From holomorphic curves to knot invariants via the cotangent bundle

Lenny Ng

Duke University

AMS Southeastern Section Meeting Tulane University October 14, 2012

Based on joint work with: Tobias Ekholm (Uppsala University), John Etnyre (Georgia Tech), and Michael Sullivan (University of Massachusetts); and Mina Aganagic (UC Berkeley), Tobias Ekholm, and Cumrun Vafa (Harvard University).

These slides available at http://www.math.duke.edu/~ng/math/tulane.pdf.

Outline

- Topological motivation
- 2 The cotangent bundle
- 3 Knot contact homology
- Relation to physics

Classification of manifolds

Motivating question in low-dimensional topology: classify or characterize topological/smooth manifolds in 3 and 4 dimensions, up to equivalence.

Three types of equivalence of manifolds:

- homotopy equivalence
- homeomorphism (topological equivalence)
- diffeomorphism (smooth equivalence).

We have

 $diffeomorphic \Rightarrow homeomorphic \Rightarrow homotopy equivalent.$

In three dimensions, diffeomorphic ⇔ homeomorphic.

Poincaré conjecture

Poincaré conjecture

Let M be a closed topological 3-manifold such that

$$\pi_1(M) = 1.$$

Then M is homeomorphic to S^3 .

Poincaré conjecture famously proven by Perelman about a decade ago.

Poincaré conjecture

Poincaré conjecture

Let M be a closed topological 3-manifold such that

$$\pi_1(M)=1.$$

Then M is homeomorphic to S^3 .

Poincaré conjecture famously proven by Perelman about a decade ago.

n-dimensional Poincaré conjecture

Any topological manifold homotopy equivalent to S^n is homeomorphic to S^n .

True in all dimensions (Smale $n \geq 5$; Freedman n = 4; Perelman n = 3).

Smooth *n*-dimensional Poincaré conjecture

Any smooth manifold homotopy equivalent to S^n is diffeomorphic to S^n .

True for $n \le 3$; resolved for $n \ge 5$ (e.g., false for n = 7: Milnor's exotic S^7 's).

Smooth *n*-dimensional Poincaré conjecture

Any smooth manifold homotopy equivalent to S^n is diffeomorphic to S^n .

True for $n \le 3$; resolved for $n \ge 5$ (e.g., false for n = 7: Milnor's exotic S^7 's).

Number of smooth structures on S^n :

ſ	n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ſ	#	1	1													

Smooth *n*-dimensional Poincaré conjecture

Any smooth manifold homotopy equivalent to S^n is diffeomorphic to S^n .

True for $n \le 3$; resolved for $n \ge 5$ (e.g., false for n = 7: Milnor's exotic S^7 's).

Number of smooth structures on S^n :

	n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
7	#	1	1			1	1	28	2	8	6	992	1	3	2	16256

Kervaire–Milnor (1963): count for $n \ge 5$ using homotopy theory.

Smooth *n*-dimensional Poincaré conjecture

Any smooth manifold homotopy equivalent to S^n is diffeomorphic to S^n .

True for $n \le 3$; resolved for $n \ge 5$ (e.g., false for n = 7: Milnor's exotic S^7 's).

Number of smooth structures on S^n :

ſ	n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	#	1	1	1		1	1	28	2	8	6	992	1	3	2	16256

Perelman (2003): n = 3.

Smooth *n*-dimensional Poincaré conjecture

Any smooth manifold homotopy equivalent to S^n is diffeomorphic to S^n .

True for $n \le 3$; resolved for $n \ge 5$ (e.g., false for n = 7: Milnor's exotic S^7 's).

Number of smooth structures on S^n :

1	7											11				13
#	#	1	1	1	?	1	1	28	2	8	6	992	1	3	2	16256

n=4: open!

0000

Smooth 4-dimensional Poincaré

Smooth 4-dimensional Poincaré conjecture

If a smooth manifold M is homotopy equivalent (or homeomorphic) to S^4 , then it is diffeomorphic to S^4 .

