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References 62

Abstract. These are day-to-day lecture notes for the graduate topics course Math 690-40
High-dimensional Probability, given at Duke in the spring semester of 2024. They have not
been prepared for publication – in particular the references are incomplete, minimal effort
has been made to keep notation uniform across all lectures, and some sections are intended
as supplements to course references rather than stand-alone references. I am grateful to the
students taking the course for pointing out errors as we go along!

(From the course description:) This course aims to cover core topics in the theory of
probability measures on high-dimensional Euclidean spaces as well as important applications.
Topics will include the concentration of measure phenomenon, random matrices, suprema of
random processes, hypercontractivity, entropy methods and Fourier analysis on the Boolean
hypercube. We’ll illustrate the theory with applications to areas such as graph theory, com-
binatorial optimization, high-dimensional statistics and compressed sensing, and statistical
physics. A prior course in measure-theoretic probability would be ideal background.

0. Preliminaries

0.1. General notation. We often write [n] for the discrete interval {1, . . . , n}. The set of

all k-sets (i.e. sets of size k) in a set S is denoted
(
S
k

)
. For p ∈ [1,∞] the ℓp norms on Rn and

Cn are denoted ∥x∥p := (|x1|p + · · · + |xn|p)1/p. The Euclidean inner product (dot product)
on Cn is denoted ⟨x, y⟩ = x · y = x̄1y1 + · · ·+ x̄nyn.

We use the notation |A| for the cardinality of a finite set A. We also write |J | for the length
of an interval J ⊂ R. There should be no confusion between these usages.

For a statement Q we write 1Q for the Boolean variable that is 1 if and only if Q is true.
When Q depends in a measurable way on a point ω in a probability space (Ω,F ,P) we may
denote the indicator variable 1(Q) := 1Q for typographical convenience.

0.2. Asymptotic notation. We will often write C, c (and C0, c
′ etc.) for finite, positive

universal constants, whose value may change from line to line. (C,C ′, C0 etc. are understood
to be sufficiently large – i.e. the statement will remain true if one replaces C by any larger
value – and c, c′, c0 etc. are sufficiently small.) We may occasionally let these constants depend
on a fixed parameter, and we’ll warn the reader when this is the case.

We’ll make use of the following standard asymptotic notation. For real quantities f, g that
may depend on one or more parameters (such as the dimension n of a random vector or the
variance σ2 of a fixed distribution) we write f = O(g) and f ≲ g to mean that |f | ≤ Cg for a
sufficiently large universal constant C > 0 – that is, C is independent of all parameters. (It
follows that g is non-negative.) If we allow C to depend on one or more parameters q then
we indicate this with a subscript, writing f = Oq(g), f ≲q g.

When f is positive, g = Ω(f) and g ≳ f mean f ≲ g. We write f = Θ(g) and f ≍ g to
mean f ≲ g ≲ f .

While there’s nothing asymptotic about the preceding notations per se, in practice they
are used when one or more asymptotic parameters are present, e.g. when we are interested in
the case that the dimension n of a random vector is large, and estimates f = O(g) will only
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be interesting when n is sufficiently large depending on the implicit constants.1 For instance,
an estimate

P(E) ≲ exp(−cn) (0.1)

on the probability of an event E is only nontrivial for n ≥ (logC)/c, where C is the implicit
constant, since any probability is trivially bounded by 1.

Exercise 0.1. Suppose that for an event E depending on a positive integer parameter n we
have an estimate

P(E) ≲ exp(−n/K) (0.2)

for some finite K. Show it follows that

P(E) ≤ 2 exp(−n/K ′) (0.3)

for some K ′ ≲ K.

We occasionally make use of the (more explicitly) asymptotic notation o(·), ω(·), ∼. For real
f , non-negative g, a real asymptotic parameter ε and ε0 ∈ [−∞,∞], we write f = oε→ε0(g)
to mean f/g → 0 as ε → ε0 (and in particular that g is positive for all ε sufficiently close
to ε0). We will tend to suppress the subscript ε → ε0 when it is clear from the context (e.g.
when the dimension n is tending to +∞). When f is positive we may write g = ωε→ε0(f)
to mean f = oε→ε0(g). We write f ∼ε→ε0 g to mean f/g → 1 as ε → ε0. When the rate of
convergence may depend on some other parameters q we write f = oε→ε0;q(g) (or f = oq(g)
when the asymptotic parameter is clear from the context), and g = ωq(f), f ∼q g etc.2

Exercise 0.2. Show that for positive real number a, b we have

max(a, b) ≍ a+ b (0.4)

and
min{a, b} ≍ a

1 + a
b

. (0.5)

In particular, min{a2, a} ≍ a2/(1 + a).

