
SELECTED TOPICS FROM THE GEOMETRIC THEORY

OF RANDOM MATRICES

NICHOLAS COOK

Abstract. These notes provide an introduction to the geometric approach to
questions in random matrix theory, focusing on three illustrative results for
square random matrices with i.i.d. entries: an upper bound on the operator
norm, an upper bound for the norm of the inverse, and universality of the
distribution of the smallest singular value. The notes were prepared for three
guest lectures I gave at Stanford in Spring quarter of 2017 as part of Amir
Dembo’s graduate-level course on Large Deviations and Random Matrices. The
intended audience is graduate students who have had a course in probability,
though the arguments are elementary.
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1. Introduction and overview

1.1. The geometric approach to random matrix theory. The geometric
theory of random matrices draws on techniques originating from the local theory of
Banach spaces; for further background we refer to [Ver18]. An attractive feature is
that one often get quantitative bounds at finite n that are within a constant factor
of the asymptotic truth, with arguments that are more flexible. For instance, as
we shall see below, for X an n × n matrix with independent uniformly sub-
Gaussian entries one can show the operator norm ‖X‖ is of size O(

√
n) with high

probability, using a simple net argument and concentration; for the specific case
of i.i.d. entries one can obtain the asymptotic ∼ 2

√
n by a much longer argument

using the trace method. Sometimes the geometric methods are even capable of
capturing exact asymptotics: for instance, for an i.i.d. matrix with real Gaussian
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entries one can show E ‖X‖ ≤ 2
√
n using Slepian’s inequality! – cf. [Ver18].

And, as we’ll see in Section 5, they have even been applied to obtain universality
for certain “local” statistics, by a very different approach from the popular heat
flow [EY17] or Lindeberg [Tao19] methods.

1.2. Singular values of non-Hermitian matrices. Let M be an n×n matrix
with complex entries (for simplicity we will mostly work with random matrices
having real-valued entries). The ith singular value of M is defined si(M) =√
λi(M∗M), and we order them from largest to smallest:

s1(M) ≥ · · · ≥ sn(M) ≥ 0.

From the Courant–Fischer minimax formula for eigenvalues of Hermitian matrices,

λi(H) = sup
W⊂Cn:dimW=i

inf
u∈W
〈u,Hu〉

we have

s1(M) =
(

sup
u∈Sn−1

〈u,M∗Mu〉
)1/2

= sup
u∈Sn−1

‖Mu‖ = ‖M‖, (1.1)

and

sn(M) =
(

inf
u∈Sn−1

〈u,M∗Mu〉
)1/2

= inf
u∈Sn−1

‖Mu‖. (1.2)

The last expression is zero if M is not invertible; otherwise, from substituting
u = M−1v/‖M−1v‖ for v ∈ Sn−1 we have

sn(M) = inf
v∈Sn−1

‖MM−1v‖
‖M−1v‖

= ‖M−1‖−1.

The smallest singular value thus provides a quantitative measure of how “well-
invertible” M is.

1.3. Non-Hermitian matrix model. Throughout these notes we let M = (ξij)
denote an n×n matrix whose entries are i.i.d. copies of a centered random variable
ξ of unit variance. In order to avoid some technicalities and get straight to the
main ideas we will assume ξ is almost surely bounded. In fact, in some of the
sections below we will specialize to the i.i.d. sign matrix, for which ξ is uniform on
{−1, 1}. We will occasionally comment on how these assumptions can be relaxed.

The quarter-circular law gives the asymptotics for the empirical distribution of
singular values for M . Specifically, it states that for any fixed 0 ≤ a < b <∞,

1

n

∣∣∣∣{i ∈ [n] :
1√
n
si(M) ∈ [a, b]

}∣∣∣∣→ 1

π

∫ b

a

√
4− x2dx a.s. (1.3)

Assuming the rescaled singular values 1√
n
si(M) are roughly evenly spaced

within the limiting support [0, 2], the quarter-circular law thus suggests that we
should have

s1(M) �
√
n, sn(M) � 1√

n
(1.4)
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with high probability. The quarter-circular law does not imply such estimates
however.1 For instance, (1.3) allows for a proportion o(n) of the rescaled singular
values 1√

n
si(M) diverge to +∞.

The predictions (1.4) turn out to be correct, and we will prove versions of these
estimates below. Specifically,

• In Section 2 we prove an upper tail estimate for the largest singular value,
which implies that s1(M) = O(

√
n) with probability 1−O(e−n).

• In Section 3 we prove a lower tail estimate for the smallest singular value
of the form P(sn(M) ≤ t/

√
n) . t + o(1). In particular, sn(M) ≥ ε/

√
n

with probability 1 − O(ε) for any fixed ε > 0. Our treatment essentially
follows an argument from [RV08].
• In Section 5 we sketch parts of the proof from [TV10a] that

√
nsn(M) in

fact converges in distribution to a random variable with a density.

We will mainly use tools from high dimensional geometry and probability, such
as concentration of measure, small ball estimates, and metric entropy bounds.
These tools often give correct bounds up to constant factors. Sometimes the
correct constants can be obtained by other means with significantly more effort.
For instance, it is known [BS98] that 1√

n
s1(M)→ 2 in probability,2 but the proof

of this result, which is mostly combinatorial, is much more challenging than the
proof of Proposition 2.7 below.

1.4. Notation. We denote the (Euclidean) unit sphere in Rn by Sn−1 and the
unit ball by Bn. ‖·‖ denotes the `2 norm when applied to vectors and the `2 → `2

operator norm when applied to matrices. We denote other `p norms on Rn by
subscripts: ‖x‖p := (

∑n
i=1 |xi|p)(1/p), ‖x‖∞ := maxi∈[n] |xi|. We occasionally

write dist(x, y) := ‖x− y‖.
C, c, c0, c

′, etc. denote absolute constants whose value may change from line to
line. We use the standard asymptotic notation f = O(g), f . g, g & f , all of
which mean that |f | ≤ Cg for some absolute constant C < ∞. f � g means
f . g . f . We indicate dependence of the implied constant C on a parameter α
with subscripts, e.g. f .α g. We will occasionally write f = o(g), which means
f/g → 0 as n → ∞, where n is always the dimension of the random matrix M .
For limits with respect to other parameters we write, e.g., f = oε→0(g). The
use of little-o notation will be purely informal; all of the arguments below can be
made effective.

1It does imply the one-sided estimate s1(M) ≥ (2− ε)
√
n a.s. for any fixed ε > 0

2In fact, under our assumption that the entries are almost surely bounded we have almost sure
convergence. An interleaving argument can be used to show that if the entries only have finite
fourth moment, but we additionally couple the sequence of matrices by taking Mn to be the
top n× n corner of an infinite array of i.i.d. variables, then we retain almost sure convergence –
see [Tao12].
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2. Upper tail for the largest singular value

From (1.1) we can express the upper tail event for the largest singular value as
a union of simpler events:

P(‖M‖ ≥ λ) = P
( ⋃
u∈Sn−1

{
‖Mu‖ ≥ λ

})
. (2.1)

Lemma 2.1 (Upper tail for image of fixed vector). Let u ∈ Sn−1. Then

P
(
‖Mu‖ ≥ K

√
n
)
≤ exp

(
−cK2n

)
for all K ≥ C, where C, c > 0 are absolute constants.

