopic” by a simpler notion. Following Definition 3.9, we define two restricted systems
of augmentations

εL1
: AΛ → Z[H1(L1)], εL2

: AΛ → Z[H1(L2)]

to be equivalent if there exists an isomorphism ψ : Z[H1(L1)]→ Z[H1(L2)] such that

εL2
= ψ ◦ εL1

.

Then for Legendrian links such that the entire DGA AΛ is concentrated in nonnegative
degree, as is the case for all of the examples in this paper, DGA homotopic (restricted)
systems of augmentations are necessarily equivalent (restricted) systems of augmentations.
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Now, both Corollaries 1.6 and 1.7 will be proven by using the following Proposition 7.11,
which is not essentially new and uses the recent articles [EL19, Ekh19, GPS19]. We thank
T. Ekholm, S. Ganatra, and Y. Lekili for illuminating discussions regarding the proof of
Proposition 7.11.

Proposition 7.11. Let Λ ⊂ (S3, ξst) be a Legendrian link and L1, L2 ⊂ (D4, λst) two fillings
of Λ. Suppose that the two restricted systems of augmentations

εL1
: AΛ → Z[H1(L1)], εL2

: AΛ → Z[H1(L2)]

are not DGA homotopic. Then the exact Lagrangian surfaces L1, L2 ⊂W (Λ) are not Hamil-
tonian isotopic in the Weinstein 4-manifold W (Λ).

Proof. Let W(W (Λ)) be the wrapped Fukaya category of the Weinstein 4-manifold W (Λ), C
the union of the m co-cores of the Weinstein handles of W (Λ), and CW(C) the endomorphism
ring of C as an object in W(W (Λ)). By [CDGG17, Theorem 1.1], C generates W(W (Λ)), see
also [GPS19, Theorem 1.10], and thus we consider the category W(W (Λ)) through its Yoneda
embedding Hom(C,−) := CW(C,−). The Lagrangian surfaces L1, L2 are exact and hence
represent objects in W(W (Λ)), equally denoted L1, L2. Under the Yoneda embedding, these
two objects become Hom(C,Li) := CW(C,Li), i = 1, 2. We will now argue that L1, L2 ∈
Ob(W(W (Λ))) are distinct objects, which proves that the exact Lagrangian surfaces L1, L2 ⊂
W (Λ) are not Hamiltonian isotopic. It suffices to show that CW(C,L1) and CW(C,L2) are
distinct as CW(C)-modules.

Let L ⊂ (D4, λst) be a filling of Λ and εL : AΛ → Z[H1(L)] its associated augmentation. The
holomorphic disks that define εL are explained in detail in [EHK16], see also [EN18, Theorem
6.8] and Sections 3 and 4 above. In short, a Reeb chord a ∈ AΛ is sent to the contributions
from rigid holomorphic disks u : (D2, ∂D2)→ (D4, λst) with a positive puncture at the Reeb
chord a, and each disk contribution is weighted by the homology class [∂u] ∈ Z[H1(L)], where
∂u ⊂ L is appropriately capped in L. The claim is that the holomorphic disks that define
the CW(C)-module structure of CW(C,L), namely the composition A∞-map

ηL : CW(C)⊗ CW(C,L)→ CW(C,L),

or equivalently CW(C) → End(CW(C,L)), are in bijection with those contributing to the
restricted augmentation εL. Indeed, we first observe that C ∩L, which generates CW(C,L),
consists of precisely a point per each component of C. The disks contributing to ηL have: a
positive puncture at a generator of CW(C), which is either a minimum of a Morse function
on C or a Reeb chord of its Legendrian boundary ∂C ⊂ ∂W (Λ); a positive puncture at a
generator of CW(C,L); and a negative puncture at a generator of CW(C,L) (in fact, the
two generators of CW(C,L) here must be the same). These disks are depicted in the right
diagram of Figure 36. In our case, the contributions of these disks are weighted by their
boundary homology classes, where we only keep track of the piece of the boundary that
belongs to the closed Lagrangian surface L. These contributions yield coefficients in the
ground ring Z[H1(L)].

Now, the decomposition L = L∪ΛLcap of the Lagrangian surface L ⊂W (Λ) into a Lagrangian
filling L and the cores Lcap is compatible with neck-stretching along the contact hypersurface
(∂D4, ξst) containing Λ, where the Weinstein handles are attached. That is, the Weinstein
4-manifold decomposes as

W (Λ) ∼= (D4, λst) ∪Op(Λ)

(
l⋃

i=1

(T ∗D2, λst)

)
,
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Figure 36. On the left, the holomorphic disks contributing to the aug-
mentation εL (bottom) and the surgery isomorphism CW(C) ∼= AΛ (top).
On the right, the holomorphic disks contributing to the module structure
CW(C) → End(CW(C,L)). The notation g(CW(C)) and g(AΛ) stands for
generators of the algebras CW(C) and AΛ: g(CW(C)) are Reeb chords of ∂C
or the minimum of C, and g(AΛ) are Reeb chords of Λ.

and performing a neck-stretching procedure to the holomorphic disks contributing to ηL
breaks them into two pieces. See [Abb14, Chapter 3], [BEH+03, Section 3], or [CDGG20,
Section 5] for the neck-stretching technique along such a contact hypersurface, in this case a
standard contact level set of the symplectization of (S3, ξst). For a sufficiently large stretching,
see e.g. [EHK16, Corollary 3.10] or [BEH+03, Section 11.3], there is a one-to-one correspon-
dence between the rigid holomorphic disks contributing to ηL and two-level broken disks.

The first level consists of holomorphic disks in the moduli space Mco(c), following the no-
tation in [EL19], where c := cΛz

vczw, cΛ is a product of Reeb chords in Λ, zv, zw are
intersections in C ∩ Lcap, and c is a generator of CW(C). The boundaries of these holomor-
phic disks start belonging in Lcap, at the left of the leftmost positive puncture in cΛ, then
continue to belong to Lcap as the Reeb chords in cΛ are visited, and switch to belonging to
C, when zv is reached; then, the boundary (away from the punctures) belongs to C as the
chords in c are visited and we reach zw, where the boundary switches back to Lcap. The
curves in this first level are depicted in the top of the left diagram of 36, where zv, zw are
the two points marked by C ∩ Lcap, and these moduli were studied in detail in [EL19] by
using the properties proved in [Ekh19]. In particular, [EL19, Theorem 2] shows that the
A∞-map {Φi}i∈N : CW(C)⊗i → AΛ defined by counting rigid contributions of the moduli
spaces Mco(c) (for i = 1; for i > 1, we have multiple positive punctures at generators of
CW(C)) is an A∞-quasi-isomorphism, see [EL19, Theorem 72] for details.

The second level consists of holomorphic disks with a positive puncture at the Reeb chords
of Λ and boundary in L. These are the same rigid holomorphic disks as those contributing to
the augmentation map εL : AΛ → Z[H1(L)]. However, we note that the weights are counted
with coefficients in Z[H1(L)]; that is, the count of holomorphic disks contributing to the
second level of ηL is precisely given by the restricted augmentation εL : AΛ → Z[H1(L)].