As the reader will likely appreciate as we go through the course, the use of unspecified
constants C, c and asymptotic notation O(·) can save a lot of ink and make arguments much
easier to read and remember. The notation may be uncomfortable at first, but mastering it
trains one to keep in mind which error terms we’re really “fighting” and which parameter
regimes we need to be careful of.

In short, our emphasis in this course will be on the fundamental ideas driving the basic
results. While the pursuit of optimal explicit constants is both interesting and useful, it often
introduces several extra details to the proofs that can distract from the fundamental ideas.
For the sharp forms of some of the results we’ll cover you can consult the course references,
such as [BLM13,Led01].

1This point is perhaps worth clarifying since this notation is ubiquitous in the so-called non-asymptotic theory
of random matrices, which will be partially covered in this course (for a nice survey see [RV10]). While many
papers in that literature avoid the notation O(·),≲ and instead use only unspecified constants C, c etc. this
choice is purely stylistic (usually their values are not unreasonable and can be extracted from the proofs without
much effort).
2The notations o(·), ω(·),∼ mirror the notations O(·),Ω(·),≍. It is tempting to analogously give meaning to
the symbols ≪,≫ to mirror ≲,≳, as is sometimes done in the literature, but we refrain from doing this to
avoid confusion with their use in analytic number theory, where the Vinogradov notation ≪ is synonymous
with our definition of ≲.
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1. Jan 11: Introduction

Today we:

• See examples of the concentration of measure phenomenon on the high-dimensional
sphere Sd−1 and the discrete cube {−1, 1}n.

• Begin an application of concentration on the cube to prove the Johnson–Lindenstrauss
lemma for dimension reduction of high-dimensional data.

1.1. Concentration on the sphere. Write Bd = {x ∈ Rd : ∥x∥2 ≤ 1} for the closed
Euclidean unit ball in Rd, and Sd−1 for its boundary. The ball of radius r is rBd, where
we write rA = {ra : a ∈ A} for the dilation of a set A ⊂ Rd by r. Let vd(r) be the d-
dimensional volume (Lebesgue measure) of rBd. Note that vd(r) = vd(1)r

d. Let sd−1(r) be
the d− 1-dimensional surface measure of rSd−1 – that is,

sd−1(r) = lim
ε↓0

vold((r + ε)Bd)− vold(rBd)
ε

= v′d(r) = dvd(1)r
d−1. (1.1)

(You can check this and the following formulas for d = 2, 3.)

Proposition 1.1 (Volume of Euclidean d-ball). We have sd−1(1) = 2πd/2/Γ(d/2) and vd(1) =
πd/2

d
2
Γ( d

2
)
.

Recall the gamma function is given by Γ(α) =
∫∞
0 yα−1e−ydy. By change of variable we

have

Γ(α) = 2

∫ ∞

0
e−r

2
r2α−1dr.

which will be used in the proof.

Proof of Proposition 1.1. Recall that I :=
∫∞
−∞ e−x

2
dx =

√
π. Indeed, by squaring and chang-

ing to polar coordinates we get

I2 =

∫
R2

e−x
2−y2dxdy =

∫ 2π

0

∫ ∞

0
e−r

2
rdrdθ = π.

Hence,

πd/2 = Id =

∫
Rd

exp(−x21 − · · · − x2d)dx1 · · · dxd = sd−1(1)

∫ ∞

0
e−r

2
rd−1dr =

1

2
sd−1(1)Γ(

d

2
).

