

Math 262 Homework 4—due Tuesday December 2

Fall 2008

1. (a) Let E be a line bundle over a manifold M , that is, a vector bundle with fiber \mathbb{R} . Say that E is *trivial* if it is isomorphic to the trivial line bundle $M \times \mathbb{R}$ over M . Prove that E is trivial if and only if there is a section $s : M \rightarrow E$ that is nowhere zero (i.e., for all $x \in M$, $s(x) \neq 0$ in $\mathbb{R} \cong E_x$).
- (b) Let E be the “Möbius line bundle” over S^1 discussed in class: if we cover S^1 by two open sets U_0, U_1 as usual, then E is the vector bundle over S^1 with fiber \mathbb{R} for which the transition function g_{01} is 1 on one component of $U_0 \cap U_1$, -1 on the other. Prove that E is not isomorphic (as a vector bundle) to the trivial line bundle over S^1 .
2. (This is a fact that we’ve used several times in class.) Let $(K^{*,*}, \delta, d)$ be a double complex; as usual, this produces a singly graded complex (K^*, D) with $D = \delta + (-1)^i d$ on $K^{i,j}$. Define the mirror complex $(\bar{K}^{*,*}, \bar{\delta}, \bar{d})$ by $\bar{K}^{i,j} = K^{j,i}$ for all i, j and $\bar{\delta}(x) = d(x)$ and $\bar{d}(x) = \delta(x)$ for all $x \in \bar{K}^{*,*} = K^{*,*}$. This also produces a singly graded complex (\bar{K}^*, \bar{D}) with $\bar{D} = \bar{\delta} + (-1)^i \bar{d}$ on $\bar{K}^{i,j}$. Prove that $H_D^*(K) \cong H_{\bar{D}}^*(\bar{K})$.
3. Bott & Tu Exercise III.14.11, page 163. (To clarify, the exercise ends before the paragraph “We say that...”.)
4. (Hands-on spectral sequences.) Let $(K^{*,*}, \delta, d)$ be the double complex of $\mathbb{Z}/2$ -vector spaces defined as follows. A basis for $K^{*,*}$ is given by 12 generators $v^{0,1}, v^{0,2}, v_1^{1,0}, v_2^{1,0}, v_1^{1,1}, v_2^{1,1}, v_3^{1,1}, v^{1,2}, v^{2,0}, v_1^{2,1}, v_2^{2,1}, v^{2,2}$, where the superscript denotes the bigrading; e.g., $K^{2,1}$ is the 2-dimensional vector space over $\mathbb{Z}/2$ generated by $v_1^{2,1}$ and $v_2^{2,1}$. The differentials are given by
$$\delta(v^{0,1}) = v_3^{1,1}, \quad \delta(v_2^{1,0}) = v^{2,0}, \quad \delta(v_1^{1,1}) = \delta(v_2^{1,1}) = v_1^{2,1}, \quad \delta(v^{1,2}) = v^{2,2}$$
and $\delta = 0$ on all other generators;
$$d(v^{0,1}) = v^{0,2}, \quad d(v_1^{1,0}) = v_3^{1,1}, \quad d(v_2^{1,0}) = v_1^{1,1}, \quad d(v^{2,0}) = v_1^{2,1}, \quad d(v_2^{2,1}) = v^{2,2}$$
and $d = 0$ on all other generators. (You can check that $d\delta = \delta d$ if you like.)
 - (a) Calculate $H_D^*(K)$ directly from the definition $D = \delta + (-1)^i d$.
 - (b) Calculate the spectral sequence for K ; that is, if the spectral sequence degenerates at the E_r term, then calculate $(E_1^{*,*}, d_1), (E_2^{*,*}, d_2), \dots, (E_r^{*,*} = E_\infty^{*,*}, d_r = 0)$. Use this to recalculate $H_D^*(K)$.
 - (c) Calculate the spectral sequence $\{(E'_r, d'_r)\}$ for K . (Recall that this is the “alternate” spectral sequence for K , obtained by using the spectral sequence for \bar{K} .) Hint: to compute d_2 , use your previous calculation of $H_D^*(K)$.
5. Bott & Tu exercise III.14.22.1, page 173. (Of course, use spectral sequences here, not other techniques.)