
TOPICS IN HIGH-DIMENSIONAL PROBABILITY

PROBLEM SETS

(Last updated: April 24, 2024)

• For each set, write up solutions for at least 5 exercises. Your grade will be based on your best 5.
• You are welcome to collaborate with other students. If you do so, you must list your collaborators

at the top of your writeup.
• It is okay to use a result established in an earlier exercise even if you aren’t writing that one up.
• Problems will be added as we proceed through the course (I may for instance need to relegate a

proof I had planned to present in class to the problem sets.)
• “Vershynin Exercise ...” refers to exercises from Vershynin’s text (linked in the course syllabus).
• Updates and corrections are in blue.

Notation: As in the lectures, C, c, c′ etc. denote positive, finite constants, independent of all parameters
unless otherwise noted, and their value may vary from line to line. For a, b ∈ R, a = O(b) and a . b mean
|a| ≤ Cb for some absolute constant C. For a, b > 0, a & b means b . a. A random variable ξ ∈ R is
said to be standardized if Eξ = 0 and Eξ2 = 1. In asymptotic notation, dependence of implicit constants
on parameters is indicated with subscripts – for instance, a = Oq(b) and a .q b mean that |a| ≤ Cb for a
constant C that may depend on the parameter q.

1. Problem set 1 (due Feb 8th)

Exercise 1.1. Let X ∈ Rn be an isotropic random vector – that is, a vector X = (X1, . . . , Xn) with
EXi = 0 for each i and covariance matrix EXXT = In (the n× n identity matrix).

(a) Show that for any deterministic real matrix M with n columns, we have

E‖MX‖2 = ‖M‖2HS (1.1)

where ‖M‖HS = (Tr(MTM))1/2 = (
∑

i,jM
2
i,j)

1/2 is the Hilbert–Schmidt norm of M (also known as

the Frobenius norm).
(b) Use (1.1) to prove the parallelogram law in Rn – that the sum of squared lengths of the n2n−1 edges

of an n-dimensional parallelepiped is equal to the sum of squared lengths of the 2n−1 diagonals.
(c) Show that for X ∈ Rn an isotropic vector and V ⊂ Rn a subspace (deterministic, or random and

independent of X with dim(V ) deterministic) we have Edist(X,V )2 = n− dim(V ).

Exercise 1.2 (Equivalence of concentration about the mean and median). Recall that m ∈ R is a median
for a real-valued random variable if

P(X ≤ m) ≥ 1/2 and P(X ≥ m) ≥ 1/2.

(a) Show that any real random variable X has at least one median, and that the set of all medians of X
is a closed interval. Give an example of a random variable having more than one median value.

(b) Let m be any median of X, and suppose there are a ∈ R and K > 0 such that

P(|X − a| ≥ t) ≤ 2 exp(−t2/K2) ∀t ≥ 0. (1.2)

Show that |a−m| = O(K), and deduce that

P(|X −m| ≥ t) ≤ 2 exp(−ct2/K2) ∀t ≥ 0 (1.3)
1
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for some universal constant c > 0. Deduce from this that |m − EX| = O(K), and that (1.3) holds
with m replaced by EX, for a possibly smaller universal constant c > 0.

(Hint: Note that the bound (1.3) holds trivially for t ≤ K
√

(log 2)/c, so by shrinking c we may
assume without loss of generality that t ≥ CK for any fixed constant C > 0 as large as we please.)

(c) Show that if (1.2) holds then Var(X) = O(K2). Deduce that if X ≥ 0 almost surely, then (1.3) holds

with m replaced by (EX2)1/2, for a possibly smaller universal constant c > 0.

Exercise 1.3 (Concentration of degrees in random graphs). Vershynin Exercises 2.4.2, 2.4.3, 2.4.4, 2.4.5

Exercise 1.4 (Equivalent characterizations of sub-exponential tails). Vershynin Exercises 2.7.2, 2.7.4