We will use the following standard scalar concentration inequality:

Lemma 2.2 (Azuma–Hoeffding inequality). Let ζ1, . . . , ζn be independent cen-
tered random variables with ‖ζj‖L∞ ≤ aj for each 1 ≤ j ≤ n. Then for any
λ ≥ 0,

P

∣∣∣∣ n∑
j=1

ζj

∣∣∣∣ ≥ λ
 ≤ 2 exp

(
− cλ2∑n

j=1 a
2
j

)
for some absolute constant c > 0.

Proof of Lemma 2.1. Let R1, . . . , Rn denote the rows of M . For each i ∈ [n], from
Lemma 2.2 we have that for all λ ≥ 0,

P(|Ri · u| ≥ λ) ≤ 2 exp

(
− cλ2∑n

j=1 |uj |2

)
= 2 exp

(
−cλ2

)
.

(Here we used our assumption that the entries of M are uniformly bounded.)
Next we convert this tail bound to an exponential moment bound: for α > 0,

E eα|Ri·u|
2

=

∫ ∞
0

P
(
eα|Ri·u|

2 ≥ u
)
du

=

∫ ∞
0

2αλeαλ
2
P(|Ri · u| ≥ λ)dλ

≤ 4α

∫ ∞
0

λ exp
(
(α− c)λ2

)
dλ

≤ C

where we took α = c/2, and C > 0 is some constant. By independence of the
rows of M we obtain

E ec‖Mu‖2/2 ≤ Cn.
Now the claim follows from Markov’s inequality:

P
(
‖Mu‖ ≥ K

√
n
)
≤ Cn exp

(
− c

2
K2n

)
≤ exp

(
− c

4
K2n

)
if K is at least a sufficiently large constant. �
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We will approximate the supremum of u 7→ ‖Mu‖ over the sphere Sn−1 by the
maximum over a finite ε-net :

Definition 2.3 (ε-net). Let S ⊂ Rn and ε > 0. An ε-net for S is a finite subset
Nε ⊂ S such that for all x ∈ S there exists y ∈ Nε with ‖x− y‖ ≤ ε.
Remark 2.4. For ε > 0 let Nε(S) be the minimal cardinality of an ε-net for S. The
numbers {Nε(S) : ε > 0} are called the covering numbers for S, and logNε(S)
is often called the metric entropy of S (at scale ε). Note that logNε(S) is the
number of bits one would need in order to store an “address” for each point in S
that is accurate up to an additive error ε.

Lemma 2.5 (Metric entropy of the sphere). For any ε ∈ (0, 1], there is an ε-net
Nε for Sn−1 of size |Nε| ≤ (3/ε)n.

Proof. We take Nε ⊂ Sn−1 to be an ε-separated subset that is maximal with
respect to the partial ordering of set-inclusion. We first claim that Nε is an ε-net
for Sn−1. Indeed, supposing on the contrary that there exists y ∈ Sn−1 with
‖x − y‖ > ε for all x ∈ Nε, we have that Nε ∪ {y} is ε-separated in Sn−1, which
contradicts maximality.

Now to bound the cardinality of Nε we use a volumetric argument. Let E =
Nε + (ε/2) ·Bn be the ε/2-neighborhood of Nε in Rn, where we use the notation
of set addition and dilation (recall also our notation Bn for the unit ball in Rn).
Since Nε is an ε-separated set it follows that E is a disjoint union of Euclidean
balls of radius ε/2. On the other hand, E is contained in (1 + ε/2) · Bn, the
origin-centered ball of radius 1 + ε/2. It follows that

|Nε|(ε/2)n vol(Bn) ≤ vol(E) ≤
(

1 +
ε

2

)n
vol(Bn)

which rearranges to

|Nε| ≤
(

1 +
2

ε

)n
≤ (3/ε)n

as desired. �

Remark 2.6. A variant of this volumetric argument gives an easy lower bound of
2−n for the maximum density of a sphere packing in Rn (that is, a union of disjoint
balls of radius 1). Despite the efforts of many authors, the best lower bound

remains of the form 2−n+o(n). (The current record, due to Akshay Venkatesh, is
cn log logn · 2−n for a certain sequence of dimensions n [Ven13].)

Proposition 2.7 (Upper tail for the largest singular value). There are constants
C, c > 0 such that

P
(
‖M‖ ≥ K

√
n
)
≤ exp

(
−cK2n

)
for all K ≥ C.

Remark 2.8. The results of [BS98] together with Talagrand’s concentration in-
equality can be used to show that in fact

P
(
‖M‖ ≥ (2 + ε)

√
n
)
≤ C exp

(
−cε2n

)
.
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Proof. Let N be a 1/2-net for Sn−1. By Lemma 2.5 we may take |N | ≤ 6n.
Suppose the event {‖M‖ ≥ K

√
n} holds. Let u ∈ Sn−1 such that ‖Mu‖ = ‖M‖.

There exists v ∈ N such that ‖u− v‖ ≤ 1/2, so

‖Mv‖ ≥ ‖Mu‖ − ‖M(v − u)‖ ≥ ‖M‖ − 1

2
‖M‖ ≥ 1

2
K
√
n.

Thus,

P
(
‖M‖ ≥ K

√
n
)
≤ P

(
∃v ∈ N : ‖Mv‖ ≥ K

2

√
n

)
.

Applying the union bound and Lemma 2.1,

P
(
‖M‖ ≥ K

√
n
)
≤ 6n exp

(
−c′K2n

)
≤ exp

(
−c′′K2n

)
if K is at least a sufficiently large constant. �

3. Lower tail for the smallest singular value

Now we turn to the problem of lower-bounding the smallest singular value
sn(M). Throughout this section we take M to be the i.i.d. sign matrix (i.e. the
ξij are uniform in {−1, 1}). (As it turns out, this is in some sense the most
challenging choice of distribution for the entries.)

The smallest singular value turns out to be much more challenging than the
largest singular value. Indeed, even showing sn(M) 6= 0 with high probability, i.e.
that M is non-singular with probability tending to 1, was a non-trivial result of
Komlós [Kom67].

The goal of this section is to establish the following:

Theorem 3.1 (Lower tail for the smallest singular value). For any t ≥ 0,

P
(
sn(M) ≤ t√

n

)
. t+

1√
n
. (3.1)

This is a weak version of a result of Rudelson and Vershynin from [RV08] giving
the bound O(t+ e−cn) assuming ξ is sub-Gaussian (which holds for the Bernoulli
distribution), building on earlier work of Rudelson [Rud08] and Tao–Vu [TV09].