There are a number of possible counterexamples to this conjecture: proposed "exotic S^4 's".

One stumbling block: a lack of good invariants of smooth 4-manifolds that apply to this setting.

Smooth 4-dimensional Poincaré

Smooth 4-dimensional Poincaré conjecture

If a smooth manifold M is homotopy equivalent (or homeomorphic) to S^4 , then it is diffeomorphic to S^4 .

There are a number of possible counterexamples to this conjecture: proposed "exotic S^4 's".

One stumbling block: a lack of good invariants of smooth 4-manifolds that apply to this setting.

Cotangent bundles to the rescue?

Phase space

Particle in \mathbb{R}^3 :

- position $q = (q_1, q_2, q_3)$
- momentum $p = (p_1, p_2, p_3)$

The phase space of the particle is

$$\mathbb{R}^6 = \mathbb{R}^3_{(q_1,q_2,q_3)} \times \mathbb{R}^3_{(p_1,p_2,p_3)}.$$

The cotangent bundle

More generally, a particle in a manifold M has a position $q \in M$ and a velocity vector $v \in T_aM$; for various reasons, it's more natural to consider the dual, momentum vector $p \in (T_a M)^*$.

The phase space of the particle is the cotangent bundle

$$T^*M = \{(q,p) \mid q \in M, \ p \in (T_qM)^*\}.$$

If $\dim_{\mathbb{R}} M = n$, then $\dim_{\mathbb{R}} T^*M = 2n$.

$$T^*M$$

$$(T_qM)^*$$

$$M$$

Symplectic manifolds

Cotangent bundles T^*M are examples of symplectic manifolds.

Definition

A 2-form ω on a 2*n*-dim'l manifold W is a symplectic form if

- $d\omega = 0$ (ω is closed)
- ω^n is a nowhere zero 2n-form (ω is nondegenerate).

Definition

An even-dimensional manifold is a symplectic manifold if it has a symplectic form.

Cotangent bundles T^*M are examples of symplectic manifolds.

Definition

A 2-form ω on a 2*n*-dim'l manifold W is a symplectic form if

- $d\omega = 0$ (ω is closed)
- ω^n is a nowhere zero 2n-form (ω is nondegenerate).

Definition

An even-dimensional manifold is a symplectic manifold if it has a symplectic form.

The "prototypical" symplectic manifold is $\mathbb{R}^{2n} = T^*\mathbb{R}^n$ with coordinates $q_1, \ldots, q_n, p_1, \ldots, p_n$ and symplectic form

$$\omega = dq_1 \wedge dp_1 + \cdots + dq_n \wedge dp_n$$
.

Cotangent bundles are symplectic

More generally, on a cotangent bundle T^*M with local coordinates $q_1,\ldots,q_n,p_1,\ldots,p_n$, we can define a 2-form $\omega\in\Omega^2(T^*M)$ by

$$\omega = dq_1 \wedge dp_1 + \cdots + dq_n \wedge dp_n.$$

$\mathsf{Theorem}$

- For any smooth manifold M, ω is independent of coordinates, and (T^*M, ω) is a symplectic manifold.
- If M and M' are diffeomorphic (equivalent as smooth manifolds), then the symplectic manifolds T*M and T*M' are symplectomorphic (equivalent as symplectic manifolds).

ie symplectic form on *i wi*

Coordinate-free definition of $\omega \in \Omega^2(T^*M)$:

There is a canonical 1-form $\lambda_{\mathsf{can}} \in \Omega^1(T^*M)$, the Liouville form: for $v \in T_{(q,p)}(T^*M)$,

$$\lambda_{\mathsf{can}}(v) = \langle \pi(v), d\pi(v) \rangle.$$

Then

$$\omega = -d\lambda_{can}$$
.

Arnol'd's strategy

V. I. Arnol'd: study the smooth topology of M via the symplectic topology of T^*M .

Question

If M, M' are closed smooth manifolds such that T^*M and T^*M' are symplectomorphic, are M and M' necessarily diffeomorphic?