In conclusion, the moduli space of disks contributing to the CW(C)-module structure ηL
splits into Mco(c), which yields the A∞-quasi-isomorphism CW(C) ∼= AΛ, and the moduli
space of holomorphic disks contributing to the restricted augmentation εL, associated to the

closed Lagrangian L. Thus, under the surgery isomorphism, the CW(C)-module structure
ηL is precisely given by the augmentation εL on AΛ.
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Now if L1, L2 are Hamiltonian isotopic fillings of Λ, then L1, L2 are (exact) Lagrangian
isotopic in W (Λ), even relative to the co-cores. It follows that their associated restricted
augmentations εL1

and εL2
are DGA homotopic, and the result follows. �

For the following two corollaries, we emphasize, and implicitly use, that the DGA AΛ as-
sociated to the Legendrian braids Λ = Λ(β) ⊂ (S3, ξst), β ∈ Br+

N , are concentrated in
nonnegative degree, and thus DGA homotopic (restricted systems of) augmentations are the
same as equivalent (restricted systems of) augmentations.

Proof of Corollary 1.6. For g = 2, we consider the Legendrian knot Λ = Λ(β) ⊂ (S3, ξst)
given by the positive braid β = (σ2σ1σ3σ2)4σ2σ1σ3. By Proposition 7.7, Λ(β) admits infin-
itely many genus 2 exact Lagrangian fillings {Li}i∈N, distinguished by their augmentations
εLi : AΛ → Z[H1(Li)]. Consider the Weinstein 4-manifold W := W (Λ), which is homotopic
to a 2-sphere S2 because Λ(β) is a knot. For the same reason, all Lagrangian fillings of Λ are
restricted. Note that since Λ is a knot, the restricted augmentation εLi is the same as εLi
for all i. By Proposition 7.11, it follows that the exact Lagrangian surfaces {Li}i∈N in W are
not Hamiltonian isotopic. This proves the assertion in the case of g = 2.

For higher g ≥ 2, it suffices to apply the same argument to the Legendrian knots associated to

the braids βg = (σ2σ1σ3σ2)4σ2σ1σ3σ
2(g−2)
1 . Since there exists an exact Lagrangian cobordism

from Λ(β) = Λ(β2) to Λ(βg) for all g ≥ 2, each knot Λ(βg) admits infinitely many exact
Lagrangian fillings of genus g. Hence Proposition 7.11 implies that the Weinstein 4-manifold
Wg := W (Λ(βg)), homotopic to a 2-sphere S2, also admits infinitely many exact Lagrangian
surfaces of genus g which are not Hamiltonian isotopic. In each case, Wg does not admit any
embedded exact Lagrangian surface of genus h ≤ g− 1 since its intersection form is given by
the 1× 1 matrix

(
tb(Λ(βg))− 1

)
. This concludes the proof. �

Proof of Corollary 1.7. Consider the Legendrian link Λ = Λ(β11) and the Weinstein 4-manifold
W (Λ(β11)), which is homotopic to S2 ∨S2 because Λ(β11) has two components. Theorem 1.1
implies that this 2-component link admits infinitely many distinct exact Lagrangian fillings.
In order to apply Proposition 7.11, we need to ensure that these infinitely many fillings are
distinguished by their restricted systems of augmentations. For that, let us study the aug-
mentation εL associated to the (initial) Lagrangian filling L in Subsection 6.3 and its ϑ-loop
iterates. There are four homology variables t1, t2, t3, t4; under εL , these are augmented to

t1 →
s9s12s13

s11
, t2 → −s11s16, t3 → −

1

s10s16
, t4 →

s10

s9s12s13
.

Note that the ϑ-loop monodromy fixes each homology variable, and so the ϑ-loop iterates
εL ◦ ϑk have the same effect as εL on t1, t2, t3, t4 for all k ∈ N.

The first two variables t1, t2 lie in one component of Λ and t3, t4 lie in the other compo-
nent. From the discussion following Definition 7.9, we can impose the additional conditions
(t1, t2, t3, t4) = (+1,−1,+1,−1) to obtain the restricted system of augmentations εL (en-
hanced by link automorphisms); this is because we first set t1 = t3 = 1 to reduce to a single
base point on each component, and then set t2 = t4 = −1 to pass from H1(L) to H1(L). In
terms of the s variables, there are 3 new conditions (the 4th is redundant):

s9s12s13 = s11, s11s16 = 1, s10s16 = −1.

Now we note that (s9, s10, s11, s12, s13, s16) = (1, 1,−1,−1, 1,−1) in particular satisfy these
conditions. These values of the si also produce the maximal value of |(εL ◦ ϑk)(a9)| for all
k ∈ N, from the computation in Section 6.3. It follows that the same argument that we used
there, to show that the ϑ-orbit of the system of augmentations εL is entire, also shows that
the same is true of the restricted system of augmentations εL. We can now apply Proposition
7.11 to conclude that W (Λ(β11)) admits infinitely many distinct exact Lagrangian tori, up
to Hamiltonian isotopy. �
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Appendix A. The Cobordism Map for an Elementary Saddle Cobordism

The goal of this section is to prove Proposition 4.8, the formula for the cobordism map
over Z for a saddle cobordism at a proper contractible Reeb chord. The proof will come in
several steps. In Section A.1, we will first add what we call “mini-dips” on either side of
the Reeb chord, which then propagate through the cobordism; this changes the cobordism
by a Hamiltonian isotopy. The advantage of adding these mini-dips is that they localize the
disks that contribute to the cobordism map, so that the map mod 2 is quite simple and
can be written down very explicitly. The main technical result is lifting this map to Z and
showing that Proposition 4.8 holds for the cobordism with mini-dips; this is the content
of Proposition A.1 below. The proof of Proposition A.1 is somewhat indirect and involves
making the cobordism even more complicated, with the trade-off benefit being that the
cobordism map becomes easier to handle. This is in the spirit of a well-known technique
in Legendrian knot theory called “dipping”, and occupies Sections A.2 and A.3. Finally, in
Section A.4, we deduce Proposition 4.8 from its mini-dipped special case, Proposition A.1,
by tracing the effect of mini-dips on the cobordism map.

A.1. Formula for the saddle cobordism map.

Figure 37. A saddle cobordism (left) and the mini-dipped version of this
cobordism (right).

As in Section 4.2, we consider a saddle cobordism La between Legendrian links Λ− and Λ+,
where Λ− is obtained from Λ+ by replacing a contractible Reeb chord a of Λ+ by the oriented
resolution of the crossing. To simplify the cobordism map, we perturb Λ± by a Legendrian
isotopy (and consequently the saddle cobordism by a Hamiltonian isotopy) as follows: use
two Reidemeister II moves to push the understrand of a over the overstrand on either side
of a, as shown in Figure 37. We call these moves “mini-dips” of a.18 Note that the crossing
a is situated differently in Figure 37 than the similar-looking Figure 18 from [EHK16], and
consequently our mini-dip is different from the dip considered there. Also note that the
crossing data for the mini-dips (with the understrand of a passing over the overstrand in
the minidips) is forced by the condition that we want the resulting diagrams to represent
Lagrangian projections of Legendrian links—apply Stokes’ Theorem to a bigon whose two
corners are the contractible chord a and an adjacent crossing in either of the mini-dips.