Exercise 1.5 (Sub-Gaussian vectors have large support). Vershynin Exercise 3.4.5

Exercise 1.6 (Gaussian concentration from isoperimetry). The isoperimetric theorem for n-dimensional
Gauss space (i.e. Rn equipped with the Euclidean distance d2(x, y) = ‖x−y‖2 and the standard Gaussian
measure γn) states that for any m ∈ (0, 1) and r > 0, among all Borel sets A ⊂ Rn of measure γn(A) = m,
the ones that minimize γn(Ar) are half-spaces, i.e. sets of the form Hu,a = {x ∈ Rn : 〈x, u〉 ≤ a} for some
u ∈ Sn−1 and a ∈ R (recall the notation Ar := {x ∈ Rn : d2(x,A) ≤ r} for the r-widening of A). This is
to be compared with the case of Lebesgue rather than Gaussian measure, where the minimizers are balls.
Use this fact to show that for any 1-Lipschitz function f : Rn → R, f(G)−Ef(G) is K-sub-Gaussian with
K = O(1), where G ∼ N(0, In) is a standard Gaussian vector. (You may find a result from Exercise 1.2
helpful for this.) Bonus: find the optimal value of K.

Exercise 1.7 (Concentration for permutations and random regular graphs). Let Sn be the symmetric
group of permutations on [n] = {1, . . . , n} (i.e. bijections σ : [n] → [n] with group multiplication given
by composition of functions). A label i ∈ [n] is a fixed point of σ ∈ Sn if σ(i) = i. Recall that τ ∈ Sn is a
transposition if all but two elements i 6= j of [n] are fixed points (thus σ(i) = j and σ(j) = i). Write τij
for the transposition that exchanges i and j.

(a) Suppose F : Sn → R has the property that

|F (σ ◦ τij)− F (σ)| ≤ b ∀σ ∈ Sn , 1 ≤ i < j ≤ n (1.4)

for some b > 0. Show that if π is a uniform random element of Sn, then F (π) − EF (π) is O(b
√
n)-

sub-Gaussian.
(b) For n, d ∈ N, the permutation model for a random 2d-regular multigraph is a graph with labeled

vertex set [n] and with (undirected) edges determined by d independent uniform random permutations
π1, . . . , πd ∈ Sn as follows. Letting A be the n × n symmetric matrix with entry Aij equal to the
number of edges connecting i and j, we have

Aij =
d∑

k=1

1πk(i)=j + 1πk(j)=i.

Or, in terms of the permutation matrices P
(k)
ij = 1πk(i)=j we have A =

∑d
k=1 P

(k) + (P (k))T. Thus

every vertex has 2d neighbors, counting multiplicity. (This is a multigraph since it allows for multiple
edges connecting a fixed pair of vertices, and also allows self-loops, though when d = o(n) most edges
will not occur in this way with high probability (optional exercise!).) For fixed disjoint sets U, V ⊂ [n]
of vertices, let e(U, V ) be the number of edges with one endpoint in U and the other in V (counting

multiplicity). Show that e(U, V )− 2d
n |U ||V | is O(

√
d|U |)-sub-Gaussian.

(c) (Optional). Prove a Bernstein-type tail

P
(∣∣e(U, V )− 2d

n |U ||V |
∣∣ ≥ t) ≤ 2 exp(− ct2

d|U ||V |
n + t

) ∀t ≥ 0. (1.5)

For what ranges of t and |V | does this improve on the result of part (b)?
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Remark: One should compare this random graph with the Erdős–Rényi random graph Gn,p from Ex-
ercise 1.3, where each pair {i, j} ⊂ [n] is included as an edge independently with probability p. Taking
p = 2d/(n− 1), the degree of each vertex is binomially distributed with expectation 2d. You can show the
same results from (b,c) hold for this model by easier arguments!

Exercise 1.8. Recall the following important concentration result of Talagrand:

Theorem 1.1 ([Tal96]). Let X = (ξ1, . . . , ξn) be a vector of independent random variables with |ξi| ≤ 1
a.s. for each i ∈ [n], and let f : Rn → R be a convex function that is 1-Lipschitz under the Euclidean
norm. Then for any median m of f(X) and any t ≥ 0, we have

P(|f(X)−m| ≥ t) ≤ 4 exp(−t2/16).

In particular, f(X)−m is O(1)-sub-Gaussian (and so is f(X)− Ef(X) by the result of Exercise 1.2).