Note: recent result of Adam Knapp (2012) shows that this is not necessarily true without the closed condition: exotic \mathbb{R}^4 's have symplectomorphic cotangent bundles.

Smooth invariants from symplectic geometry

One way to produce invariants of smooth manifolds:

Smooth invariants from symplectic geometry

One way to produce invariants of smooth manifolds:

The symplectic invariants are often given by counts of holomorphic curves.

Holomorphic curves

Gromov, 1980s: one can create interesting invariants of symplectic manifolds (W,ω) by studying holomorphic curves in W: Riemann surfaces in W satisfying a certain compatibility condition with ω (involving an almost complex structure on W tamed by ω).

Gromov's insight: in many cases, there are only *finitely many* holomorphic curves, and counting them yields symplectic invariants (cf. algebraic geometry).

Holomorphic curves continued

More generally, the *moduli space* of holomorphic curves is often well-behaved (e.g., a manifold with corners) and studying this moduli space yields symplectic invariants.

moduli space of holomorphic curves

Hamiltonian Floer Homology

One invariant of (certain) symplectic manifolds: Hamiltonian Floer homology (based on Floer, 1988).

Theorem (Viterbo 1996, Salamon–Weber 2003, Abbondandolo–Schwarz 2004)

The Hamiltonian Floer homology of the symplectic manifold T^*M is isomorphic to the singular homology of the free loop space $\mathcal{L}M$:

$$HF_*(T^*M) \cong H_*(\mathcal{L}M).$$

Thus the symplectic structure on T^*M remembers at least some homotopic data about M.

Exotic spheres and cotangent bundles

Recently, Mohammed Abouzaid has shown that the symplectic structure on T^*M can encode more than the homotopic/topological structure of T^*M : it can encode smooth information.

Theorem (Abouzaid, 2008)

If Σ is an exotic S^{4k+1} that does not bound a parallelizable manifold, then $T^*\Sigma$ is not symplectomorphic to T^*S^{4k+1} .

Kervaire–Milnor: there are 8 different smooth structures on S^9 ; this shows that 6 of them are distinct from the standard smooth structure.

Abouzaid's argument studies certain moduli spaces of holomorphic curves on $T^*\Sigma$.

Conormal bundles

We will focus on a relative of the cotangent construction.

Definition

Let $K \subset M$ be a submanifold. The conormal bundle to K is

$$L_K := \{(q, p) \mid q \in K \text{ and } \langle p, v \rangle = 0 \text{ for all } v \in T_q K\}$$

 $\subset T^*M.$

Conormal bundle and the symplectic structure

If $\dim(M) = n$, then $\dim(T^*M) = 2n$ and dimension counting shows that $\dim(L_K) = n$ regardless of the dimension of K.

$\mathsf{Theorem}$

For any submanifold $K \subset M$,

$$L_K \subset T^*M$$

is Lagrangian: a maximal-dimensional submanifold of T^*M on which the symplectic form ω is identically 0.

We will be interested in the case where $M=\mathbb{R}^3$ and $K\subset\mathbb{R}^3$ is a knot: a smooth embedding of S^1 in \mathbb{R}^3 . In this case, $L_K\cong S^1\times\mathbb{R}^2$ is a Lagrangian submanifold of $T^*\mathbb{R}^3\cong\mathbb{R}^6$.

Knots in \mathbb{R}^3

We consider knots in \mathbb{R}^3 up to smooth isotopy: two knots K_0 and K_1 are smoothly isotopic if there is a 1-parameter family of knots K_t for $0 \le t \le 1$.

Smoothly isotopic knots (here, the right-handed trefoil).

The conormal bundle as a knot invariant

If knots $K_0, K_1 \subset \mathbb{R}^3$ are smoothly isotopic, then there is a 1-parameter family of Lagrangian submanifolds $L_{K_t} \subset T^*\mathbb{R}^3$: L_{K_0}, L_{K_1} are Lagrangian isotopic.