Remark 3.2 (Singularity probability for Bernoulli matrices). Note that (3.1) gives

a bound O(n−1/2) for the probability that M is singular (i.e. that sn(M) = 0).
This recovers a classic result of Komlós for the i.i.d. sign matrix [Kom67, Kom].
The result of [RV08] gives a bound O(e−cn) for the singularity probability, which
recovers a result of Kahn, Komlós and Szemerédi [KKS95]. An easy lower bound
for P(det(M) = 0) is given by the probability that the first two rows are equal,
which is 2−n. It is a famous conjecture that this is asymptotically the correct base,
i.e. P(det(M) = 0) = (12 + o(1))n. Following a breakthrough approach of Tao and
Vu using tools from additive combinatorics [TV07], the current record now stands
at P(det(M) = 0) ≤ ( 1√

2
+ o(1))n, due to Bourgain, Vu and Wood [BVW10].
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3.1. Partitioning the sphere. We now begin the proof of Theorem 3.1. Recall
from (1.2) that

sn(M) = inf
u∈Sn−1

‖Mu‖.

The key will be to split the sphere into two parts and control the infimum over
each part by different arguments.

Definition 3.3. We denote the support of a vector x ∈ Rn by

supp(x) := {j ∈ [n] : xj 6= 0}. (3.2)

For 0 < θ ≤ n the set of θ-sparse vectors is defined

Sparse(θ) := {x ∈ Rn : | supp(x)| ≤ θ}. (3.3)

For δ, ε ∈ (0, 1), define the set of (δ, ε)-compressible unit vectors to be the ε-
neighborhood in Sn−1 of the δn-sparse vectors:

Comp(δ, ε) := Sn−1 ∩ (Sparse(δn) + ε ·Bn) (3.4)

and the complementary set of (δ, ε)-incompressible unit vectors

Incomp(δ, ε) := Sn−1 \ Comp(δ, ε). (3.5)

In the remainder of the proof we will show, roughly speaking, that for suffi-
ciently small fixed choices of δ, ε,

inf
u∈Comp

‖Mu‖ &
√
n and inf

u∈Incomp
‖Mu‖ & 1√

n

with high probability. Specifically, we will prove the following two propositions:

Proposition 3.4 (Invertibility over compressible vectors). There are sufficiently
small constants δ, ε, c1, c2 > 0 such that

P
(

inf
u∈Comp(δ,ε)

‖Mu‖ ≤ c1
√
n

)
≤ e−c2n. (3.6)

Proposition 3.5 (Invertibility over incompressible vectors). For δ, ε > 0 suffi-
ciently small and for all t ≥ 0,

P
(

inf
u∈Incomp(δ,ε)

‖Mu‖ ≤ t√
n

)
.δ,ε t+

1√
n
. (3.7)

Now to conclude the proof of Theorem 3.1, let δ, ε, c1, c2 > 0 be small constants
such that (3.6) and (3.7) holds. Let t ≥ 0. We may assume t ≤ 1. By the union
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bound,

P
(
sn(M) ≤ t√

n

)
= P

(
inf

u∈Sn−1
‖Mu‖ ≤ t√

n

)
≤ P

(
inf

u∈Comp(δ,ε)
‖Mu‖ ≤ t√

n

)
+ P

(
inf

u∈Incomp(δ,ε)
‖Mu‖ ≤ t√

n

)
. t+

1√
n

+ e−c2n

. t+
1√
n

where in the third line we used that t/
√
n ≤ 1/

√
n ≤ c1

√
n for n sufficiently large.

3.2. Anti-concentration estimates. A central ingredient of our proof of the
upper tail bound for the operator norm in Proposition 2.7 was concentration of
measure, in the form of the Azuma–Hoeffding inequality (Lemma 2.2). It turns
out that to prove lower bounds on the smallest singular value of the square i.i.d.
sign matrix M we will need to apply the dual notion of an anti-concentration
(or “small ball”) estimate. For a scalar random variable Z we define the Lévy
concentration function

L(Z, r) := sup
a∈R

P(|Z − a| ≤ r). (3.8)

We now state two anti-concentration estimates for random walks X · v. The
proofs are deferred to Section 4. The first, Lemma 3.6 below, is a rough form
of the Berry–Esséen theorem, which gives a quantitative comparison between the
distribution of X ·v and a Gaussian. (In fact, Lemma 3.6 readily follows from the
Berry–Esséen theorem, though this is in some sense cheating as the Berry–Esséen
theorem itself is proved by a refined version of the arguments of this section.
Furthermore, Corollary 4.2 opens the way to much stronger anti-concentration
bounds that will be discussed in Section 4.2, and which cannot be deduced from
the Berry–Esséen theorem.)

Lemma 3.6 (Berry–Esséen-type anti-concentration for random walks). Let v ∈
Rn and let X = (ξ1, . . . , ξn) ∈ {−1, 1}n be a vector of i.i.d. uniform signs. Then
for all t ≥ 0,

L(X · v, r) . r + ‖v‖∞
‖v‖

. (3.9)

Lemma 3.6 gives a bound of the form L(X · v, r) . r + o(1) for unit vectors
v with ‖v‖∞ = o(1). However, this bound is trivial for unit vectors v having a
sufficiently large constant amount of mass in one coordinate (such as a standard
basis vector). For such vectors we will use the following crude bound.

Lemma 3.7 (Crude anti-concentration for random walks). Let u ∈ Sn−1 and
let X = (ξ1, . . . , ξn) ∈ {−1, 1}n be a vector of i.i.d. uniform signs. There is a
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constant c0 > 0 such that
L(X · u, c0) ≤ 1/2.

We prove these lemmas in Section 4.

3.3. Compressible vectors. In this subsection we prove Proposition 3.4. We
follow a similar approach to the proof of Proposition 2.7. The following is the
analogue of Lemma 2.1 in our setting.

Lemma 3.8 (Lower tail for image of fixed vector). There is a constant c > 0
such that for any fixed u ∈ Sn−1,

P
(
‖Mu‖ ≤ c

√
n
)
≤ e−cn.

Proof. For t ≥ 0 let

Et = {‖Mu‖ ≤ t
√
n} =

{
n∑
i=1

|Ri · u|2 ≤ t2n

}
.

Let β ∈ (0, 1/2] to be chosen later. On Et we have that |Ri · u| ≤ t/β for at
least (1− β2)n values of i ∈ [n] (from Markov’s inequality). Since the rows of M
are exchangeable, we can spend a factor

(
n

(1−β2)n

)
to assume these are the first

(1− β2)n rows:

P(Et) ≤
(

n

(1− β2)n

)
P

 ∧
1≤i≤(1−β2)n

|Ri · u| ≤ t/β

.
By independence and row exchangeability,

P(Et) ≤
(

n

(1− β2)n

)
P(|R1 · u| ≤ t/β)(1−β

2)n.

Taking t = c0β, by Lemma 3.7,

P(Et) ≤
(

n

(1− β2)n

)
(1− c0)(1−β

2)n =

(
n

β2n

)
(1− c0)(1−β

2)n ≤ (e/β2)β
2ne−c0n/2

where in the last inequality we used the bound
(
n
k

)
≤ (en/k)k. The claim now

follows by taking β a sufficiently small constant (which also fixes t = c0/β). �

Proof of Proposition 3.4. For J ⊂ [n] let SJ denote the set of unit vectors sup-

ported on J . By Lemma 2.5, for each J ∈
([n]
δn

)
there exists NJ an ε-net of SJ of

size |NJ | ≤ (3/ε)|J |. Put

N :=
⋃

J∈([n]δn)

NJ .