(a) Use Theorem 1.1 to prove the generalized statement that if the components of X are almost-surely
bounded by some B <∞, and f is convex and L-Lischitz, then for any median a of f(X),

P(|f(X)− a| ≥ t) ≤ 4 exp(− t2

16B2L2
) ∀t ≥ 0. (1.6)

(b) Show that if ξ is K-sub-Gaussian, then for any β > 0,

E exp(
1

2K2
ξ2 I(|ξ| > βK)) ≤ 1 + 2 exp(−β2/2). (1.7)

(c) Show that if we relax the boundedness assumption in Theorem 1.1 to the assumption that the variables
ξi are all K-sub-Gaussian, then f(X)−m is O(K

√
log n)-sub-Gaussian. (From Exercise 1.2 the same

holds for f(X)− Ef(X).)
(Hint: split X = X>+X≤, with X≤ having entries ξj I(|ξj | ≤ CK

√
log n) for some constant C > 0,

and use part (b) to control the event that ‖X>‖2 exceeds t/4, say.)

Exercise 1.9 (Applying Talagrand’s inequality). .

(a) Let X = (ξ1, . . . , ξn) ∈ Rn be a random vector with independent standardized components ξi satisfying
|ξi| ≤ B almost surely, and let V be a subspace of Rn (deterministic or random and independent of
X) of dimension d. Show that dist(X,V )−

√
n− d is O(B)-sub-Gaussian.

(Hint: A result from Exercise 1.2 may be helpful for this.)
(b) Let X be an n×n matrix with entries ξij that are iid copies of a standardized random variable ξ with
|ξ| ≤ B almost surely for some fixed B <∞. Use the Bai–Yin law (that 1√

n
‖X‖op → 2 in probability,

where ‖X‖op := supu∈Sn−1 ‖Xu‖2) and Talagrand’s inequality to show that for any fixed ε > 0,

P(‖X‖op > (2 + ε)
√
n) ≤ 2 exp(−cε2n/B2)

for all n sufficiently large.
(c) (Bonus) More generally, show that if X is as in part (b), then for each 1 ≤ k ≤ n we have that for

any fixed ε > 0,
P(σk(X) > (2 + ε)

√
n) ≤ 2 exp(−cε2kn/B2)

for all n sufficiently large (recall σk(X) is the kth largest singular value of X).

Exercise 1.10 (Maurey’s empirical method for constructing nets). For p ∈ [1,∞] we denote the unit
`p-ball in Rn by Bnp . That is, Bnp = {v ∈ Rn :

∑n
i=1 |vi|p ≤ 1}. For p = 2 we generally drop the subscript.

The set of r-sparse unit vectors in Rn is denoted

Sn,r = {u ∈ Sn−1 : | supp(u)| ≤ r}. (1.8)

(a) Let w1, . . . , wm ∈ Rn be m points in the cube Bn∞, i.e. ‖wi‖∞ ≤ 1 for each i, and let T be their convex
hull. For a given y =

∑m
k=1 αkwk ∈ T , let Y1, . . . , YN be iid vectors in {w1, . . . , wm} with distribution∑m

k=1 αkδwk
(so P(Yi = wk) = αk for each i, k). With Y N = 1

N

∑N
i=1 Yi the sample mean, show that

for any ε > 0,
P(‖y − Y N‖∞ > ε) ≤ 2n exp(−cε2N).

(Hoeffding’s inequality will be useful for this.)
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(b) Deduce that T can be covered by exp(O(ε−2(log n)(logm))) translates of ε ·Bn∞ with centers in T (i.e.
T has an ε-net under the `∞ metric of size exp(O(ε−2(log n)(logm)))).

(c) Let H be an n × n matrix with entries bounded by 1. With Sn,r as in (1.8), show that Sn,r ⊂√
rBn1 , and use this to construct an ε-net for HSn,r = {Hu : u ∈ Sn,r} under the `∞ metric of size

exp(O(ε−2r(log n)2)). (Hint: Note that Bn1 is the convex hull of the 2n signed standard basis vectors
±e1, . . . ,±en.)

Commentary: This construction of a net for sparse vectors was an important part of proofs in [RV08,
Bou14] that m row vectors sampled independently and uniformly from a matrix H having orthogonal rows
with bounded entries (such as discrete Fourier matrices or Hadamard matrices) form an RIP matrix with
high probability if m ≥ Crε−C(log n)C .

2. Problem set 2 (due Mar 7th)

Exercise 2.1 (Covering and packing numbers). Vershynin Exercises 4.2.5, 4.2.9, 4.2.10.

Exercise 2.2 (Bounding the norm of symmetric matrices). Vershynin Exercises 4.4.3, 4.4.4; then read
Sections 4.4.2 and 4.6 (in class we followed the approach sketched in Exercise 4.6.4).