Rearranging yields the claimed formula for sd−1(1) The formula for vd(1) follows from this
and (1.1). □

From Stirling’s approximation for the gamma function we have

vd(1) ∼
1√
πd

(
2πe

d
)d/2

as d→ ∞. To leading exponential order this is exp(−(1 + o(1))12d log d), which is very small
compared to 1, the volume of the cube of side-length 1. This is a phenomenon not seen in
dimensions 2 and 3, where the origin-centered cube of side-length 1 is entirely contained in
the ball of radius 1. So in high dimensions, the cube “pokes through” the sphere in many
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places (it has 2d corners at distance
√
d/2 from the origin) while the centers of its 2d faces are

always at distance 1
2 from the origin. Apparently, most of its volume is out near the corners

at scale
√
d. (We’ll see quantitative versions of this later.)

Now we present a simple calculation that is our first example of the concentration of measure
phenomenon in high dimensions.

Proposition 1.2 (Measure of spherical caps). Let µd be the normalized surface measure on
Sd−1, thus µd(Sd−1) = 1. For any ε > 0,

µd({x ∈ Sd−1 : |x1| > ε}) ≤ 2 exp(−cε2d). (1.2)

Or to put it probabilistically: if U = (U1, . . . , Ud) ∼ µd is a uniform random unit vector in
Rd, then

P(|U1| > ε) ≤ 2 exp(−cε2d) ∀ε ≥ 0. (1.3)

Thus, an ε-widening of the “equator” {x ∈ Sd−1 : x1 = 0} contains all but an exponentially
small (in d) proportion of the surface measure! And 99% of the surface measure is within

distance O(d−1/2) of the equator. We say that the surface measure “concentrates” near the
equator. But of course by symmetry, we have that the surface measure concentrates near any
fixed equator!

Note this implies that the intersection of the ε-neighborhoods of k orthogonal equators still
has measure at least 1 − 2k exp(−cε2d) (by the union bound), which is still very close to 1
when ε is fixed (at say 1

100) and k is sub-exponential in d. This is quite different from our
low-dimensional experience, where the intersection of the ε-neighorhoods of two orthogonal
equators of S2 – say “the” equator and the prime meridian – is a O(ε)-neighborhood of the
north and south poles and thus has measure O(ε2).

Proof of Proposition 1.2. We’ll use the probabilistic notation of (1.3). Clearly we may assume
ε ≤ 1 since the left hand side of (1.3) is zero otherwise. Since the left hand side of (1.3) is
trivially bounded by 1, by lowering the constant c on the right hand side we may assume

ε ≥ C/
√
d (1.4)

for any fixed constant C > 0. We may similarly assume d is sufficiently large.

By considering a slice of the d − 1-sphere at height y in the e1 direction, we see that the
density fU1(y) for the distribution of U1 is

sd−2(
√

1− y2)

sd−1(1)
=
sd−2(1)

sd−1(1)
(1− y2)(d−2)/2 ≍ d1/2(1− y2)(d−2)/2 (1.5)

where the last estimate can be obtained from the formula from Proposition 1.1 (exercise).

By symmetry it suffices to show

P(U1 > ε) ≤ exp(−cε2d) (1.6)

for any ε ≤ 1 as in (1.4). Integrating the density of U1 gives

P(U1 > ε) ≍
∫ 1

ε
d1/2(1− y2)(d−2)/2dy

≤ d1/2ε−1

∫ ∞

ε
y exp(−(d2 − 1)y2)dy

≲
1

εd1/2
exp(−(d2 − 1)ε2)
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where in the second line we bounded 1− y2 ≤ exp(−y2), extended the integral to [ε,∞), and
inserted a factor y/ε ≥ 1 in the integrand. Taking C in (1.4) sufficiently large (and assuming
d ≥ 3) we obtain the desired bound (1.6). □

1.2. Concentration (and anti-concentration) on the discrete hypercube. Now con-
sider the discrete hypercube {−1, 1}n in Rn with the normalized counting measure νn (we
switch to n for the dimension). (Much of what we’ll say extends with minor modification to the
uniform measure on the solid cube [−1, 1]n.) Consider a random vector X = (X1, . . . , Xn) ∈
{−1, 1}n with distribution νn. Equivalently, X1, . . . , Xn are iid Rademacher variables.3 We
denote the unit vector in the all-ones direction

v :=
1√
n
(1, . . . , 1) ∈ Sn−1.