For the next few subsections, we will assume that Λ+ and Λ− contain the mini-dips shown
in Figure 37; we will return to the general case without mini-dips in Section A.4. Over Z2,

18These are independently introduced in [GSW20a], where they are called “double dipping” and are used
for the same purpose of simplifying cobordism maps.
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the mini-dips force the cobordism map ΦLa : AΛ+ → AΛ− to have the following simple form:

ΦLa(a) = s

ΦLa(a1) = a1 + s−1

ΦLa(a2) = a2 + s−1

ΦLa(ai) = ai

where the final equation holds for all Reeb chords ai of Λ+ besides a, a1, a2. This follows
directly from the work of [EHK16] (cf. Section 4.2) because there are only two disks with a
positive puncture at a, the bigon between a1 and a and the bigon between a and a2.

Over the course of Sections A.2 and A.3, we will prove that the cobordism map ΦLa with
signs is given as follows.

Figure 38. A saddle cobordism with mini-dips. Crossings and base points
are labeled, and quadrants with negative orientation sign are shaded.

Proposition A.1. Suppose that Λ+ and Λ− are related by a saddle cobordism as in Figure 38:
the Lagrangian projection of Λ+ has a contractible crossing a flanked by mini-dips with the
crossings on either side of a labeled by a1 and a2, and Λ− is the result of resolving the crossing
a and placing base points labeled s and −s−1 on either side of the resolved crossing. Then,
the cobordism map ΦLa : AΛ+ → AΛ− over Z is given, up to a link automorphism of Λ−, by:

Φ(a) = s

Φ(a1) = a1 − s−1

Φ(a2) = a2 − s−1

Φ(ai) = ai

where the final equation holds for all Reeb chords ai of Λ+ besides a, a1, a2. More precisely,
there is a link automorphism Ω : AΛ− → AΛ− such that the ΦLa : AΛ+ → AΛ− is chain
homotopy equivalent to Ω ◦ Φ with Φ as defined above.

Remark A.2. We believe that the auxiliary data needed to define signs (capping operators,
etc.) can be chosen so that the combinatorial formula for Φ in Proposition A.1 is precisely
the geometric map ΦLa , without composing with a link automorphism of Λ−. However, we
will not need the stronger statement for our purposes. �

A.2. Splashes and diagonal automorphisms. Our strategy for proving Proposition A.1
is as follows: the signs for the formula for ΦLa given there are essentially forced, up to a link
automorphism of Λ−, by the algebraic requirement that ΦLa needs to be a chain map over
Z. This forcing is not true in full generality, but we will see that it is true if we isotop Λ± via
Reidemeister II moves so that their differentials consist of many terms, each of which is easy
to handle. This sort of strategy is familiar in the subject through the technique of dipping;
see, e.g., [FR11, Sab05, Siv11]. We will present a variant of this technique in this subsection,
and then return to the proof of Proposition A.1 in Section A.3 below.

Let Λ be a Legendrian link. By applying planar isotopy and Reidemeister II moves, we can
isotop Λ so that its Lagrangian projection Πxy(Λ) satisfies the following properties:
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• all vertical tangencies (parallel to the y axis) lie on two lines x = c0 and x = c1, and
there are at least 2 vertical tangencies on each of these lines;
• no crossings in either the Lagrangian or front projections occur at the same x coor-

dinate.

Note in particular that Πxy(Λ) is the plat closure of some braid between x = c0 and x = c1

where the braid strands go from left to right. Furthermore, in the front projection Πxz(Λ),
all left cusps lie on the line x = c0 and all right cusps lie on x = c1.

Subdivide the interval [c0, c1] by choosing x0 < x1 < · · · < xp with x0 = c0, xp = c1 such
that:

• there are no crossings in either Πxy(Λ) or Πxz(Λ) in the intervals x ∈ [x0, x1] and
[xp−1, xp];
• for i = 1, . . . , p−2, in the interval x ∈ [xi, xi+1] there is exactly one crossing in either

Πxy(Λ) or Πxz(Λ), and no crossing in the other.

Figure 39. A set of splashes, in the front projection (left) and corresponding
Lagrangian projection (right).

Now in a neighborhood of the x = xi slices for i = 1, . . . , p − 1, introduce a collection of
“splashes”19 as shown in Figure 39. This is a C0-small perturbation in the front projection,
while in the Lagrangian projection, each strand is pushed through the other strands. For
definiteness, we order the collection of splashes at x = xi from left to right in increasing
order of the y-coordinate of the splashed strand; in the Lagrangian projection, the crossing
information for the new crossings is determined by the relative z coordinates of the strands at
x = xi. Let Λ′ denote the resulting Legendrian link, and note that Πxy(Λ

′) is obtained from
Πxy(Λ) by a (large) number of Reidemeister II moves. See Figure 40 for a sample illustration
of Λ′.

Write the Chekanov–Eliashberg DGA of Λ′ as (AΛ′ , ∂). Say that an automorphism Ψ of the
algebra AΛ′ is diagonal if it is of the following form: if ai denote the Reeb chords of Λ′, then
there is a collection of (invertible) scalars λi such that Ψ(ai) = λiai for all i.

Proposition A.3. Suppose that Ψ is a diagonal automorphism of AΛ′ that is also a chain
map: Ψ ◦ ∂ = ∂ ◦Ψ. Then Ψ is a link automorphism of Λ′.

In order to prove Proposition A.3, we need some more notation. Let s denote the number of
vertical tangencies in the Lagrangian projection of Λ at each of x = c0 and x = c1, so that
the Lagrangian projection is the plat closure of a 2s-stranded braid. Number these strands
1, 2, . . . , 2s so that in [x0, x1], the strands are numbered in increasing order of y coordinate;

19This terminology is inspired by [FR11], though our splashes are slightly different from theirs and more
resemble what [EHK16] call “dips”.
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Figure 40. A full example of splashing. Top to bottom: the front and
Lagrangian projections of Λ, with strands joining x = c0 and x = c1 labeled
1, 2, 3, 4, and the Lagrangian projection of Λ′ with some crossings labeled.

keep the numbering of braid strands consistent throughout the braid, and that in general the
strands will not remain numbered in increasing order beyond x = x1.

Now suppose that Ψ satisfies the hypotheses of Proposition A.3. We will construct units
u1, . . . , u2s such that the following condition holds for all Reeb chords a of Λ′:

(∗) Ψ(a) = ur(a)u
−1
c(a)a.

Here we use r(a) and c(a) to denote the labels of the strands that are the endpoint and
beginning point of a, respectively.

The following lemma is a useful tool for propagating condition (∗). Say that an embedded
bigon with boundary on Πxy(Λ

′) and two convex corners at Reeb chords of Λ′ is a standard
bigon if one corner is + and one is −; similarly say that an embedded triangle is a standard
triangle if one corner is + and the other two are −.

Lemma A.4. If a1, a2 are Reeb chords of Λ′ such that there is a (unique) standard bigon
with corners at a1, a2, then (∗) holds for a1 if and only if it holds for a2. If a1, a2, a3 are
Reeb chords such that there is a (unique) standard triangle with corners at a1, a2, a3, then if
(∗) holds for two of a1, a2, a3, then it holds for the third as well.