Exercise 2.3 (Spectral clustering). Vershynin Exercise 4.7.6.

Exercise 2.4. The Lévy concentration function of a random variable X ∈ R is defined as

L(X, t) := sup
a∈R

P(|X − a| ≤ t) , t ≥ 0. (2.1)

Bounds on L(X, t) are known as anticoncentration or small-ball estimates.

(a) Show that if X is standardized (i.e. has mean 0 and variance 1), then

L(X, 14E|X|) ≤ 1− c0(E|X|)2 (2.2)

for some absolute constant c0 > 0. Show this bound is sharp in the sense that for arbitrarily small
ε > 0 there is a standardized random variable X with E|X| ≤ ε and for which the reverse of the
above inequality holds (for some possibly modified value of c0 – you don’t need to find the sharp
constant).

(b) Show that if we further assume E|X|q ≤ A for some q > 2 and A <∞ then

L(X, 0.99) ≤ 1− c1 (2.3)

for some c1 > 0 depending only on q and A. (Thus, a mild concentration assumption – namely,
the moment bound E|X|q ≤ A – is enough to guarantee some amount of anticoncentration for a
standardized variable X.)

(Hint: use (or adapt the proof of) the Paley–Zygmund inequality.)

Exercise 2.5 (Anti-concentration from Berry–Esseen). Recall the following:

Theorem 2.1 (Berry–Esseen theorem for non-identically distributed summands). Let ζ1, . . . , ζn be inde-

pendent centered random variables with E|ζi|3 < ∞ for each i ∈ [n], set S = (
∑n

i=1 ζi)/
√∑n

i=1 Eζ2i . and

let g be a standard Gaussian variable. For any t ∈ R we have

|P(S < t)− P(g < t)| .
∑n

i=1 E|ζi|3(∑n
i=1 Eζ2i

)3/2 .
Using the above result, show that if X = (ξ1, . . . , ξn) is uniform in {−1, 1}n and u ∈ Sn−1 is a fixed

unit vector satisfying
n∑
i=1

u2i 1|ui|≤b/
√
n ≥ a2
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then

L(〈X,u〉, t) . t/a ∀t ≥ b√
n

where the Lévy concentration function was defined in (2.1). Thus, although 〈X,u〉 is a discrete random

variable, it effectively has bounded density at scales� n−1/2 if u has a constant proportion of its `2 mass
on coordinates of size O(1/

√
n) (a property that holds for generic u ∈ Sn−1).

(Hint: condition on variables ξi for which ui is large.)

Exercise 2.6 (Tensorization of Anticoncentration)). The Lévy concentration function for a random vector
X ∈ Rd is defined

L(X, t) := sup
x0∈Rd

P(‖X − x0‖2 ≤ t) , t ≥ 0 (2.4)

generalizing (2.1) for the case d = 1. Suppose X = (ξ1, . . . , ξd) has independent components.

(a) Show that if L(ξi, a) ≤ b for some a > 0 and b ∈ (0, 1) and all i ∈ [n], then L(X, c
√
d) ≤ exp(−cd)

for some c > 0 depending only on a, b.
(b) Show that if L(ξi, ε) ≤ Lε for all ε ≥ ε0 and i ∈ [n], then L(X, ε

√
d) ≤ O(Lε)d for all ε ≥ ε0.

(Hint: after fixing x0, you can control the event that a sum S of independent random variables is small
by bounding an inverse exponential moment E exp(−λS) for some λ > 0.)

Exercise 2.7 (Lower bounds for most singular values).

(a) Let M be an n × n invertible square matrix with real or complex entries. Denote its rows and
columns by rowi(M), colj(M). For each i ∈ [n] let V(i) be the span of {colj(M) : j ∈ [n]\{i}} (that

is, all but the ith column). Prove that ‖ rowi(M
−1)‖2 = dist(coli(M), V(i))

−1. (Hint: consider the

ith row of the equation M−1M = I.)
(b) Deduce the inverse second moment identity : if M is an m × n matrix with complex entries and

m ≥ n, then
n∑
i=1

1

σi(M)2
=

n∑
i=1

1

dist(coli(M), V(i))2
.