We consider the distribution of ⟨X, v⟩, the projection of X to the all-ones direction.

From the law of large numbers we have n−1/2⟨X, v⟩ → 0 in probability as n → ∞. Thus,
while {−1, 1}n has diameter 2

√
n in the direction of v, most of the mass is within o(

√
n) of

the hyperplane Hv = {x ∈ Rd : ⟨x, v⟩ = 0}.

Moreover, the central limit theorem tells us that ⟨X, v⟩ d→ G, where G ∼ N(0, 1) is a
standard Gaussian variable. So most of the measure νn concentrates within distance O(1) +
on→∞(1) of Hv.

Remark 1.3 (An aside on anti-concentration and quantitative CLTs). The Berry–Esseen the-
orem gives a quantitative version of the CLT – in this setting it states that for any interval
J ⊂ R,

P(⟨X, v⟩ ∈ J) = P(G ∈ J) +O(n−1/2). (1.7)

Thus, the discrete random variable ⟨X, v⟩ is effectively smooth and Gaussian at scales much

larger than n−1/2.

As a preview, when we come to the topic of anti-concentration later in the course, we’ll
see that (1.7) in fact holds with v replaced by any suitably “generic” fixed u ∈ Sn−1, and
moreover, for most choices of u we actually get an improved error of size OK(n−K) for any
fixed K ≥ 1. Note that some “genericity” assumption is necessary as (1.7) clearly fails if we
replace v with a standard basis vector.

Much of this course will explore how wide classes of random variables (generally functions
of many independent variables) behave in some ways like Gaussians; in particular they display
approximate versions of the following two nice properties of the Gaussian distribution:

(1) (Concentration). Gaussians have sub-Gaussian tails:

P(|G| ≥ t) ≤ 2 exp(−ct2).

(2) (Anti-concentration). Gaussians have bounded density:

P(G ∈ J) = O(|J |) for any interval J ⊂ R

where |J | is the length (Lebesgue measure) of J .

3A Rademacher variable (or random sign) is a random variable that is uniform in {−1, 1}.
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Returning to the concentration of measure phenomenon for the measure space ({−1, 1}n, νn),
a sharp quantitative form of the law of large numbers is provided by the following result (a
special case of Hoeffding’s inequality):

Theorem 1.4. For any fixed unit vector u ∈ Sn−1,

P(|⟨X,u⟩| ≥ t) ≤ 2 exp(−ct2) ∀t ≥ 0. (1.8)

Thus, 99% of the measure of the discrete cube (a set of diameter Θ(
√
n)) is contained

within a O(1)-neighborhood of any fixed hyperplane through the origin.

We’ll see a proof of Theorem 1.4 next time. For the remainder of this first lecture we turn
to an important application.

1.3. Application: dimension reduction for high-dimensional data. Concentration of
measure on the discrete hypercube can be used to establish the following:

Theorem 1.5 (Johnson–Lindenstrauss lemma). Let x1, . . . , xm be fixed (deterministic) points
in RN . Let A be an N × d matrix of iid Rademacher variables (equivalently, A is uniform
random in the Nd-dimensional discrete cube {−1, 1}N×d) and for each i ∈ [m] set

yi :=
1√
d
ATxi. (1.9)

For any ε ∈ (0, 1), if

d ≥ Cε−2 logm (1.10)

then

1− ε ≤ ∥yi − yj∥22
∥xi − xj∥22

≤ 1 + ε ∀1 ≤ i < j ≤ m (1.11)

except with probability at most exp(−cε2d).

Remark 1.6. Recall our convention from Section 0.2 – which will tend to go unmentioned in
the sequel – that C, c > 0 denote universal constants that are sufficiently large and small,
respectively.

Remark 1.7. Perhaps the most surprising and useful features of Theorem 1.5 are that

(1) N makes no appearance in (5.4), (5.5) and the probability bound;
(2) the reduced dimension d can be as small as logarithmic in m;
(3) one can achieve these with a simple linear transformation, and moreover with almost

any sign matrix!4

The key fact for the proof of Theorem 1.5 is the following concentration of measure bound
for the norm of the image of a fixed vector under AT.