For K > 0 write
BK = {‖M‖ ≤ K

√
n}.

Claim 3.9. Let K > 0, δ, ε ∈ (0, 1). Then

BK ∩
{
∃u ∈ Comp(δ, ε) : ‖Mu‖ ≤ εK

√
n
}
⊂
{
∃v ∈ N : ‖Mv‖ ≤ 4εK

√
n
}
.
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We first complete the proof of Proposition 3.4 on the above claim. From Propo-
sition 2.7 we have that P(BK) ≥ 1−e−n if K is a sufficiently large constant. Fixing
such K, it suffices to show

P
(
BK ∩

{
∃u ∈ Comp(δ, ε) : ‖Mu‖ ≤ εK

√
n
})
≤ e−cn. (3.10)

Let ε, δ > 0 to be chosen as sufficiently small constants. From the above claim
and the union bound,

P
(
BK ∩

{
∃u ∈ Comp(δ, ε) : ‖Mu‖ ≤ εK

√
n
})
≤
∑
v∈N

P
(
‖Mv‖ ≤ 4εK

√
n
)
.

(3.11)
Now from Lemma 3.8 we have

P
(
‖Mv‖ ≤ 4εK

√
n
)
≤ e−cn

taking ε = c1/K for a sufficiently small constant c1 > 0. Thus, right hand side of
(3.11) is bounded by

|N |e−cn ≤
(
n

δn

)
(3/ε)ne−cn ≤ exp

(
δn log

C

δε
− cn

)
≤ e−cn/2

taking δ sufficiently small.
It remains to establish Claim 3.9. By definition, for any u ∈ Comp(δ, ε) there

exists w ∈ Sparse(δn) such that ‖u − w‖ ≤ ε. In particular, |1 − ‖w‖| ≤ ε.
Writing w′ = w/‖w‖, it follows that ‖w−w′‖ ≤ ε, and by the triangle inequality

‖u − w′‖ ≤ 2ε. Let J ∈
([n]
δn

)
such that supp(w′) ⊂ J . There exists v ∈ NJ ⊂

N such that ‖w′ − v‖ ≤ ε. By another application of the triangle inequality,
‖u− v‖ ≤ 3ε.

Thus, if BK holds and if u ∈ Comp(δ, ε) is such that ‖Mu‖ ≤ εK
√
n, then

letting v ∈ N such that ‖u− v‖ ≤ 3ε as above, we have

‖Mv‖ ≤ ‖Mu‖+ ‖M(u− v)‖ ≤ εK
√
n+ 3ε‖M‖ ≤ 4εK

√
n.

The claim follows. �

Remark 3.10. It is easy to check by very minor modifications of the above proof,
the conclusion of Proposition 3.4 also holds with M replaced by M (i) for any
i ∈ [n], where M (i) denotes the n − 1 × n matrix obtained by removing the ith
row from M . We will use this fact in the following subsection.

3.4. Incompressible vectors. In this section we establish Proposition 3.5.

Lemma 3.11 (Incompressible vectors are spread). Let u ∈ Incomp(δ, ε).

(1) There exists L0 ⊂ [n] with |L| ≥ δn such that |uj | ≥ ε/
√
n for all j ∈ L0.

(2) There exists L ⊂ [n] with |L| ≥ δn/2 such that |uj | ∈ [ ε√
n
, 2√

δn
] for all

j ∈ L.

Proof. For (1) we take L0 to be the set of the largest δn coordinates of u. Then
uL0 , the projection of u to RL0 , is δn-sparse. If |uj | < ε/

√
n for some j ∈ L0, then
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|uj | < ε/
√
n for all j ∈ [n] \ L0 and so ‖u − uL0‖ < ε. This implies u is within

distance ε of a δn-sparse vector, a contradiction.
Now for (2), since u ∈ Sn−1, |uj | > 2/

√
δn for at most δn/4 values of j ∈ [n]

(by Markov’s inequality). We can thus obtain the desired set L by removing at
most δn/4 bad elements from L0. �

A key challenge for establishing Proposition 3.5 is to deal with the fact that we
are lower bounding an infimum over the uncountable set Incomp(δ, ε). Whereas
in Propositions 2.7 and 3.4 we were able to pass to a finite net and take a union
bound, here we will not have sufficiently strong tail bounds to beat the cost
of such a union bound. (Note that whereas the covering number of Comp(δ, ε)
was essentially exp (nδ log(1/δε)), for Incomp(δ, ε) it is essentially O(1/ε)n, the
covering number of the sphere.)

Instead we will use an averaging argument to reduce to considering the event
that a fixed column of M is close to the span of the remaining columns. This
argument was first used to control the smallest singular value by Rudelson and
Vershynin [RV08]; a similar idea was used by Komlós in the context of the invert-
ibility problem for Bernoulli matrices [Kom].

First we give a näıve version of the argument. Denote the columns of M by
X1, . . . , Xn, and for i ∈ [n] denote Vi := span{Xj : j 6= i}. Suppose our aim is to
control the event that

sn(M) = inf
u∈Sn−1

‖Mu‖ ≤ t√
n

by the event that a dist(Xi, Vi) is small for some i. Let u ∈ Sn−1 be arbitrary.
By the pigeonhole principle there exists i ∈ [n] such that |ui| ≥ 1/

√
n. Since

‖Mu‖ ≥
∥∥∥ProjV ⊥i

(Mu)
∥∥∥, by expanding Mu as

∑n
j=1 ujXj we see that

‖Mu‖ ≥

∥∥∥∥∥∥ProjV ⊥i

 n∑
j=1

ujXj

∥∥∥∥∥∥ = |ui|
∥∥∥ProjV ⊥i

(Xi)
∥∥∥ ≥ 1√

n
dist(Xi, Vi).

Applying the union bound,

P
(

inf
u∈Sn−1

‖Mu‖ ≤ t√
n

)
≤

n∑
i=1

P(dist(Xi, Vi) ≤ t)

= nP(dist(X1, V1) ≤ t) (3.12)

where in the second line we used that the columns of M are exchangeable. How-
ever, the best bound we will be able to achieve below for P(dist(X1, V1) ≤ t) is of

the form . t + n−1/2, so the union bound over n events is too costly. (By using
more advanced Littlewood–Offord bounds such as Theorem 4.3 it is possible to
reduce the term n−1/2 to size e−cn, at which point (3.12) is acceptable after reduc-

ing t, but this leads to a bound of the form sn(M) & n−3/2 with high probability,

which is not the correct scale n−1/2.)
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The following improves on the above näıve argument by specializing to incom-
pressible vectors and using Lemma 3.11.