Proof. A bigon with + corner at a1 and − corner at a2 contributes a term a2 to ∂(a1); since
r(a1) = r(a2) and c(a1) = c(a2) and Ψ∂ = ∂Ψ, it follows that if (∗) holds for one of a1, a2,
then it holds for the other. Similarly, a triangle with + corner at a1 and − corners at a2, a3

contributes a term a2a3 to ∂(a1); now use the fact that r(a1) = r(a2), c(a2) = r(a3), and
c(a1) = c(a3) to conclude the desired result. See Figure 41. �
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Figure 41. Left two diagrams: a standard bigon and a standard triangle.
Right diagram: a chain of bigons joining aq,1ij , a

q,2
ij , a

q,1
ji , a

q,2
ji . (If strand i is

instead above strand j, then these are still standard bigons but all + and −
labels are interchanged.)

We next label the crossings of Λ′ in the splashes as follows. Consider the splashed portion
of strand i at x = xq. For any j 6= i, this splash crosses strand j twice; label these two

crossings aq,1ij (left) and aq,2ij (right). In this way we label all splashed crossings in Λ′ as aq,lij
for 1 ≤ i, j ≤ 2s (i 6= j), 1 ≤ q ≤ p− 1, and 1 ≤ l ≤ 2. See Figure 40 for an example.

Lemma A.5. For fixed i, j, q, if one of the crossings aq,1ij , a
q,2
ij , a

q,1
ji , a

q,2
ji satisfies (∗), then so

do the other three.

Proof. In a neighborhood of x = xq, strand i lies either completely above or completely below
strand j in the z coordinate. It follows that there is a chain of three standard bigons linking
aq,1ij , a

q,2
ij , a

q,1
ji , a

q,2
ji ; see Figure 41. The result follows from Lemma A.4. �

Lemma A.6. If Ψ satisfies the hypotheses of Proposition A.3, then there are u1, . . . , u2s such
that (∗) holds for all Reeb chords of Λ′.

Proof. We will prove that (∗) holds for all a = aq,lij by induction on q. In the course of the

proof, we will also show that (∗) holds for all other Reeb chords of Λ′, which correspond
precisely to the Reeb chords of Λ.

We first establish the induction base case q = 1. Set u1 = 1. Then for j = 2, . . . , 2s, the
Reeb chords a1,1

1j have one endpoint on strand 1 and one endpoint on strand j; since each

Ψ(a1j)
1,1 is an invertible scalar multiple of a1,1

1j , it follows that there are unique choices of

u2, . . . , u2s so that (∗) holds for a = a1,1
1j for all j = 2, . . . , 2s. Thus by Lemma A.5, (∗) also

holds for a1,l
1j and a1,l

j1 , j = 2, . . . , 2s, l = 1, 2. Next suppose j > i ≥ 2. Consider the two

triangles shown in Figure 42. Of the two corners at a1,2
ij , one must be + and one must be −,

and similarly for the two corners at a1,1
i1 . Of the corner at a1,2

1j and the corner at a1,1
j1 , again

one must be + and one must be − since the union of the two triangles is a standard bigon.
Since no triangle can have three − corners by Stokes’ Theorem, it follows that one of the two
triangles in Figure 42 must be standard. Thus by Lemma A.4, (∗) holds for a1,2

ij , whence it

holds for a1,l
ij and a1,l

ji by Lemma A.5. This completes the base case q = 1.

Figure 42. Showing that a1,2
ij satisfies (∗).
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Now suppose that (∗) holds for a = aq,lij for fixed q and all i, j, l; we need to show that it

also holds for a = aq+1,l
ij for all i, j, l. There are two cases depending on whether the crossing

between x = xq and x = xq+1 is in Πxy(Λ) or in Πxz(Λ). First suppose that the crossing is in
Πxy(Λ), and let k1, k2 denote the labels of the strands involved in the crossing. Choose any

two indices i 6= j and assume without loss of generality that aq,2ji is to the right of aq,2ij . As

long as {i, j} 6= {k1, k2}, there is a standard bigon joining aq,2ji to aq+1,1
ij , and it follows from

Lemmas A.4 and A.5 and the induction hypothesis that aq+1,1
ij , aq+1,2

ij , aq+1,1
ji , aq+1,2

ji satisfy

(∗). If on the other hand {i, j} = {k1, k2}, then if we label the crossing between x = xq and

x = xq+1 by a, there are standard bigons joining aq,2ji to a and a to aq+1,1
ij , and it follows as

before that aq+1,1
ij , aq+1,2

ij , aq+1,1
ji , aq+1,2

ji , along with a itself, all satisfy (∗).
It remains to treat the case where the crossing between x = xq and x = xq+1 is in Πxz(Λ).
Say that this crossing is between strands k1 and k2, where we choose the labels so that strand
k2 has larger y coordinate than strand k1 between x = xq and x = xq+1. The only difference
between the splashes at x = xq and x = xq+1 is that strand k1 lies above k2 at xq while
k2 lies above k1 at xq+1, or vice versa. It follows that for any two indices i 6= j, as long as

{i, j} 6= {k1, k2}, there is a standard bigon joining aq,2ji to aq+1,1
ij (or aq,2ij to aq+1,1

ji ) as in the

previous case, and we conclude as before that aq+1,1
ij , aq+1,2

ij , aq+1,1
ji , aq+1,2

ji satisfy (∗).

Finally suppose {i, j} = {k1, k2}. We will show that aq+1,1
k1k2

satisfies (∗), whence by Lemma A.5

all four crossings of the form aq+1,l
ij for {i, j} = {k1, k2} and l = 1, 2 satisfy (∗), and the

induction step will be complete. Since Λ has at least 4 strands joining left and right, there
is some other strand labeled k3 with k3 6= k1, k2. There are three cases depending on the
position of the y coordinate of strand k3 relative to strands k1 and k2 in [xq, xq+1].

If k3 lies above both k1 and k2 in the y direction, then consider the two triangles shown
in Figure 43. For both of these triangles, one corner is at aq+1,1

k1k2
and the other two corners

satisfy (∗). Since these triangles split in two a standard bigon with corners at aq,2k3k2 and

aq+1,1
k2k3

, as in the q = 1 case one of the triangles must be standard. It follows from Lemma A.4

that (∗) holds for aq+1,1
k1k2

, as desired. If k3 lies between k1 and k2, or k3 lies below both k1

and k2, entirely similar arguments using the triangles shown in Figure 44 again show that
aq+1,1
k1k2

satisfies (∗), and we are done. �

Figure 43. Showing that aq+1,1
k1k2

satisfies (∗).

We can now finally prove Proposition A.3.
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Figure 44. Two more cases to show that aq+1,1
k1k2

satisfies (∗).

Proof of Proposition A.3. Suppose Ψ : AΛ′ → AΛ′ is a chain map and an isomorphism. By
Lemma A.6, we have u1, . . . , u2s so that (∗) holds for all Reeb chords of Λ′. Now the strands
1, . . . , 2s are joined in pairs at the left end of Λ′, and joined in pairs again at the right end. On
the left end, for k = 1, . . . , s, strands 2k−1 and 2k are connected, and this yields an embedded
disk with a single corner at a1,1

2k−1,2k, which must be a + corner by Stokes. This contributes a

constant (1) term to δ(a1,1
2k−1,2k). Since Ψ is a chain map and Ψ(a1,1

2k−1,2k) = u2ku
−1
2k−1a

1,1
2k−1,2k

by (∗), it follows that u2k−1 = u2k.