Lemma 1.8. For any fixed u ∈ SN−1 and ε ∈ (0, 1),

P
(∣∣∣1
d
∥ATu∥22 − 1

∣∣∣ ≥ ε
)
≤ 2 exp(−cε2d). (1.12)

4We’ll later see that the same holds for a much wider class of random matrices.
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We’ll prove Lemma 1.8 next time. For now we just note that the mapping d−1/2AT does pre-
serve squared ℓ2-norms in expectation: denoting the columns of A by A1, . . . , Ad ∈ {−1, 1}N ,
we have

E∥ATu∥22 = E
d∑
j=1

⟨Aj , u⟩2 =
d∑
j=1

N∑
k,ℓ=1

EAkjAℓjukuj =
d∑
j=1

∥u∥22 = d (1.13)

so (1.12) indeed provides concentration of ∥ATu∥22 about its expectation.

2. Jan 18: Exponential moments and sub-Gaussian distributions

• We conclude our first proof of Theorem 1.5.
• Along the way we state and proof Hoeffding’s inequality, as well as an extension to
sums of sub-exponential random variables.

• We define the classes of sub-Gaussian and sub-exponential random variables and state
some equivalent characterizations.

2.1. Dimension reduction (continued). We begin by using Lemma 1.8 to conclude the

Proof of Theorem 1.5. Without loss of generality we may assume all of the points xi are
distinct. Denote the

(
m
2

)
“bad” events

Bij :=
{∣∣∣∣ ∥yi − yj∥22

∥xi − xj∥22
− 1

∣∣∣∣ > ε

}
, 1 ≤ i < j ≤ m.

For fixed i < j, applying Lemma 1.8 with u = (xi − xj)/∥xi − xj∥2 gives

P(Bij) = P
(∣∣∣1
d
∥ATu∥22 − 1

∣∣∣ > ε
)
≤ 2 exp(−cε2d).

We can then apply the union bound to conclude

P((5.5) fails) = P
( ⋃

1≤i<j≤m
Bij

)
≤

∑
1≤i<j≤m

P(Bij) ≤ m2 exp(−cε2d) ≤ exp(−1
2cε

2d)

where in the final bound we took the constant C in (5.4) sufficiently large. □

2.2. Hoeffding’s inequality. We have the following generalization of Theorem 1.4.

Theorem 2.1 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables with
Xi ∈ [ai, bi] a.s. for each i, and set Sn := X1 + · · ·+Xn. Then

P(|Sn − ESn| ≥ t) ≤ 2 exp(−ct2/B2) ∀t ≥ 0 (2.1)

where B2 :=
∑n

i=1(bi − ai)
2.

Proof. Since Sn − ESn =
∑n

i=1Xi − EXi, by replacing Xi with Xi − EXi we may assume
without loss of generality that EXi = 0 for each i, and in particular ESn = 0. By symmetry,
it suffices to show

P(Sn ≥ t) ≤ exp(−ct2/B2) ∀t ≥ 0. (2.2)
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From the pointwise bound 1x≥0 ≤ ex for x ∈ R, we have

P(Sn ≥ t) = E1Sn−t≥0 ≤ E exp(λ(Sn − t)) = exp(−λt)E exp(λSn) (2.3)

for any λ > 0. Letting λ > 0 to be chosen later, we thus seek a bound on the moment
generating function E exp(λSn). By independence,

E exp(λSn) =

n∏
i=1

E exp(λXi).

Now for arbitrary i ∈ [n], we claim

E exp(λXi) = exp(O(λ2(bi − ai)
2)). (2.4)

Indeed,

E exp(λXi) = E[1 + λXi +
λ2X2

i

2!
+ · · · ]

= 1 + E
∑
k≥2

λkXk
i

k!

≤ 1 +
∑
k≥2

λk(bi − ai)
k

k!

= exp(λ(bi − ai))− λ(bi − ai)

where in the second line we used the assumption that EXi = 0. The bound (2.4) now follows

from the pointwise bound ex ≤ x + eCx
2
for x ∈ R. Substituting (2.4) into the product we

obtain

E exp(λSn) = exp(O(λ2B2)). (2.5)

combining with (2.3) we get

P(Sn ≥ t) ≤ exp(−λt+ Cλ2B2).