Question

How much of the topology of the knot $K \subset \mathbb{R}^3$ is encoded in the symplectic/Lagrangian structure of $L_K \subset T^*\mathbb{R}^3$?

The conormal bundle as a knot invariant

If knots $K_0, K_1 \subset \mathbb{R}^3$ are smoothly isotopic, then there is a 1-parameter family of Lagrangian submanifolds $L_{K_t} \subset T^*\mathbb{R}^3$: L_{K_0}, L_{K_1} are Lagrangian isotopic.

Question

How much of the topology of the knot $K \subset \mathbb{R}^3$ is encoded in the symplectic/Lagrangian structure of $L_K \subset T^*\mathbb{R}^3$?

Conjecture?

The Lagrangian submanifold L_K is a complete knot invariant: if K_0 , K_1 are knots such that L_{K_0} and L_{K_1} are Lagrangian isotopic, then K_0 and K_1 are smoothly isotopic.

(More precise conjecture involves "Legendrian isotopy" in the contact manifold $ST^*\mathbb{R}^3$ of $\Lambda_K := L_K \cap ST^*\mathbb{R}^3$.)

Conormal bundle detects the unknot

Theorem (N., 2005)

 L_K detects the unknot O: if $K \subset \mathbb{R}^3$ is a knot such that Λ_K and Λ_O are Legendrian isotopic, then K is unknotted: K = O.

the unknot O

K = O?

Legendrian contact homology

To distinguish between Lagrangians L_K for different knots K, need good invariants of Lagrangian submanifolds in symplectic manifolds.

One is given by Legendrian contact homology (LCH) (Eliashberg–Hofer, 1990s; Etnyre–Ekholm–Sullivan, 2005). LCH inputs a Legendrian submanifold Λ of a contact manifold V, and outputs a count of holomorphic curves in the symplectization $\mathbb{R} \times V$ with boundary on $\mathbb{R} \times \Lambda$ and certain asymptotic behavior.

Legendrian contact homology

To distinguish between Lagrangians L_K for different knots K, need good invariants of Lagrangian submanifolds in symplectic manifolds.

In our setting, LCH counts certain holomorphic disks in \mathcal{T}^*M with boundary on \mathcal{L}_K .

Knot contact homology

$$K\subset\mathbb{R}^3$$
 knot $\longrightarrow L_K\subset T^*\mathbb{R}^3$ Lagrangian
$$\downarrow^{LCH}$$
 $\longleftarrow HC_*(L_K)$, symplectic invariant

Knot contact homology

$$K\subset\mathbb{R}^3$$
 knot $\longrightarrow L_K\subset T^*\mathbb{R}^3$ Lagrangian \downarrow LCH $HC_*(K)$, knot invariant $\stackrel{:=}{\longleftarrow} HC_*(L_K)$, symplectic invariant

Definition

Let $K \subset \mathbb{R}^3$ be a knot. The knot contact homology $HC_*(K)$ is the LCH associated to $L_K \subset T^*\mathbb{R}^3$. This is a knot invariant (an invariant of knots up to smooth isotopy).

Knot contact homology, continued

Theorem (N. 2003, 2005, 2010; Ekholm–Etnyre–N.–Sullivan 2011)

There is a combinatorially-defined differential graded algebra (\mathcal{A},∂) associated to a knot K, for which

$$H_*(\mathcal{A},\partial)=HC_*(K).$$

The algebra \mathcal{A} is a finitely-generated noncommutative algebra over the ring $\mathbb{Z}[\lambda^{\pm 1}, \mu^{\pm 1}, U^{\pm 1}]$.

Knot contact homology, continued

Theorem (N. 2003, 2005, 2010; Ekholm–Etnyre–N.–Sullivan 2011)

There is a combinatorially-defined differential graded algebra (\mathcal{A},∂) associated to a knot K, for which

$$H_*(\mathcal{A},\partial)=HC_*(K).$$

The algebra \mathcal{A} is a finitely-generated noncommutative algebra over the ring $\mathbb{Z}[\lambda^{\pm 1}, \mu^{\pm 1}, U^{\pm 1}]$.