More generally, the same argument shows that if strands i and j are joined at either end of
Λ′, then ui = uj . It follows that ui = uj whenever i and j are part of the same connected
component of Λ′. Thus we may remove duplicates and rename u1, . . . , u2s as u1, . . . , um,
where m is the number of components of Λ′. Then (∗) becomes precisely the condition for
Ψ to be a link automorphism of Λ′, and we are done. �

A.3. Proof of Proposition A.1. With the auxiliary result Proposition A.3 in hand, we
next prove Proposition A.1. Suppose that Λ+ and Λ− are related by a saddle cobordism at
a contractible crossing flanked by mini-dips, as in the statement of Proposition A.3 or the
right hand side of Figure 37. We first show that the desired map Φ is indeed a chain map,
and then proceed to the main proof.

Lemma A.7. The map Φ : AΛ+ → AΛ− defined in Proposition A.1 is a chain map: Φ◦∂+ =
∂− ◦ Φ.

Proof. We show that Φ◦∂+ and ∂−◦Φ agree on all Reeb chords of Λ+. Note that ∂+(a) = 0, so
Φ(∂+(a)) = 0 = ∂−(s) = ∂−(Φ(a)). Also if we denote the mini-dip crossing next to a1 by a3,
then ∂+(a1) = ∂−(a1) = −a3, so Φ(∂+(a1)) = −Φ(a3) = −a3 = ∂−(a1 − s−1) = ∂−(Φ(a1));
similarly Φ(∂+(a2)) = ∂−(Φ(a2)).

Figure 45. Labeling the strands of Λ+ (left) and Λ− (right) in the cobordism
region, and disks that pass through the cobordism region and contribute to
∂+(ai) and ∂−(ai).
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Now suppose that ai is a Reeb chord of Λ+ besides a, a1, a2: we need to show that Φ(∂+(ai)) =
∂−(ai). The disks that make up the differentials ∂+(ai) and ∂−(ai) are exactly the same
except where they pass through the cobordism region encompassing a1, a, a2. Where these
disks pass through the cobordism region, there is also a precise correspondence between the
disks for ∂+(ai) and ∂−(ai). The oriented boundary of such a disk enters the region on one of
the strands on the left and exits on one of the strands on the right, or it enters on the right
and exits on the left. If we label the strands as shown in Figure 45, then for instance any disk
contributing to ∂−(ai) that enters on the left on strand 1 and exits on the right on strand 2
must pass s and turn a corner at a1; there are two corresponding disks contributing to ∂+(ai)
with the same enter and exit data, one of which turns no corners in the cobordism region
and one of which turns corners at a and a1. See Figure 45; the result replaces a monomial
sa1 in ∂−(ai) by 1 + aa1 in ∂+(ai). In all, there are 8 ways to pass through the cobordism
region, with resulting contributions to ∂±(ai) as follows:

∂+(ai) ∂−(ai) ∂+(ai) ∂−(ai)

1→ 1 a s 1← 1 −a1 − a2 − a1aa2 s−1 − a1sa2

1→ 2 1 + aa1 sa1 1← 2 1 + aa2 sa2

2→ 1 1 + a2a a2s 2← 1 1 + a1a a1s
2→ 2 a1 + a2 + a2aa1 −s−1 + a2sa1 2← 2 −a −s

Now an inspection of this table shows that each entry in the ∂−(ai) column is obtained from
the corresponding entry in the ∂+(ai) column by replacing a, a1, a2 by s, a1 − s−1, a2 − s−1

respectively. It immediately follows that Φ(∂+(ai)) = ∂−(ai). �

We now have a chain map Φ : AΛ+ → AΛ− . In order to prove Proposition A.1, we want
to show that this is equal to the geometric cobordism map ΦLa up to a link automorphism.
To do this, we will first localize the differentials of Λ± by introducing splashes in the spirit
of Section A.2. In what follows, we continue to refer to the small region of Λ± containing
a1 and a2 (and a for Λ+) as the “cobordism region”, outside of which Λ+ and Λ− coincide.
We now change Λ− by a sequence of Reidemeister II moves that avoid the cobordism region,
first pulling all vertical tangencies of Πxy(Λ−) left or right so that they line up vertically,
then adding splashes to separate any crossings in Πxy(Λ−) or Πxz(Λ−) outside the cobordism
region. From this we obtain a link Λ′−, Legendrian isotopic to Λ−, for which there are
x0 < x1 < · · · < xp such that:

• all vertical tangencies lie on x = x0 or x = xp, and the number of vertical tangencies
on each of these lines is at least 2;
• there is a collection of splashes in a neighborhood of x = xi for i = 1, . . . , p− 1;
• there is one i ∈ {1, . . . , p− 2} such that [xi, xi+1] contains the cobordism region, and

in that interval [xi, xi+1] the only crossings in either Πxy(Λ−) or Πxz(Λ−) are between
the two strands involved in the cobordism region;
• for every other i = 1, . . . , p− 2, in the interval [xi, xi+1] there is exactly one crossing

in either Πxy(Λ−) or Πxz(Λ−), and no crossing in the other;
• [x0, x1] and [xp−1, xp] contain no crossings in Πxy(Λ−) or Πxz(Λ−).

In short, we follow the prescription from Section A.2, except that we do not separate the
crossings in the cobordism region from each other.

If we follow the same sequence of Reidemeister II moves going from Λ− to Λ′−, but start with
Λ+, then we obtain a Legendrian link Λ′+ that differs from Λ′− only in the cobordism region.
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We summarize the picture as follows:

Λ+
//

��

Λ′+

��
Λ− // Λ′−,

where the horizontal arrows are Legendrian isotopies given by (the same) Reidemeister II
moves, and the vertical arrows are (identical) elementary saddle cobordisms. Note that the
saddle cobordism between Λ+ and Λ− is Hamiltonian isotopic to the concatenation of the
three cobordisms specified by the other three sides of the square: from top to bottom, the
isotopy from Λ+ to Λ′+, followed by the saddle cobordism between Λ′+ and Λ′−, followed
by the isotopy from Λ′− to Λ−. By [EHK16, Kar20], the cobordism map ΦLa : AΛ+ →
AΛ− is chain homotopy equivalent to the composition of the cobordism maps given by the
three cobordisms. We will show that this composition is the map Φ from the statement of
Proposition A.1.

We first consider the cobordism map Φ′ : AΛ′+
→ AΛ′−

. By Lemma A.7, we know of another

chain map Φ1 : AΛ′+
→ AΛ′−

: this is defined by Φ1(a) = s, Φ1(a1) = a1 − s−1, Φ1(a2) =

a2 − s−1, and Φ1(ai) = ai for all other Reeb chords ai. Since [EHK16] gives a formula for
geometric cobordism maps mod 2 and this formula is especially simple in our case, we know
that the geometric map Φ′ agrees with Φ1 up to signs. By replacing s by −s if necessary, we
can assume that Φ′(a) = s.

Lemma A.8. There is a link automorphism Ω : AΛ′−
→ AΛ′−

such that Φ′ = Ω ◦ Φ1.

Proof. Write ∂′+ and ∂′− for the differentials on AΛ′+
and AΛ′−

respectively.