Finally, choosing λ = t/(2CB2) yields (2.2) to complete the proof. □

2.3. Dimension reduction (part 3). We turn to the proof of Lemma 1.8. We’ll actually see
two different proofs (one may wait until next time). Our first proof makes use of Theorem 1.4.

Setting Zj := ⟨Aj , u⟩, we want to show that

∥ATu∥22 =
d∑
j=1

Z2
j (2.6)

concentrates around its expectation of d (as shown in (1.13)). We note that ∥ATu∥22 is a sum
of iid random variables, so it is reasonable to expect something like Hoeffding’s inequality to
give this. However, even the general version of Theorem 2.1 would only be effective if the
variables Z2

j were bounded uniformly in n.

Theorem 1.4 does tell us that each Zj has a light tail. Indeed, Aj is a length-N Rademacher
vector, so

P(|Zj | ≥ t) ≤ 2 exp(−ct2) ∀t ≥ 0.

This means that Z2
j has a sub-exponential tail:

P(Z2
j ≥ t) ≤ 2 exp(−ct) ∀t ≥ 0. (2.7)
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Lemma 2.2. Let Y1, . . . , Yn be independent, centered variables with sub-exponential tails, in
the sense that

P(|Yi| ≥ t) ≤ 2 exp(−t/K) ∀t ≥ 0, ∀i ∈ [n] (2.8)

for some finite K. Setting Sn :=
∑n

i=1 Yi, we have

P(|Sn| ≥ Ksn) ≤ 2 exp(− cs2

1 + s
n) ∀s ≥ 0. (2.9)

Before proving the lemma we conclude the

Proof of Lemma 1.8. With Zj = ⟨Aj , u⟩ as above, denote the centered variables Yj := Z2
j −1.

From (2.7) and lowering c we have

P(|Yj | ≥ t) ≤ 2 exp(−ct) ∀t ≥ 0, ∀j ∈ [d]. (2.10)

We may hence apply Lemma 2.2, with n = d, Sd =
∑d

i=1 Yi = ∥ATu∥22 − d, K = O(1), and
s = cε for a sufficiently small constant c > 0 to obtain

P(|∥ATu∥22 − d| ≥ εd) ≤ 2 exp(−cε2d)
as desired. □

Proof of Lemma 2.2. By replacing Yi with Yi/K we may assume K = 1.

As in the proof of Theorem 2.1 we proceed by bounding the moment generating function
of Sn. We claim

E exp(λSn) = exp(O(λ2n)) (2.11)

if λ ∈ (0, c0) for a sufficiently small universal constant c0 > 0. From this the lemma follows
by similar lines as in the proof of Theorem 2.1 (exercise!).

By independence, to prove (2.11) it suffices to show

E exp(λYi) = exp(O(λ2)) (2.12)

for each i ∈ [n] and all λ ∈ (0, c0). To that end, we expand

E exp(λYi) = E
(
1 + λYi +

∑
k≥2

λkY k
i

k!

)

= 1 + E
∑
k≥2

λkY k
i

k!

≤ 1 +
∑
k≥2

λkE|Yi|k

k!

where in the second line we used the assumption that the Yi are centered. Using the tail
assumption (2.8) we can bound the absolute moments as follows:

E|Yi|k = O(k!) (2.13)

for all k ∈ N (exercise!). Substituting this in the previous line gives

E exp(λYi) ≤ 1 +
∑
k≥2

O(λ)k = 1 +O(λ2) = exp(O(λ2)) (2.14)

taking c0 sufficiently small so that the geometric series converges. This gives (2.12) to conclude
the proof. □
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Exercise 2.1. Fill in the steps marked (exercise!) in the above proof. Note we could just as
well write min{s2, s} in place of s2/(1 + s) in the exponential in (2.9) (recall (0.5)).