Lemma 3.12. Let δ, ε ∈ (0, 1) and t ≥ 0. Then

P
(

inf
u∈Incomp(δ,ε)

‖Mu‖ ≤ t√
n

)
≤ 1

δn

n∑
i=1

P
(

dist(Xi, Vi) ≤
t

ε

)
. (3.13)

Proof. For any u ∈ Sn−1, writing Mu =
∑n

j=1 ujXj , we see that for any i ∈ [n],

‖Mu‖ ≥ |ui|‖ProjV ⊥i
(Xi)‖ = |ui| dist(Xi, Vi).

If u ∈ Incomp(δ, ε), by the proof of Lemma 3.11 we have that |ui| ≥ ε/
√
n for all

i ∈ L0 for some L0 ⊂ [n] of size at least δn. Thus,

‖Mu‖ ≥ ε√
n

dist(Xi, Vi)

for all i ∈ L0. Denoting the event on the left hand side of (3.13) by E(t), we have
that on E(t), {dist(Xi, Vi) ≤ t/ε} holds for all i ∈ L0. By double counting,

n∑
i=1

P
(

dist(Xi, Vi) ≤
t

ε

)
≥ δnP(E(t))

and the claim follows. �

Now we conclude the proof of Proposition 3.5. Let δ, ε > 0 be constants to be
taken sufficiently small, and let t ≥ 0. For the remainder of the proof we allow
implied constants to depend on δ, ε. By Lemma 3.12 (adjusting t by a constant
factor) and the fact that the columns of M are exchangeable, it suffices to show

P(dist(X1, V1) ≤ t) . t+
1√
n
. (3.14)

Note that we may assume t is smaller than any fixed constant.
Let G denote the event that for all u ∈ Comp(δ, ε), uTM (1) 6= 0, where M (1)

denotes the n × (n − 1) matrix obtained by removing the first column from M .
By Proposition 3.4 and Remark 3.10, G holds with probability 1 − O(e−cn) if
δ, ε > 0 are sufficiently small constants. Fixing such δ, ε, we may restrict to G for
the remainder of the proof. Note that by independence of X1 from the remaining
columns this restriction does not affect the distribution of X1.

We condition on the columns X2, . . . , Xn to fix the subspace V1, and let v ∈ V ⊥1
be a unit normal vector. In other words, 0 = v∗M (1), so by our restriction to G it
follows that v ∈ Incomp(δ, ε). By Lemma 3.11 there exists L ⊂ [n] with |L| ≥ δn/2
and

ε√
n
≤ |vj | ≤

2√
δn

∀j ∈ L.

Writing vL for the projection of v to the coordinate subspace RL, we have

‖vL‖2 ≥
δn

2

ε2

n
=

1

2
ε2δ, ‖vL‖∞ ≤

2√
δn
.
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Applying Lemma 3.6, we have that for any r ≥ 0,

L(X1 · vL, r) = sup
a∈R

P(|X1 · vL − a| ≤ r) .
r + ‖vL‖∞
‖vL‖

. r +
1√
n
.

Now since |X1 · v| ≤ dist(X1, V1), by conditioning on the variables {ξ1j : j /∈ L}
we find

P(dist(X1, V1) ≤ t) ≤ P(|X1 · v| ≤ t) . t+
1√
n

as desired. This completes the proof of Proposition 3.5, and hence of Theorem 3.1.

4. Anti-concentration for scalar random walks

4.1. The Fourier-analytic approach. In this section we prove Lemmas 3.6 and
3.7, which are estimates on the Lévy concentration function (defined in (3.8)) for
scalar random variables of the form X · v, with X = (ξ1, . . . , ξn) a vector of i.i.d.
uniform Bernoulli signs and v ∈ Rn a fixed vector. In the literature X · v is often
referred to as a random walk with steps vector v. The problem of estimating
the concentration function L(X · v, r) for general random vectors X with i.i.d.
coordinates is a continuous version of the classical Littlewood–Offord problem,
which in its original form was to estimate L(X · v, 0) for the case that the ξj
are uniform random signs. See [TV10b, Chapter 7] and the survey [NV13] for a
more complete overview of the Littlewood–Offord theory and its applications in
random matrix theory.

While we focus here on the case that the components of X are Bernoulli signs,
everything in this section extends to more general classes of complex-valued ran-
dom variables; see [TV10b,RV10,TV08,RV08].

The main tool in this game is Fourier analysis, via the following lemma. Here
and in the sequel we abbreviate e(x) := exp(2πix).

Lemma 4.1 (Esséen concentration inequality). Let Z be a real-valued random
variable and let s > 0. Then

L(Z, s) . s
∫
|t|≤1/s

|E e(tZ)|dt.

Proof. By replacing Z with Z/s and change of variables it suffices to show

L(Z, 1) .
∫ 1

−1
|E(tZ)|dt.

Fixing a ∈ R arbitrarily, it suffices to show

P(|Z − a| ≤ 1) .
∫ 1

−1
|E(tZ)|dt (4.1)

where the implied constant is independent of a.
Recall the Fourier transform of a function f ∈ L1(R) is defined

f̂(t) :=

∫
R
f(x)e(xt)dx.
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We claim there is a non-negative function f such that

f(x) ≥ c1[−1,1](x), 0 ≤ f̂(t) ≤ 1[−1,1](t) (4.2)

for some absolute constant c > 0, with the inequalities holding pointwise for
x, t ∈ R. Indeed, setting g(t) := 1[− 1

4
, 1
4
](t), one easily computes that

ĝ(x) =
sin(πx/2)

πx
.

Then putting h(t) := g ∗ g(t), clearly 0 ≤ h(t) ≤ 1[−1,1](t), and

ȟ(x) = |ĝ(x)|2 ≥ c1[−1,1](x)

for some constant c > 0. Thus, (4.2) hold with f = ĥ.
We can now bound the left hand side of (4.1) by

E 1[−1,1](Z − a) . E f(Z − a) = E
∫
R
e(at)f̂(t)e(tZ)dt,

where in the last equality we used the Fourier inversion formula. Applying Fubini’s
theorem and taking the modulus of the integrand gives

P(|Z − a| ≤ 1) .
∫
R
|f̂(t)||E(tZ)|dt .

∫ 1

−1
|E e(tZ)|dt

where in the final bound we applied (4.2). �

Corollary 4.2. Let v ∈ Rn and let X = (ξ1, . . . , ξn) ∈ {−1, 1}n be a vector of
i.i.d. uniform signs. For all r ≥ 0,

L(X · v, r) .
∫ 1

−1
exp

−c n∑
j=1

‖2vjt/r‖2R/Z

 dt

=

∫ 1

−1
exp

(
−c dist2

(
2t

r
v,Zn

))
dt.

Here ‖x‖R/Z denotes the distance of x ∈ R to the nearest integer.

Proof. Applying Lemma 4.1 (with s = 1),

L(X · v, r) = L
(

1

r
X · v, 1

)
.
∫ 1

−1
|E e((t/r)X · v)|dt.

By independence of the components of X,

E e((t/r)X·v) =
n∏
j=1

E e(tvjξj/r) =
n∏
j=1

1

2
(e(tvj/r)−e(−tvj/r)) =

n∏
j=1

cos(2πvjt/r).