Since the terms in Φ′ agree with the terms in Φ1 up to sign, there are signs σi ∈ {±1}
such that Φ′(a1) = σ1a1 ± s−1, Φ′(a2) = σ2a2 ± s−1, and Φ′(ai) = σiai for all other i. In
fact, because Φ′ is a chain map, we must more specifically have Φ′(a1) = σ1a1 − s−1 and
Φ′(a2) = σ2a2 − s−1. To see this for a1 (with a similar argument for a2), we use the fact
that Λ′± have more than 2 strands joining left and right in the x direction, as stipulated
in their construction. In particular, there is a strand of Λ′± that lies either above or below
the cobordism region in the xy projection. Assume this strand lies above (the argument
for below is very similar). The splashes from this strand on either side of the cobordism
region intersect the strands from the cobordism region in a number of crossings, two of which
are labeled a3 and a4 in Figure 46. In Πxy(Λ

′
+), there is a standard bigon with corners at

a3 and a4, contributing either a4 to ∂′+(a3) or a3 to ∂′+(a4). For definiteness assume the
former (the argument is same for the latter). An inspection of Figure 46 shows that ∂′+(a3)
contains the terms ±(1 + a1a)a4 while ∂′−(a3) contains ±a1sa4, and furthermore that these
are the only terms in ∂′±(a3) that involve a4. Since ∂−Φ′(a3) = Φ′∂+(a3), we must have
±a1sa4 = Φ′((1 + a1a)a4) = ±(1 + (σ1a1 ± s−1)s)a4, which implies that the ± sign is − as
claimed.

Figure 46. Splashes on either side of the cobordism region in Λ′+ (left) and
Λ′− (right), with relevant crossings labeled.
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Now let Ω to be the algebra automorphism of AΛ′−
defined by Ω(ai) = σiai for all i; then by

our expression for Φ′, we have Φ′ = Ω ◦Φ1. It follows from the fact that Φ′ and Φ1 are both
chain maps that Ω is also a chain map. Indeed, for any i we have

∂′−Ωai = ∂′−Φ′ai = Φ′∂′+ai = ΩΦ1∂
′
+ai = Ω∂′−Φ1ai = Ω∂′−ai,

where when i = 1, 2 the first and last equality follow from the fact that ∂′−(s−1) = 0.

It remains to show that Ω is a link automorphism of Λ′−. To do this, we use the fact that Ω is a
diagonal automorphism of AΛ′−

and a chain map, and appeal to a variant of Proposition A.3.

We cannot use Proposition A.3 directly because Λ′− does not have a splash between a1 and a2.
However, we can still follow the inductive proof of Proposition A.3 in this setting. The only
thing we need to check is the inductive step where we are given that a1 satisfies the condition
(∗) from the proof and need to conclude that a2 also satisfies this condition. To do this, let
a3 and a5 be the crossings depicted in Figure 46, and note that there is a standard bigon in
Πxy(Λ

′
−) with corners at a3 and a5. If the positive corner of this bigon is at a3, then ∂′−(a3)

contains the terms (a1sa2− s−1)a5, while if the positive corner is at a5, then ∂′−(a5) contains
the terms a3(a1sa2− s−1). In either case, since Ω is a chain map, Ω(a1)sΩ(a2)− s−1 must be
equal to ±(a1sa2 − s−1). Since a1 satisfies(∗), Ω(a1) = ur(a1)u

−1
c(a1)a1; but this implies that

Ω(a2) = (ur(a1)u
−1
c(a1))

−1a2 = ur(a2)u
−1
c(a2)a2 and so a2 satisfies (∗), as desired. This completes

the proof of Lemma A.8. �

We next examine the maps given by the Legendrian isotopies between Λ+ and Λ′+, and
between Λ− and Λ′−. Suppose that Λ′− is obtained from Λ− by N Reidemeister II moves.
Then we can follow [Che02, ENS02] to construct a DGA isomorphism Ψ− between AΛ′−

and the DGA SN (AΛ−) given by stabilizing AΛ− N times (adding 2N generators in the
process). This isomorphism comes from N applications of the isomorphism coming from a
single Reidemeister II move, as already described in Section 4.1. By that construction, if
we start with Λ− and add the Reidemeister II moves one by one, we see that the nontrivial
parts of Ψ− come from disks with two positive punctures, one of which is at a crossing in
the Reidemeister II move. By inspection, there is no point at which there is such a disk
where the other positive puncture is at either a1 or a2, and it follows that Ψ−(a1) = a1 and
Ψ−(a2) = a2.

Similarly, since Λ′+ is obtained from Λ+ by the same Reidemeister II moves, we have a DGA

isomorphism Ψ+ between AΛ′+
and SN (AΛ+), and Ψ+(a1) = a1, Ψ+(a) = a, Ψ+(a2) = a2.

Indeed, we can say more about the relation between Ψ+ and Ψ−. The key point is that
there is a precise correspondence between the twice-positive-punctured disks that determine
Ψ+ and the twice-positive-punctured disks that determine Ψ−: algebraically, one obtains the
latter from the former by replacing a, a1, a2 by s, a1 − s−1, a2 − s−1 just as in the proof of
Lemma A.7. Consequently, for any Reeb chord ai of Λ′+ (and thus of Λ′−) besides a, a1, a2,
Ψ−(ai) is obtained from Ψ+(ai) by this algebraic replacement.

Put another way, let Φ1 be as above, and similarly define Φ2 : SN (AΛ+) → SN (AΛ−) by

Φ2(a) = s, Φ2(a1) = a1 − s−1, Φ2(a2) = a2 − s−1, and Φ2 is the identity on all other
generators of SN (AΛ+). Note that by Lemma A.7, Φ1 and Φ2 are both chain maps. By the
above discussion, we conclude that the following diagram commutes:

SN (AΛ+)

Φ2

��

AΛ′+

Ψ+

∼=
oo

Φ1

��
SN (AΛ−) AΛ′−

.
Ψ−

∼=
oo
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The cobordism map AΛ+ → AΛ′+
is simply the composition of the inclusion map i : AΛ+ →

SN (AΛ+) and the inverse of Ψ+, and the cobordism map AΛ′−
→ AΛ− is the composition of

Ψ− and the projection map p : SN (AΛ−)→ AΛ− .

We can now finally turn to the geometric cobordism map ΦLa : AΛ+ → AΛ− . To complete
the proof of Proposition A.1, we want to show that ΦLa = Ω◦Φ for some link automorphism
Ω of Λ−.

At this point we have broken down ΦLa into a composition of three cobordism maps: Ψ−1
+ ◦i :

AΛ+ → AΛ′+
, Φ′ : AΛ′+

→ AΛ′−
, and p ◦Ψ− : AΛ′−

→ AΛ− . That is, ΦLa is chain homotopy

equivalent to the composition p ◦Ψ− ◦Φ′ ◦Ψ−1
+ ◦ i of the five maps going around the sides of

the following rectangle:

AΛ+

i //

ΦLa

��

SN (AΛ+)

Φ2

��

AΛ′+

Ψ+

∼=
oo

Φ′

��
AΛ− SN (AΛ−)p

oo AΛ′−
.