In (2.9) we see a tail of a different shape – often called a “Bernstein-type tail” – than the
sub-Gaussian tail exp(−cs2n) from Hoeffding’s inequality. In particular, for smaller deviations
with s ≲ 1 (2.9) gives

P(|Sn| ≥ Ksn) ≤ 2 exp(−cs2n) (2.15)

while for larger deviations with s ≳ 1,

P(|Sn| ≥ Ksn) ≤ 2 exp(−csn) (2.16)

(up to modification of the constant c). If the Yi were bounded rather than just sub-exponential
then Theorem 2.1 would give the Gaussian tail (2.15) for all s ≥ 0. However, the exponential
tail of (2.16) is necessary for s ≳ 1, as shown in the following:

Exercise 2.2. Show that the bound (2.16) is sharp for s ≥ 1 (up to modifying the universal
constant c > 0) for any n, by considering the case that the Yi are iid centered exponential
random variables (with density proportional to exp(−|y|), say). (Hint: note for instance that
the left hand side in (2.16) is bounded below by the probability of the event that Y1 ≈ 2Ksn
and

∑n
i=2 Yi = O(K

√
n).)

Bernstein-type tails also commonly arise for sums of bounded random variables for which
the variance is much smaller than the L∞-norm, such as Bernoulli(p) variables with p very
small.

Theorem 2.3. Let X1, . . . , Xn be independent real random variables with Var(Xi) ≤ σ2i and
|Xi| ≤ b a.s. for each i. Then with Sn = X1 + · · ·+Xn,

P(|Sn − ESn| ≥ t) ≤ 2 exp(− ct2

σ2 + bt
) ∀t ≥ 0 (2.17)

where σ2 :=
∑n

i=1 σ
2
i .

Exercise 2.3. Prove Theorem 2.3. (Hint: after centering the variables Xi and normalizing b
to be 1, follow the general approach of the proofs of Theorem 2.1 and Lemma 2.2, but in place
of (2.4) and (2.12) prove the bound

E exp(λXi) = exp(O(λ2σ2i )) ∀λ ∈ [0, 1] .) (2.18)

2.4. Sub-Gaussian and sub-exponential distributions. Since many of our objectives in
this first part of the course will be to show that various random variables have sub-Gaussian
tails, it will be useful to formalize this property in a definition and establish some equivalent
properties.

Definition 2.4 (Sub-Gaussian variable). For a constant K > 0, we say that a real-valued
random variable X is K-sub-Gaussian if

E exp(X2/K2) ≤ 2. (2.19)

The best constant K is called the ψ2-norm of X:

∥X∥ψ2 := inf{K > 0 : E exp(X2/K2) ≤ 2}. (2.20)
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More generally, we say that a random vector X ∈ Rd is K-sub-Gaussian if ⟨X,u⟩ is K-sub-
Gaussian for every fixed unit vector u ∈ Sd−1. If X is K-sub-Gaussian for some finite K then
we may simply say that X is sub-Gaussian.

Exercise 2.4. Show that ∥ · ∥ψ2 indeed defines a norm on the space of sub-Gaussian random
variables.

An immediate consequence of (2.28) and Markov’s inequality is that X has sub-Gaussian
tails:

P(|X| ≥ t) ≤ 2 exp(−t2/K2) t ≥ 0. (2.21)

In fact the reverse implication holds (up to modification of K by a universal constant factor).
These as well as a couple of other useful equivalent properties are summarized in the following:

Proposition 2.5 (Equivalent characterizations of sub-Gaussian variables). Let X be a real-
valued random variable. The following are equivalent, in the sense that if property (i) holds,
then property (j) also holds with Kj = O(Ki) (all constants Ki are assumed to be positive
and finite).

(1) X is K1-sub-Gaussian:

E exp(X2/K2
1 ) ≤ 2. (2.22)

(2) X has sub-Gaussian tails:

P(|X| ≥ t) ≤ 2 exp(−t2/K2
2 ) ∀t ≥ 0. (2.23)

(3) X has sub-Gaussian Lp-norms:

∥X∥p = (E|X|p)1/p ≤ K3
√
p ∀p ≥ 1. (2.24)

Moreover, if EX = 0, then the above properties are equivalent to the following (with Ki ≍
K4 for i = 1, 2, 3):

(4) X has sub-Gaussian moment generating function:

E exp(λX) ≤ exp(K2
4λ

2) ∀λ ∈ R. (2.25)

Proof. See [Ver18, §2.5.1]. (Many of the arguments there were already used in the proofs of
Theorem 2.1 and Lemma 2.2.) □

Of course, Gaussians are examples of sub-Gaussian random variables, as are bounded ran-
dom variables – indeed, you can check that

∥X∥ψ2 ≲ ∥X∥L∞ . (2.26)

Theorem 1.4 states that for uniform random X ∈ {−1, 1}n and fixed u ∈ Sn−1, ⟨X,u⟩ is O(1)-
sub-Gaussian. From this one sees that if Y ∼Bin(n, 12) then Y −EY is O(

√
n)-sub-Gaussian.

