Math 411—Notation and Conventions Fall 2017

- " \subset " = " \subseteq ": $A \subset B$ means that for all $x \in A$, $x \in B$. Thus if $A \subset B$ and $B \subset A$, then A = B.
- Complement: $X \setminus A = X A = \{x \mid x \in X \text{ and } x \notin A\}$. Note that it is not necessary that $A \subset X$.
- Distributive laws and DeMorgan's laws for sets:

$$A \cup \left(\bigcap_{i} B_{i}\right) = \bigcap_{i} (A \cup B_{i})$$
$$A \cap \left(\bigcup_{i} B_{i}\right) = \bigcup_{i} (A \cap B_{i})$$
$$A \setminus \left(\bigcup_{i} B_{i}\right) = \bigcap_{i} (A \setminus B_{i})$$
$$A \setminus \left(\bigcap_{i} B_{i}\right) = \bigcup_{i} (A \setminus B_{i}).$$

- For a map *f* : *X* → *Y*, and subsets *A* ⊂ *X* and *B* ⊂ *Y*, the image of *A* is *f*(*A*) = {*f*(*x*) | *x* ∈ *A*} ⊂ *Y*, and the inverse image of *B* is *f*⁻¹(*B*) = {*x* | *f*(*x*) ∈ *B*} ⊂ *X*. A superscript ⁻¹ will always mean inverse in the sense of maps, not in the sense of reciprocals.
- ∀ = "for all"; ∃ = "there exist(s)"; →= "injective (one-to-one) map"; →= "surjective (onto) map".
- \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers.
- Intervals in the real line: $(a,b) = \{x \mid a < x < b\}; [a,b] = \{x \mid a \le x \le b\}; [a,b] = \{x \mid a \le x < b\}; (a,b] = \{x \mid a < x \le b\}.$
- Balls in \mathbb{R}^n : $B(x_0, r) = \{x \in \mathbb{R}^n \mid ||x x_0|| < r\}; \overline{B}(x_0, r) = \{x \in \mathbb{R}^n \mid ||x x_0|| \le r\}.$
- "A is a necessary condition for $B'' = "B \Rightarrow A''$; "A is a sufficient condition for $B'' = "A \Rightarrow B''$; "A is a necessary and sufficient condition for $B'' = "A \Leftrightarrow B''$.
- TFAE = "the following are equivalent", i.e., each condition is a necessary and sufficient condition for the others.
- A set *A* is *countable* if there is an injective map $A \hookrightarrow \mathbb{Z}$. \mathbb{Q} is countable while \mathbb{R} and \mathbb{C} are not.