(Hint: you can argue to reduce to the square case m = n by projecting the columns to their span.)
(c) Show that if X is an n× (n− k) matrix with independent standardized entries ξij almost-surely

bounded by B <∞, then

P
( ⋂

1≤i≤n−k

{
dist(Xi, V(i)) ≥ 1

2

√
k
})
≥ 1− ne−ck/B2

(2.5)

where Xi is the ith column of X and V(i) is the span of the remaining n− k − 1 columns.
(d) Use the Courant–Fisher min-max formula to prove that if M is an m × n matrix with complex

entries, and M ′ is obtained by removing ` columns from M , then σi(M
′) ≤ σi(M) for every

1 ≤ i ≤ n− ` (where we label singular values in non-increasing order).
(e) Show that if X is an n×n matrix with independent standardized entries ξij almost-surely bounded

by B <∞, then for any k ≤ n,

P
( ⋂
k≤i≤n

{
σn−i+1(

1√
n
X) ≥ c in

})
≥ 1− ne−ck/B2

(2.6)

(where the constant c > 0 may differ from the one in part (c)).
Note this is consistent with the asymptotic Marchenko–Pastur law (also known the quarter-

circular law in the square case), which says that the proportion of singular values of 1√
n
X lying in

a fixed interval I ⊂ R+ converges to 1
π

∫
I

√
4− x2dx, so we would expect the ith smallest singular

value of 1√
n
X to be of size Θ(i/n). The above shows this holds as a lower bound with high

probability for all but the O(B2 log n) smallest singular values.
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Exercise 2.8. (In this and the following exercise we explore arguments bounding the minimal singular
value of square matrices with entries of bounded density that completely avoid the use of nets; in particular
they require no a priori control on the norm.)

(a) Show that for any m× n random matrix M with n ≤ m and any t > 0,

P(σn(M) < t) ≤
n∑
j=1

P(dist(colj(M), V(j)) < t
√
n)

where colj(M) is the jth column of M and V(j) is the span of the n − 1 columns of M with the
jth column left out.

(b) Let X ∈ Rm have independent components ξj . Show that for any nonzero v ∈ Rm and any s > 0,

L(〈X, v〉, s) ≤ min
i∈[m]:vi 6=0

L(ξi, s/|vi|) .

(c) Let n ≤ m. Show that If X is an m× n matrix with independent entries having density bounded
by L, then

P(σn(X) < t) ≤ 2Ltm1/2n3/2

for all t > 0. (While this bound loses a factor n3/2 over the optimal bound whenX is a standardized
n×nGaussian matrix, say, (see the exercise below) the upshot is that we have made no assumptions
on the means or variances of X, let alone whether these exist. A bound of this form was used in
the study of the spectrum of non-Hermitian heavy-tailed matrices in [BCC11]; see also [BC12].)

(Hint for parts (a) and (c): given a unit vector u ∈ Sn−1, we can always find a component of size at
least 1/

√
n (why?).)

Exercise 2.9 (Optimal bound on σn for square Gaussian matrices). Let G be an n × n matrix with
independent standardized Gaussian entries.

(a) Show that for any fixed v ∈ Sn−1 and any t > 0, P(‖G−1v‖2 > 1/t) . t. (Hint: use the fact that
the distribution of G is invariant under multiplication on the left or right by orthogonal matrices.)

(b) Show that for any invertible n × n matrix M and any v ∈ Sn−1, letting u1 ∈ Sn−1 be such that
‖M−1u1‖2 = ‖M−1‖op (thus u1 is the first right-singular vector of M−1) we have

‖M−1v‖2 ≥ ‖M−1‖op|〈v, u1〉|.
Deduce from this and part (a) that for v ∈ Sn−1 uniform random and independent of G,

P
(
‖G−1‖op > 1/t , |〈v, u1〉| ≥

1√
n

)
. t
√
n

for any t > 0, where u1 is the first right-singular vector of G−1.
(c) Conclude that P(σn(G) < t) = P(‖G−1‖op > 1/t) . t

√
n for all t > 0. (Note it follows from part

(c) of the previous exercise that P(σn(G) = 0) = 0, i.e. G is invertible almost surely, though there
are easier ways to see this!)

Commentary: A variant of this argument shows the same holds for M+G for any fixed n×n matrix M
– it could even have norm n100; see the original paper [SST06], where it was used to analyze the “smoothed
complexity” of algorithms involving small noisy perturbations of a fixed matrix. (Contrast with our need
to have ‖X‖op = O(

√
n) with high probability in our treatment for general entry distributions.) A similar

result for symmetric Gaussian matrices was used to study the localization for eigenvectors of random band
matrices in [APS+17,PSSS19]. This has been conjectured to extend to random matrices with independent
entries of bounded density [Vu]. The conjecture was established in the affirmative under some additional
tail conditions on the entry distribution in [Tik20].