Ψ−

∼=
oo

From Lemma A.8, there is a link automorphism Ω of Λ′− such that Φ′ = Ω ◦ Φ1. Since Λ′−
and Λ− are Legendrian isotopic, Ω induces a link automorphism of Λ−, which we also call Ω,
so that Ω commutes with the chain map p ◦Ψ− : AΛ′−

→ AΛ− induced by the isotopy. Thus

ΦLa ' p◦Ψ− ◦Φ′ ◦Ψ−1
+ ◦ i = p◦Ψ− ◦Ω◦Φ1 ◦Ψ−1

+ ◦ i = Ω◦p◦Ψ− ◦Φ1 ◦Ψ−1
+ ◦ i = Ω◦p◦Φ2 ◦ i.

But p ◦ Φ2 ◦ i is exactly equal to Φ as defined in the statement of Proposition A.1, and we
are done with the proof.

A.4. Proof of Proposition 4.8. The remainder of this section is devoted to the proof of
Proposition 4.8. At this point, by Proposition A.1, we know the saddle cobordism map for
a saddle flanked by mini-dips; to prove Proposition 4.8, we just need to compose this map
with maps corresponding to the Reidemeister II moves of adding and removing mini-dips.
This is similar to the proof of Proposition A.1 in the previous subsection, except that it will
now be important to calculate these Reidemeister II maps in more detail.

Suppose that, as in the statement of Proposition 4.8, we have a saddle cobordism between
Λ+ and Λ−, where the cobordism is given by resolving a proper contractible Reeb chord a of
Λ+. Let Λ′+ be the result of adding a mini-dip to Λ+ just after a following the orientation of
Λ+, and let Λ′′+ be result of further adding a mini-dip to Λ′+ on the other side of a. Similarly
define Λ′− and Λ′′−. Then Λ′± are obtained from Λ± by a single Reidemeister II move, Λ′′± are
obtained from Λ′± by another Reidemeister II move, and Λ′′+ and Λ′′− are related by a saddle
move of the precise form that we considered in Proposition A.1. See Figure 47.

Figure 47. Adding mini-dips to Λ±.
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The properness condition for a translates into the following result.

Lemma A.9. Given that the Reeb chord a is proper:

• if aq is any Reeb chord of Λ′+, and ∂′ denotes the differential on Λ′+, then any term
in ∂′(aq) that contains a3 must contain a3 exactly once and cannot contain a1;
• if aq is any Reeb chord of Λ′′+, and ∂′′ denotes the differential on Λ′′+, then any term

in ∂′(aq) that contains a4 must contain a4 exactly once and cannot contain any of
a1, a2, a3.

Figure 48. Turning an immersed disk ∆′ for Λ′+ into an immersed disk ∆ for Λ+.

Proof. We will establish the statement for Λ′+; the proof of the statement for Λ′′+ is similar.
If aq is any of a, a1, a3, then the statement is trivially true: by action considerations, the only
term in ∂′(aq) that could contain a3 is just the term a3 itself in ∂′(a1). Now assume aq is not
a, a1, a3. Consider any word in ∂′(aq), corresponding to an immersed disk ∆′ in Λ′+ with sole
+ corner at aq and a − corner at a3. Then ∆′ in turn produces an immersed disk ∆ in Λ+,
now possibly with concave corners at a: see Figure 48. If ∆′ contained multiple corners at
a3, or corners at both a1 and a3, then the boundary of ∆ would pass through Πxy(a) more
than once, violating the properness condition from Definition 4.3. �

We will now piece together the five maps AΛ+ → AΛ′+
→ AΛ′′+

→ AΛ′′−
→ AΛ′−

→ AΛ− to

get the desired cobordism map. The central map AΛ′′+
→ AΛ′′−

has already been computed,

while the remaining maps come from Reidemeister II isotopies.

We will focus for now on the map AΛ+ → AΛ′+
, which we call Ψ→+ . This is the chain map

induced by adding a Legendrian Reidemeister II move, as derived in [Che02, ENS02] and
summarized in Section 4.1 above, and we describe it explicitly now. Label the Reeb chords
of Λ+ besides a as a5, . . . , ar, so that we can write AΛ+ = A(a, a5, . . . , ar) and AΛ′+

=

A(a, a1, a3, a5, . . . , ar). We stabilize AΛ+ by adding two new generators e1, e2 with |e1| = 0,
|e2| = −1, ∂(e1) = e2, ∂(e2) = 0, to produce a new DGA S(AΛ+) = A(a, a5, . . . , ar, e1, e2).
As described in Section 4.1 and specifically defined in (4.1), there is a chain isomorphism
Ψ : AΛ′+

→ S(AΛ+), which in our case is defined by Ψ(a1) = e1, Ψ(a3) = −e2, Ψ(a) = a,

and for ` ≥ 5,
Ψ(a`) = a` −HΨ∂′a`

where ∂′ is the differential on Λ′+. Then Ψ→+ is defined to be equal to Ψ−1 ◦ i.
We now claim that Ψ→+ satisfies the following formula, which can be compared to the definition
of Φ→ from Section 4.2.

Lemma A.10. For all ` ≥ 5, we have

(A.1) Ψ→+ (a`) = a` −
∑

∆∈∆→a (a`)

(−1)|w1(∆)| sgn(∆)Ψ→+ (w1(∆))a1w2(∆).
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Proof. Assume without loss of generality that a, a5, . . . , ar are ordered by height (note that a
is contractible and thus has the shortest height). We first claim that for all q ≥ 5, Ψ(aq)−aq
only includes terms that involve at least one e1 and no e2: we abbreviate this condition by
Ψ(aq)− aq = O(e1). We prove this by induction on q, where the base case is actually aq = a
(note Ψ(a)−a = 0). For the induction step, note that Ψ(aq)−aq = −HΨ∂′aq, and the right
hand side only contains terms involving at least one e1; we need to show that HΨ∂′aq does
not involve e2.

Consider any word w in ∂′aq. If a3 does not appear in w, then w involves only a, a1, a5, . . . , aq−1,
and so by induction Ψ(w)−w = O(e1) and HΨ(w) = H(w) = 0. On the other hand, if w does
involve a3, then by Lemma A.9, w = w1a3w2 where w1, w2 involve only a, a5, . . . , aq−1; then
by induction again, HΨ(w) = −H((Ψ(w1))e2(Ψ(w2))) = −H(w1e2Ψ(w2)) = ±w1e1Ψ(w2)
does not involve e2. This completes the proof that Ψ(aq)− aq = O(e1) for all q ≥ 5.

We now prove the lemma, again by induction on `. The base case is actually Ψ→+ (a) = a,
which is (A.1) with a = a`. For the induction step, we compute that:

Ψ→+ (a`) = Ψ−1(a`) = a` + Ψ−1HΨ∂′a`.