We next apply the pointwise bound

| cos(πx)| ≤ exp
(
−c‖x‖2R/Z

)
(4.3)



SELECTED TOPICS FROM THE GEOMETRIC THEORY OF RANDOM MATRICES 15

valid for x ∈ R and a sufficiently small absolute constant c > 0. Combining the
previous lines,

L(X · v, r) .
∫ 1

−1

n∏
j=1

| cos(2πvjt/r)|dt ≤
∫ 1

−1
exp

−c n∑
j=1

‖2vjt/r‖2R/Z

 dt

as desired. �

We now use Corollary 4.2 to complete the proofs of Lemmas 3.6 and 3.7.

Proof of Lemma 3.6. By replacing v with v/‖v‖ and r with r/‖v‖ we may as-
sume ‖v‖ = 1. Let r ≥ C‖v‖∞ for some absolute constant C > 0 to be chosen
sufficiently large. It suffices to show

L(X · v, r) . r. (4.4)

From Corollary 4.2,

L(X · v, r) .
∫ 1

−1
exp

−c n∑
j=1

‖2vjt/r‖2R/Z

 dt.

Now for t ∈ [−1, 1], for each j ∈ [n],

|2vjt/r| ≤ 2‖v‖∞/r ≤ 2/C

by our assumption on r. Thus, taking C > 4 we have ‖2vjt/r‖R/Z = |2vjt/r| for
each j ∈ [n], so

L(X · v, r) .
∫ 1

−1
exp

(
−c′t2‖v‖2/r2

)
dt ≤

∫
R

exp
(
−c′t2/r2

)
dt . r

where in the last bound we used that v is a unit vector and performed the Gaussian
integral. This gives (4.4) and completes the proof. �

Proof of Lemma 3.7. Let c0 > 0 to be chosen sufficiently small. We first address
the case that ‖u‖∞ > 2c0. Without loss of generality assume |u1| > 2c0. Then by
conditioning on ξ2, . . . , ξn we see

L(X · u, c0) ≤ L(u1ξ1, c0) ≤ 1/2

where we used that ξ1 is uniformly distributed on the 2-separated set {−1, 1}.
Now assume ‖u‖∞ ≤ 2c0. By Corollary 4.2 and change of variable,

L(X · u, c0) . c1/20

∫
|t|≤c−1/2

0

exp

−c n∑
j=1

‖2c−1/20 ujt‖2R/Z

 dt.

Now by our assumption on u, for all t ∈ [−1, 1] and j ∈ [n] we have

|2c−1/20 ujt| ≤ 4c
1/2
0 .
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Thus, taking c0 sufficiently small we have ‖2c−1/20 ujt‖R/Z = |2c−1/20 ujt|, so

L(X · u, c0) . c1/20

∫
|t|≤c−1/2

0

exp

−c′ n∑
j=1

|c−1/20 ujt|2
 dt

≤ c1/20

∫
R

exp
(
−c′t2/c0

)
dt

. c0.

The claim now follows by taking c0 sufficiently small. �

4.2. Improved Littlewood–Offord bounds and arithmetic structure. In
this section we return to the problem discussed in Section 4 of estimating the
concentration function L(X ·v, r) for X a random vector with i.i.d. coordinates and
v ∈ Rn a fixed vector of “steps”. We present a result of Rudelson and Vershynin
from [RV08] (see also [RV10] and references therein) which gives improvements
on the Berry–Esséen-type bound of Lemma 3.6 under additional information on
the arithmetic structure among the components of v.

Lemma 3.6 states that for any unit vector v,

L(X · v, r) . r for all r ≥ ‖v‖∞. (4.5)

One can interpret this as saying that the discrete random variable X · v behaves
like a variable with bounded density above scales & ‖v‖∞. Our starting point for
proving this was Corollary 4.2, which gave

L(X · v, r) .
∫ 1

−1
exp

(
−c dist2

(
2t

r
v,Zn

))
dt. (4.6)

The lower bound on r in (4.5) allowed us to argue that for all t ∈ [−1, 1] the
closest lattice point to the vector (2t/r)v is the origin, and the right hand side of
(4.6) was then controlled by a Gaussian integral.

We would like to obtain improvements of (4.5) of the form

L(X · v, r) . r for all r ≥ r0(v) (4.7)

where r0(v) can be much smaller than ‖v‖∞. The bound (4.6) suggests that the
optimal choice for r0(v) will involve the distance between dilations of v and the
lattice Zn. Specifically, we will obtain a good estimate on L(X · v, r) for unit
vectors v for which the dilations {θv : θ ≥ 0} stay well-separated from the lattice
Zn up to a fairly large value of θ.

We formalize this as follows. For v ∈ Rn and a fixed accuracy level α > 0,
define the essential least common denominator

LCDα(v) := inf

{
θ > 0 : dist(θv,Zn) ≤ min

(
1

10
‖θv‖, α

√
n

)}
. (4.8)

In terms of this quantity we can obtain the following refinement of Lemma 3.6
due to Rudelson and Vershynin [RV08,RV10].



SELECTED TOPICS FROM THE GEOMETRIC THEORY OF RANDOM MATRICES 17

Theorem 4.3 (Lévy concentration function via additive structure, [RV10]). Let
X = (ξ1, . . . , ξn) be a vector of i.i.d. centered random variables satisfying p :=
L(ξ1, 1) < 1. Then for every v ∈ Sn−1 and every α > 0,

L(X · v, r) . r +
1

LCDα(v)
+ exp

(
−cα2n

)
, r ≥ 0 (4.9)

where the implied constant and c > 0 depend only on p.

Proof. We consider only the case that the variables ξj are uniform Bernoulli signs;
for the general case see [RV08]. Fix α > 0. We may assume

r >
2

LCDα(v)
. (4.10)

It follows that for every t ∈ [−1, 1],

2t

r
≤ 2

r
< LCDα(v).

Thus, by definition of LCDα(v),

dist

(
2t

r
v,Zn

)
> min

(
1

5

∥∥∥∥ tr v
∥∥∥∥ , α√n) ∀t ∈ [−1, 1]. (4.11)

Inserting this in (4.5) gives

L(X · v, r) .
∫ 1

−1
exp

(
−c′t2/r2

)
dt+ exp

(
−cα2n

)
. r + exp

(
−cα2n

)
as desired. �

Theorem 4.3 improves on Lemma 3.6 for vectors v ∈ Sn−1 for which LCDα(v)�√
n for some fixed accuracy level α > 0. We now consider some examples. For

the examples we assume α is fixed and n is sufficiently large.

• If v is a standard basis vector, i.e. v = ej for some 1 ≤ j ≤ n, then
LCDα(v) is of constant order (specifically equal to 10/11).
• If v is the constant vector v = 1√

n
(1, . . . , 1) then LCDα(v) �

√
n, and we

recover the estimate of Lemma 3.6 in this case.
• If v = c√

n
(1 + 1

n , 1 + 2
n , . . . , 1 + n

n) (where c is a normalizing constant)

we have LCDα(v) � n3/2, and in this case Theorem 4.3 improves on
Lemma 3.6.