Conjecture?

Knot contact homology is a complete knot invariant: if knots K_1, K_2 satisfy

$$HC_*(K_1) \cong HC_*(K_2)$$

then $K_1 = K_2$.

Properties of knot contact homology

Theorem (N., 2005)

- Knot contact homology $HC_*(K)$ determines the Alexander polynomial $\Delta_K(t)$.
- Knot contact homology is "relatively strong" as a knot invariant: it can distinguish mirrors, mutants, etc.

Two famous "mutant" knots: the Kinoshita-Terasaka knot and the Conway knot.

A new polynomial knot invariant

Definition

The augmentation variety of a knot K (with DGA (A, ∂)) is

$$\{(\lambda,\mu,U)\in(\mathbb{C}\setminus\{0\})^3|\, \text{there is an algebra map}$$

$$\epsilon:\,\mathcal{A}\to\mathbb{C}\,\, \text{with}\,\,\epsilon\circ\partial=0\}$$

$$\subset(\mathbb{C}\setminus\{0\})^3.$$

A new polynomial knot invariant

Definition

The augmentation variety of a knot K (with DGA (A, ∂)) is

$$\{(\lambda, \mu, U) \in (\mathbb{C} \setminus \{0\})^3 | \text{ there is an algebra map}$$

$$\epsilon: \ \mathcal{A} \to \mathbb{C} \text{ with } \epsilon \circ \partial = 0 \}$$

$$\subset (\mathbb{C} \setminus \{0\})^3.$$

This appears to be a codimension-1 algebraic set for all knots K.

Definition

The augmentation polynomial of a knot K

$$\mathsf{Aug}_{\mathcal{K}}(\lambda,\mu,\mathit{U}) \in \mathbb{Z}[\lambda,\mu,\mathit{U}]$$

is the polynomial for which the augmentation variety is $\{\operatorname{Aug}_{\kappa}(\lambda,\mu,U)=0\}.$

Computing the augmentation polynomial

In practice, to a knot K, knot contact homology associates a finite, combinatorially defined collection of polynomials in some variables x_1, \ldots, x_n with coefficients in $\mathbb{Z}[\lambda, \mu, U]$:

$$K \rightsquigarrow \{p_1(x_1,\ldots,x_n),\ldots,p_m(x_1,\ldots,x_n)\}.$$

The augmentation variety is the set of (λ, μ, U) for which these polynomials have a common root in x_1, \ldots, x_n :

$$p_1(x_1,\ldots,x_n) = 0$$

$$p_2(x_1,\ldots,x_n) = 0$$

$$\vdots$$

$$p_m(x_1,\ldots,x_n) = 0.$$

Augmentation polynomial: unknot

For K = O, the unknot: the collection of polynomials in n = 0 variables is

$$\{U-\lambda-\mu+\lambda\mu\}.$$

Thus

$$Aug_O(\lambda, \mu, U) = U - \lambda - \mu + \lambda \mu.$$

For K = T, the right-handed trefoil: the collection of polynomials

For K=I , the right-handed trefoil: the collection of polynomials in n=1 variable is

$$\{Ux_1^2 - \mu Ux_1 + \lambda \mu^3 (1-\mu), Ux_1^2 + \lambda \mu^2 x_1 + \lambda \mu^2 (\mu - U)\}.$$

Then take the resultant of these two polynomials:

$$\operatorname{Aug}_{\mathcal{T}}(\lambda, \mu, U) = (U^3 - \mu U^2) + (-U^3 + \mu U^2 - 2\mu^2 U + 2\mu^2 U^2 + \mu^3 U - \mu^4 U)\lambda + (-\mu^3 + \mu^4)\lambda^2.$$

Relation to other knot invariants

Theorem (N. 2005)

A specialization of the augmentation polynomial,

$$\mathsf{Aug}_{\mathcal{K}}(\lambda,\mu,1),$$

contains the A-polynomial $A_K(\lambda, \mu^2)$ as a factor.