Now suppose that w is a word in ∂′a`, and again apply Lemma A.9. If w does not contain
a3, then HΨ(w) = 0. If w does contain a3, then we write w = w1a3w2 and compute:

HΨ(w) = HΨ(w1a3w2) = −H(Ψ(w1)e2Ψ(w2)) = −H(w1e2Ψ(w2)) = (−1)|w1|w1e1Ψ(w2)

and thus

Ψ−1HΨ(w) = (−1)|w1|Ψ−1(w1e1Ψ(w2)) = (−1)|w1|Ψ−1(w1)a1w2 = (−1)|w1|Ψ→+ (w1)a1w2,

where we have used the fact that w1 does not involve a1 or a3 and thus Ψ−1(w1) = Ψ−1i(w1) =
Ψ→+ (w1). Finally note that the disk for w in Λ′+ precisely corresponds to a disk ∆ in ∆→a (a`)
in Λ+, and that the sign for w in ∂′a` is − sgn(∆) since ∆ replaces a corner at a3 with
positive orientation sign with a corner at a with negative orientation sign. Now the signed
sum of Ψ−1HΨ(w) = Ψ→+ (w1)a1w2 over all disks in ∆→a (a`) gives (A.1), and this completes
the induction. �

In a similar way, we write Ψ←+ for the cobordism map from AΛ′+
= A(a, a1, a3, a5, . . . , ar) to

AΛ′′+
= A(a, a1, a2, a3, a4, a5, . . . , ar) induced by the Reidemeister II isotopy between Λ′+ and

Λ′′+.

Lemma A.11. For all ` ≥ 5, we have

Ψ←+ (a`) = a` −
∑

∆∈∆←a (a`)

(−1)|w1(∆)| sgn(∆)Ψ→+ (w1(∆))a2w2(∆).

Proof. This is essentially identical to the proof of Lemma A.10. Given our choice of orienta-
tion signs, there are two sign differences here from the proof of Lemma A.10: Ψ(a4) is now e2

rather than −e2, and the sign of a word contributing to ∂′(a`) is now equal to + sgn(∆) rather
than − sgn(∆) for the corresponding disk ∆ ∈ ∆←a (a`). These two sign changes cancel out.
One other subtle difference is that if we follow the proof of the previous lemma, then ∆←a (a`)
in the statement of the present lemma should be for Λ′+ rather than for Λ+. However, by the
properness condition for a, there is a one-to-one correspondence between disks in ∆←a (a`) for
Λ′+ and Λ+, and so the desired formula holds for either form of ∆←a (a`). �

We can now finally piece together our various subsidiary results to prove Proposition 4.8.
To distinguish between the saddle cobordisms in the dipped and undipped settings, let La
be the cobordism between Λ+ and Λ− as in the statement of Proposition 4.8, and let L̃a be

the cobordism between Λ′′+ and Λ′′−. As shown in Figure 47, we can concatenate L̃a and four
Lagrangians coming from Legendrian isotopies to create a five-story cobordism between Λ+
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and Λ− which is Hamiltonian isotopic to La: from top to bottom, the five cobordisms go
between Λ+, Λ′+, Λ′′+, Λ′′−, Λ′−, and Λ−.

The chain map ΦLa : AΛ+ → AΛ− is then chain homotopic to the composition of the chain
maps coming from the five cobordisms. We summarize this in the following diagram, which
commutes up to chain homotopy:

AΛ+

Ψ→+ //

ΦLa
��

AΛ′+

Ψ←+ // AΛ′′+

Φ
L̃a

��
AΛ− AΛ′−

p2oo AΛ′′−
.

p1oo

Here Ψ→+ and Ψ←+ are the maps computed in Lemmas A.10 and A.11, while p1 and p2 are
the maps induced by the reverse Reidemeister II moves from Λ′′− to Λ′− and from Λ′− to Λ−.
By Remark 4.2, these last two maps (which correspond to p ◦ Ψ in Remark 4.2) are given
simply by projection: p1(a2) = p1(a4) = p2(a1) = p2(a3) = 0 and p1, p2 are the identity on
all other generators.

Now by Proposition A.1, Φ
L̃a

= Ω ◦ Φ where Ω is a link automorphism of Λ′′− and Φ is the

map given in the statement of the proposition. Since Λ′′− and Λ− are isotopic, Ω induces a
link automorphism of Λ− which we also denote by Ω, and p2 ◦ p1 ◦ Ω = Ω ◦ p2 ◦ p1. At this
point we have:

ΦLa ' p2 ◦ p1 ◦ Φ
L̃a
◦Ψ←+ ◦Ψ→+ = Ω ◦ p2 ◦ p1 ◦ Φ ◦Ψ←+ ◦Ψ→+ .

We will be done if we can show that the composition p2 ◦p1 ◦Φ◦Ψ←+ ◦Ψ→+ is equal to the map

Φcomb
La

= Φ← ◦ Φ→ ◦ Φ0 from Proposition 4.8. But Φcomb
La

is specifically designed so that this
is the case. Specifically, if a` is any Reeb chord of Λ+ besides a, then Φ→(a`) and Φ←(a`)
are precisely the result of replacing a1 and a2 by −s−1 in the expressions for Ψ→+ (a`) and
Ψ←+ (a`) from Lemmas A.10 and A.11. But by the definition of Φ, this replacement is exactly
the effect of composing with the map p2 ◦ p1 ◦Φ, which sends a1, a2 to −s−1 and sends a` to
itself for ` ≥ 5. It follows that

Φcomb
La (a`) = (Φ← ◦ Φ→)(a`) = (p2 ◦ p1 ◦ Φ)((Ψ←+ ◦Ψ→+ )(a`)

for all `. Combined with the fact that Φcomb
La

(a) = s = (p2 ◦ p1 ◦ Φ ◦ Ψ←+ ◦ Ψ→+ )(a), this

establishes that Φcomb
La

= p2 ◦ p1 ◦ Φ ◦Ψ←+ ◦Ψ→+ . The proof of Proposition 4.8 is complete.
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varieties. arXiv:2012.06931, 2020.
[Cha10] Baptiste Chantraine. Lagrangian concordance of Legendrian knots. Algebr. Geom. Topol.,

10(1):63–85, 2010.
[Che02] Yuri Chekanov. Differential algebra of Legendrian links. Invent. Math., 150(3):441–483, 2002.
[CSLL+21] Orsola Capovilla-Searle, Noémie Legout, Maÿlys Limouzineau, Emmy Murphy, Yu Pan, and Lisa
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[EK08] Tobias Ekholm and Tamás Kálmán. Isotopies of Legendrian 1-knots and Legendrian 2-tori. J.

Symplectic Geom., 6(4):407–460, 2008.
[Ekh19] Tobias Ekholm. Holomorphic curves for legendrian surgery. arXiv:1906.07228, 2019.
[EL19] Tobias Ekholm and Yanki Lekili. Duality between lagrangian and legendrian invariants.

arXiv:1701.01284, 2019.
[EN18] John B. Etnyre and Lenhard L. Ng. Legendrian contact homology in R3. arXiv:1811.10966, 2018.
[ENS02] John B. Etnyre, Lenhard L. Ng, and Joshua M. Sabloff. Invariants of Legendrian knots and

coherent orientations. J. Symplectic Geom., 1(2):321–367, 2002.
[EP96] Y. Eliashberg and L. Polterovich. Local Lagrangian 2-knots are trivial. Ann. of Math. (2),

144(1):61–76, 1996.
[Etn03] John B. Etnyre. Introductory lectures on contact geometry. In Topology and geometry of manifolds

(Athens, GA, 2001), volume 71 of Proc. Sympos. Pure Math., pages 81–107. Amer. Math. Soc.,
Providence, RI, 2003.
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