Math 411—Groups 101 Fall 2017

Definition 1 *A group* is a set *G* with a binary operation $\cdot : G \times G \rightarrow G$ satisfying the following *properties:*

- **associativity**: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in G$;
- *identity: there is an element* $1 \in G$ *such that* $a \cdot 1 = 1 \cdot a = a$ for all $a \in G$;
- *inverse:* for any $a \in G$, there is an element $b \in G$ (the *inverse* of a) such that $a \cdot b = b \cdot a = 1$.

It is easy to check that in a group, the identity element is unique, and there is a unique inverse of any element $a \in G$; the inverse is written a^{-1} , and the inverse of 1 must be 1. Examples of groups:

- the trivial group, consisting of a single element 1 with $1 \cdot 1 = 1$;
- $(\mathbb{Z}, +)$, the integers under the operation of addition;
- \bullet $(\mathbb{Z}^n, +)$, the set of *n*-tuples of integers, under the operation of vector addition;
- $(\mathbb{Z}/m, +)$, the set of integers mod m for some fixed integer m, under the operation of addition.

All of these groups are **abelian**, which is to say that $a \cdot b = b \cdot a$ for all $a, b \in G$. Not all groups are abelian though. For instance, $GL_n(\mathbb{R})$, the group of invertible $n \times n$ matrices with real entries under the operation of matrix multiplication, is not commutative for $n \geq 2$.

Definition 2 *A homomorphism* between two groups G, H is a map $\phi : G \rightarrow H$ for which $\phi(g_1 \cdot g_2) = \phi(g_1) \cdot \phi(g_2)$ for all $g_1, g_2 \in G$.

It follows from the definition that any homomorphism ϕ must satisfy $\phi(1) = 1$ and $\phi(g^{-1}) = (\phi(g))^{-1}$ for all $g \in G$. Also, if $\phi : G \to H$ and $\psi : H \to J$ are homomorphisms, then $\psi \circ \phi : G \to J$ is a homomorphism as well.

Definition 3 *An isomorphism between two groups* G, H *is a homomorphism that is also a bijection.*

It follows from the definition of isomorphism that if $\phi : G \to H$ is an isomorphism, then the inverse map ϕ^{-1} : $H \to G$ is also an isomorphism. Two groups are **isomorphic** if there exists an isomorphism between them. Note that the identity map from a group G to itself is an isomorphism.