Exercise 2.10 (Symmetrization for suprema). Vershynin Exercise 7.1.9

Exercise 2.11 (Multivariate Gaussian integration by parts). Vershynin Exercise 7.2.6
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3. Problem set 3 (due April 8th)

Exercise 3.1 (Sudakov–Fernique inequality). Vershynin 7.2.12

Exercise 3.2 (Gordon’s inequality and the smallest singular value). Vershynin 7.2.14 and 7.3.4

Exercise 3.3 (Properties of the Gaussian width). Vershynin 7.5.3, 7.5.4, 7.5.11

Exercise 3.4 (Tail bounds from chaining). Vershynin 8.1.7 and 8.5.6

Exercise 3.5 (Non-sharpness/sharpness of Dudley’s bound and γ2-functional). Vershynin 8.1.12, 8.5.2

Exercise 3.6 (Symmetrization for empirical processes). Exercise 17.3 in the class notes.

Exercise 3.7 (Supremum of Boolean empirical processes). Exercises 17.4 and 17.5 in the class notes.

4. Problem set 4 (due May 2nd)

Exercise 4.1 (Lq-Poincaré inequalities). [vH, Problem 8.5]

Exercise 4.2 (Concentration for non-Lipschitz functions). [vH, Problem 8.6]

Exercise 4.3 (Escape from small sets). Let p ∈ (0, 12), and equip X = {0, 1}n with the product
Bernoulli(p) measure µp. Consider the continuous-time Markov process (X(t))t≥0 on X where to each co-
ordinate i ∈ [n] we associate an independent Poisson clock of rate 1 (that is, a Poisson process (Ni(t))t≥0),
and every time a clock “ticks” (i.e. every time t when Ni(t) jumps in value) we replace the associated
coordinate Xi(t) with an independent Bernoulli(p) variable. This process has stationary distribution µp
and is reversible with respect to this measure. See Example 8.14 and Section 2.3.2 in [vH]. We consider
the process (X(t))t≥0 with X(0) ∼ µp; thus, X(t) ∼ µp for all t ≥ 0.

(a) Show that for any set A ⊂ X , we have

P(X(t) ∈ A|X(0) ∈ A) ≤ µp(A)0.49 (4.1)

for all t ≥ C log(1/p), where C > 0 is a universal constant (the same holds with 0.49 replaced by any
other fixed constant in (0, 12) after appropriate modification of C).

(Hint: Express P(X(0) ∈ A,X(t) ∈ A) in terms of the indicator function 1A and the semigroup
(Pt)t≥0 associated to the Markov process, and apply Cauchy–Schwarz and hypercontractivity. You
may use the fact from [vH, Exercise 8.3] that the semigroup is hypercontractive with constant c∗p =
1
2(1− 2p)−1 log 1−p

p .)

(b) Show that (4.1) cannot be improved in general; that is, find a set A such that for any p ∈ (0, 12) the
inequality is reversed if t < c log(1/p) for an appropriate constant c > 0.

Exercise 4.4 (Tribes function). [vH, Problem 8.9].

Exercise 4.5 (Superconcentration for the BRW [Cha14]). Recall the branching random walk model
defined in the lectures, which we may formulate as follows: Consider a rooted binary tree of depth n;
thus, including the root vertex there are 2n+1−1 vertices, 2n of which are leaves at the nth level. To each
edge attach an independent standard Gaussian, and for each leaf v let Xv be the sum of the n Gaussians
along the path leading from v back to the root. Let Mn be the maximum of Xv over all 2n leaves v.

(a) Show that the Gaussian Poincaré inequality implies Var(Mn) = O(n).
(b) Prove using Talagrand’s L1 − L2 bound for the Gaussian measure that Mn has variance O(log n).

Exercise 4.6. Exercises 3 and 4 from this blog post.

Exercise 4.7. Exercises 6 and 7 from this blog post.

https://terrytao.wordpress.com/2023/09/30/bounding-sums-or-integrals-of-non-negative-quantities/
https://terrytao.wordpress.com/2023/09/30/bounding-sums-or-integrals-of-non-negative-quantities/
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