Here the A-polynomial is a knot invariant related to $SL_2\mathbb{C}$ -representations of the knot complement and hyperbolic structures.

Corollary (N. 2005)

The augmentation polynomial $\operatorname{Aug}_K(\lambda, \mu, U)$, and thus knot contact homology, detects the unknot: if $\operatorname{Aug}_K = \operatorname{Aug}_O$ then K = O.

Relation to other knot invariants, continued

It appears that knot contact homology in general is intimately related with the topology of the knot complement.

In a different direction, knot contact homology is also related to the HOMFLY-PT polynomial, a two-variable knot polynomial that generalizes the Alexander and Jones polynomials:

Conjecture

The augmentation polynomial encodes a specialization of the HOMFLY-PT polynomial, $P_K(a, 1)$.

The motivation for this conjecture comes from physics.

Conifold transition

Gopakumar–Vafa (1998), building on work of Witten: starting with T^*S^3 , pass through the "conifold transition" to obtain a 6-manifold X, the total space of the rank 2 complex vector bundle

$$\mathcal{O}(-1)\oplus\mathcal{O}(-1)$$

$$\downarrow$$

$$\mathbb{CP}^1$$

Conifold transition

Conjecture (Gopakumar–Vafa)

In the large N limit:

SU(N) Chern-Simons theory on S^3 closed topological string theory on X.

Conifold transition and L_K

Ooguri–Vafa (1999): given a knot $K\subset S^3$, follow the Lagrangian L_K through the conifold transition to obtain a Lagrangian

$$\tilde{L}_{\kappa} \subset X$$
.

Conifold transition and L_K

Conjecture (Ooguri-Vafa)

In the large N limit:

SU(N) Chern–Simons theory for $K\subset S^3$ \downarrow open topological string theory for $\tilde{L}_K\subset X$.

Conifold transition and L_K

Checked for unknot, some torus knots.

Slightly more mathematical statement:

Chern–Simons knot invariants for
$$K \subset S^3$$
 (e.g. Jones polynomial)

open Gromov–Witten invariants for $\tilde{L}_K \subset X$.

Mirror manifold

Aganagic–Vafa (2012) propose a "generalized Strominger–Yau–Zaslow conjecture" that uses $\tilde{L}_K \subset X$ to produce a mirror to X.

Conjecture (Aganagic-Vafa)

The pair (X, \tilde{L}_K) produces a mirror Calabi–Yau 3-fold to X,

$$X_K = \{(u, v, x, p) \mid uv = \mathbf{A}_K(e^x, e^p, Q)\}$$

$$\subset \mathbb{C}^4.$$

Here Q is a parameter measuring the complexified Kähler class of \mathbb{CP}^1 and \mathbf{A}_K is a three-variable polynomial.

The mirror and knot invariants

Topological motivation

The dashed arrows use string-theoretic arguments of Gukov–Schwarz–Vafa (2004) and others.

Relation to physics

Physics and the augmentation polynomial

Conjecture (Aganagic–Ekholm–N.–Vafa 2012)

The two polynomials \mathbf{A}_K and Aug_K are equal for all knots K.

This would imply that the augmentation polynomial $\operatorname{Aug}_{K}(\lambda, \mu, U)$ is at least as strong as many other known knot invariants.

Currently: a great deal of circumstantial evidence for this conjecture, but no proof.

Summary of knot invariants

Thanks!

For further reading:

- T. Perutz, The symplectic topology of cotangent bundles, article in the March 2010 EMS Newsletter
- L. Ng, Conormal bundles, contact homology, and knot invariants, math/0412330
- T. Ekholm and J. Etnyre, Invariants of knots, embeddings and immersions via contact geometry, math/0412517
- L. Ng, A topological introduction to knot contact homology, forthcoming
- Another forthcoming survey paper?