The following theorem together with Theorem 4.3 leads to an improvement of
the O(n−1/2) term in Theorem 3.1 to O(e−cn).

Theorem 4.4. Let X1, . . . , Xn−1 be i.i.d. random vectors in Rn whose components
are i.i.d. centered sub-Gaussian variables with unit variance. Let u ∈ Sn−1 be a
unit normal vector to H = span(X1, . . . , Xn−1). If α > 0 is a sufficiently small
constant then

P(LCDα(u) < ecn) ≤ e−cn

for some constant c > 0.
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See [RV08] for the proof.

5. Universality for the smallest singular value

In this section we sketch the proof of a result of Tao and Vu from [TV10a] that
the distribution of the smallest singular value of a square matrix M with i.i.d.
centered entries of unit variance (and satisfying an additional moment hypothesis)
asymptotically matches that of a Gaussian matrix. In recent years there have been
several results of this type establishing universality for local eigenvalue statistics
of random matrices; we refer to [Tao19, EY17] and references therein. Many of
the proofs proceed by comparison with a Gaussian matrix, for which the spectral
statistics of interest can be computed explicitly. One such comparison approach
for Hermitian random matrices is to use the so-called Dyson Brownian motion.
Roughly speaking, one considers a stationary diffusion on the space of Hermitian
matrices with initial condition H. In the long-time limit the matrix converges to
a Gaussian matrix G; on the other hand, one can show that the spectral statistics
have changed by a negligible amount, and universality follows. Dyson Brownian
motion thus provides a nice intuition for why Gaussian matrices asymptotically
give the right answers.

Besides diffusion processes, there is another phenomenon of a geometric flavor
that naturally gives rise to Gaussian distributions:

(Generic) low-dimensional projections of high dimensional measures (satisfying
certain hypotheses) are approximately multivariate Gaussian vectors.

This heuristic was exploited by Tao and Vu to establish the following:

Theorem 5.1 (Universality for the smallest singular value [TV10a]). Let ξ be a
real-valued random variable satisfying E ξ = 0,E |ξ|2 = 1, and E |ξ|C0 < ∞ for
some sufficiently large constant C0. Let M = (ξij) be an n × n matrix whose
entries are i.i.d. copies of ξ, and let G be as in Theorem 5.3. Then for any fixed
t ≥ 0,

P
(
sn(M)2 ≤ t

n

)
= P

(
sn(G)2 ≤ t

n

)
+ o(1).

Remark 5.2. [TV10a] obtains the same result in the complex setting, where
M has complex entries with independent real and imaginary parts, and G has
standard complex Gaussian entries. They also obtain universality for the joint
law of the smallest k singular values, for any fixed k. Finally, the above is a weak
formulation of their result, which gives quantitative errors in place of the o(1)
terms (of the form O(n−c) for a constant c > 0 sufficiently small depending on
C0).

For the Gaussian case the limiting distribution was worked out explicitly by
Edelman [Ede88]:
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Theorem 5.3. Let G be an n × n matrix with i.i.d. standard (real) Gaussian
entries. For any fixed t ≥ 0,

P
(
sn(G)2 ≤ t

n

)
=

∫ t

0

1 +
√
x

2
√
x

exp
(
−x

2
+
√
x
)
dx+ o(1).

We now discuss some of the steps of Theorem 5.1. We denote the columns of
M by X1, . . . , Xn. For 0 ≤ k ≤ n−1 we denote W>k := span(Xk+1, . . . , Xn). The
basic idea is that the inverse of M is effectively of low rank (consider inverting the
singular values distributed according to the quarter-circular law). In particular,
one can estimate its norm by that of a randomly sampled small submatrix. One
can check that for M this corresponds to estimating its smallest singular value by
that of a small matrix obtained by projecting a randomly sampled collection of
columns to the span of the remaining columns. We summarize these steps in the
following; see [TV10a] for the proof. In these notes we focus on how the projection
operation gives rise to the universal Gaussian distribution.

Proposition 5.4. There is a constant c > 0 depending only on C0 such that
the following holds. Set m = bn500/C0c, and let A be the n × m matrix with
columns X1, . . . , Xm. Let U be an n×m matrix whose columns u1, . . . , un are an
orthonormal basis for W⊥>m, chosen measurably with respect to the sigma algebra

generated by Xk+1, . . . , Xn (say according to Haar measure). Put M̂ = UTA.
Then for all fixed t ≥ 0,

P
(
sm(M̂)2 ≤ t− o(1)

m

)
− o(1)

≤ P
(
sn(M)2 ≤ t

n

)
≤ P

(
sm(M̂)2 ≤ t+ o(1)

m

)
+ o(1).

Thus, our aim is now to show that M̂ is approximately an m × m Gaussian

matrix. Writing M̂ = (Y1 · · ·Ym), we have Yj = UTXj . The main point is that the
matrix U acts as a low-dimensional projection; moreover, it is independent of the
columns of A. Heuristically, we expect that for “generic” projections U , the vector
Yj will be approximately Gaussian. Indeed, the Central Limit theorem is the
special case m = 1 and u = 1√

n
(1, . . . , 1). Note this can’t hold for any projection

– consider for instance the projection to the first m coordinates. However, if the
components the columns of U are sufficiently spread out then we expect to have
Yj ≈ N(0, Im). This is formalized in the following:

Proposition 5.5 (Berry–Esséen theorem for frames). Let ξ1, . . . , ξn be i.i.d. cen-
tered variables of unit variance and finite third moment. Let 1 ≤ m ≤ n, and let
v1, . . . , vn be a tight frame for Rm, i.e.

n∑
i=1

viv
T
i = Im.
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Let K be such that ‖vi‖ ≤ K for all 1 ≤ i ≤ n. Put Y =
∑n

i=1 ξivi, and let
Z ∼ N(0, Im) be a standard Gaussian vector. For any Borel set Ω ⊂ Rm and any
ε > 0,

P
(
Z ∈ Ω−ε

)
−O(m5/2ε−3K) ≤ P(Y ∈ Ω) ≤ P

(
Z ∈ Ω+

ε

)
+O(m5/2ε−3K)

where Ω+
ε denotes the ε-neighborhood of Ω in the `∞ metric, and Ω−ε is the com-

plement of the ε-neighborhood of Ωc in the `∞ metric.

Now we show how Proposition 5.5 applies to the matrix M̂ constructed in
Proposition 5.4. Let vT1 , . . . , v

T
n be the rows of U . Since the columns of U are

orthonormal, Im = UTU . On the other hand we have UTU =
∑n

i=1 viv
T
i . Thus,

the rows of U form a tight frame for Rm. By construction, the columns of M̂ are
independent, and are given by

Yj = UTXj =
n∑
i=1

ξijvi, j = 1, . . . ,m.

We then want to apply Proposition 5.5 to deduce that each of the columns
Y1, . . . , Ym is approximately a standard Gaussian vector in Rm, and for this we
will want to take K small. Specifically, it will be enough to show

max
i∈[n],j∈[m]

|vi(j)| ≤ n−c with probability 1− o(1) (5.1)

for some absolute constant c > 0. From this it follows that we can take K =√
mn−c in Proposition 5.5. Then it is possible to argue that

P
(
sm(M̂)2 ≤ t

m

)
= P

(
sm(G)2 ≤ t

m

)
+ o(1)

for any fixed t ≥ 0, where G is an m×m matrix whose entries are i.i.d. standard
Gaussians. See [TV10a] for the details.

Here we will only show how to prove (5.1). Specifically we will prove

Proposition 5.6 (Normal vectors are delocalized). Let m be as in Proposi-
tion 5.4, with C0 sufficiently large. Set B = (Xm+1 · · ·Xn). Then with probability
1−o(1), for any v ∈ Sn−1 such that vTB = 0 we have ‖v‖∞ ≤ n−c0, where c0 > 0
is a sufficiently small absolute constant.

To prove this we will need two lemmas.

Lemma 5.7 (Distance of a random vector to a fixed subspace). Let X = (ξ1, . . . , ξn)
have i.i.d. centered components of unit variance and bounded by 100 almost surely
(we could replace 100 with any other fixed constant). Let V ⊂ Rn be a fixed
subspace of dimension d. Then for some constant c > 0 we have

P
(

dist(X,V ) ≤ c
√
n− d

)
. e−c(n−d).

(In fact one can adjust the proof to get two-sided concentration around
√
n− d,

but we only need a lower bound.)
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Proof. It is not hard to show that x 7→ dist(X,V ) is a convex and 1-Lipschitz
function with respect to the Euclidean metric. Write D = dist(X,V ). From
Talagrand’s inequality it follows that

P(|D −M | ≥ t) ≤ 4 exp
(
−ct2

)
where M is any median for D.

Now we argue that M ≈
√
ED2. First,

|ED −M | ≤ E |D −M | =
∫ ∞
0

P(|D −M | ≥ t)dt = O(1).

Next,

ED2 − (ED)2 = E |D − ED|2 ≤
∫ ∞
0

P
(
|D − ED|2 ≥ t

)
dt = O(1).

Thus, M =
√
ED2 +O(1).

Now we compute ED2. Let ΠV ⊥ denote the matrix for projection to V ⊥. We
have

ED2 = E ‖ΠV ⊥X‖2 = E
n∑

i,j=1

ΠV ⊥(i, j)ξiξj = tr ΠV ⊥ = dim(V ⊥) = n− d.

Thus,

P
(
D ≤ c

√
n− d

)
≤ P

(
D −M ≤ −(1− c)

√
n− d+O(1)

)
≤ P

(
D −M ≤ 1

2

√
n− d

)
≤ 4 exp

(
−c(n− d)2

)
where we took c > 0 sufficiently small. (Note that we can assume n− d is larger
than any fixed constant, which allowed us to bound the O(1) term by 1

10

√
n− d,

say.) �

In the proof of Proposition 5.6 we will want to locate a large subspace on which
a large square sub-matrix of M has small norm. Note that for an i.i.d. matrix,
by the quarter circular law we have

|{i : si(M) ≤ ε
√
n}| � εn

for any fixed ε ∈ (0, 2). The following lemma, which we state without proof,
extends the lower bound to ε decaying with n.

Lemma 5.8 (Many small singular values). There is a sufficiently small constant
c > 0 such that with probability 1−O(e−n

c
),

|{i : si(M) ≤ n1/2−c}| & n1−c.
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Remark 5.9. The above is a weak version of the local Marchenko–Pastur law,
which basically states that the Marchenko–Pastur distribution gives an accurate
estimate for the number of singular values si(M) in intervals of length down to

n−1/2 logO(1) n, which is optimal up to poly-logarithic factors (note we have not
scaled M to have a limiting singular value distribution supported on a compact
interval). See [ESYY12, Section 8].

Proof of Proposition 5.6. Let c0 > 0 to be chosen sufficiently small. By the union
bound it suffices to show that with probability 1 − o(1/n), for any fixed i ∈ [n]
and any v ∈ Sn−1 such that vTB = 0, we have |vi| ≤ n−c0 . By exchangeability of
the rows of B it suffices to show this for i = 1.

We denote the rows of B by R1, . . . , Rn. We let B′ be the n − 1 × n − m

submatrix with rows R2, . . . , Rn, and M̃ the n−m× n−m submatrix with rows
Rm+1, . . . , Rn. Recall from Proposition 5.4 that m = bn500/C0c where C0 is as
large as we please. In particular, n−m = n(1− o(1)).

First we will find a large subspace V on which B′ has small norm. Applying

Lemma 5.8 to M̃ , it follows that with probability 1 − O(n−10) there exists a

subspace V0 ⊂ Rn−m such that dimV0 & n1−c and ‖M̃ |V0‖ ≤ n1/2−c. Indeed,

V0 is simply the space spanned by the eigenvectors of M̃∗M̃ associated to the

eigenvalues si(M̃)2 with si(M̃) ≤ n1/2−c. Now set

V = V0 ∩ span(R2, . . . , Rm)⊥.

Then dimV ≥ dimV0−m & n1−c, and by construction we have ‖B′|V ‖ ≤ n1/2−c.
Now suppose v ∈ Sn−1 satisfies vTB = 0 and |v1| ≥ n−c0 . Then

0 = v1R1 + v′TB′

where v′ := (v2, . . . , vn). Let ΠV be the matrix for projection to the subspace
V constructed above. Multiplying on the right by ΠV in the above equality,
rearranging and taking norms gives

‖v1R1ΠV ‖ =
∥∥∥v′TB′ΠV

∥∥∥ . (5.2)

The right hand side is bounded by

‖B′ΠV ‖ ≤ n1/2−c (5.3)

with probability 1−O(n−10). For the left hand side we have

‖v1R1ΠV ‖ ≥ n−c0‖R1ΠV ‖ = n−c0 dist(R1, V
⊥).

Now we condition on a realization of R2, . . . , Rn for which the bound (5.3) holds.
This fixes the subspace V . Applying Lemma 5.7 we have

dist(R1, V
⊥) &

√
dimV & n(1−c)/2 (5.4)

with probability 1 − O(e−n
c′

) for some constant c′ > 0. Intersecting the good
events that (5.4) and (5.3) hold and putting the bounds together, we conclude
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that with probability 1−O(n−10),

n−c0n(1−c)/2 ≤ n1/2−c.

Taking c0 sufficiently small depending on c gives a contradiction, and the result
follows. �

6. Further reading

For further reading on the topics covered here one may consult:

(1) Sections 2.3 and 2.7 of Tao’s text on random matrix theory [Tao12] (also
available on his blog).

(2) The ICM lecture notes of Rudelson and Vershynin [RV10].
(3) The paper [TV10a] of Tao and Vu establishing universality for small sin-

gular values.

All of these sources are clearly written, with the first two assuming little back-
ground in random matrix theory, so the reader is encouraged to consult them for
further information or clarification.
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