Using (2.5) we can prove the following generalization of Theorem 2.1 with a short argument.

Theorem 2.6 (Hoeffding’s inequality for sub-Gaussian variables). Let X1, . . . , Xn be inde-
pendent random variables such that for each i ∈ [n], Xi − EXi is Ki-sub-Gaussian, and let

Sn = X1 + · · ·+Xn. Then Sn − ESn is O(K)-sub-Gaussian, where K := (
∑n

i=1K
2
i )

1/2.
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Indeed, Theorem 2.1 follows from Theorem 2.6 and (2.26).

We can equivalently state Hoeffding’s inequality in terms of the sub-Gaussian norm as

X1, . . . , Xn independent =⇒
∥∥∥ n∑
i=1

Xi

∥∥∥2
ψ2

≲
n∑
i=1

∥Xi∥2ψ2
. (2.27)

Proof of Theorem 2.6. Since Sn − ESn =
∑n

i=1Xi − EXi it suffices to establish the claim
under the assumption that EXi = 0 for each i. For arbitrary λ ∈ R, by the characterization
(4) of sub-Gaussian variables in Proposition 2.5 we have E exp(λXi) = exp(O(K2

i λ
2)) for each

i, and by independence,

E exp(λSn) =
n∏
i=1

E exp(λXi) =
n∏
i=1

exp(O(K2
i λ

2)) = exp(O(K2λ2)).

The claim now follows by another application of Proposition 2.5(4). □

In the proof of Theorem 1.5 we encountered variables satisfying the following weaker tail
hypothesis.

Definition 2.7 (Sub-exponential variable). For a constant K > 0, we say that a real-valued
random variable X is K-sub-exponential if

E exp(|X|/K) ≤ 2. (2.28)

The best constant K is called the ψ1-norm of X:

∥X∥ψ1 := inf{K > 0 : E exp(|X|/K) ≤ 2}. (2.29)

More generally, we say that a random vector X ∈ Rd is K-sub-exponential if ⟨X,u⟩ is K-sub-
exponential for every fixed unit vector u ∈ Sd−1. If X is K-sub-exponential for some finite K
then we may simply say that X is sub-exponential.

Proposition 2.8 (Equivalent characterizations of sub-exponential variables). Let X be a
real-valued random variable. The following are equivalent, in the sense that if property (i)
holds, then property (j) also holds with Kj = O(Ki).

(1) X has a finite absolute exponential moment: for some K1 ∈ (0,∞),

E exp(|X|/K1) ≤ 2 (2.30)

(2) X has sub-exponential tails: for some K2 ∈ (0,∞),

P(|X| ≥ t) ≤ 2 exp(−t/K2) ∀t ≥ 0. (2.31)

(3) X has sub-exponential Lp-norms: for some K3 ∈ (0,∞),

∥X∥p = (E|X|p)1/p ≤ K3p ∀p ≥ 1. (2.32)

Moreover, if EX = 0, then the above properties are equivalent to the following (with Ki ≍
K4 for i = 1, 2, 3):

(4) X has sub-exponential moment generating function: for some K4 ∈ (0,∞),

E exp(λX) ≤ exp(K2
4λ

2) ∀λ ∈ [−K−1
4 ,K−1

4 ]. (2.33)

Proof. Exercise. □
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3. Jan 23: Concentration from the martingale method

• We state and prove the Azuma–Hoeffding inequality
• We state and prove an important consequence – McDiarmid’s inequality – showing
concentration for general functions on product probability spaces that are Lipschitz
with respect to the Hamming metric.

• We see a few applications.

3.1. The Azuma–Hoeffding inequality. Many random variables of interest cannot be
decomposed as sums of independent random variables as in Theorem 2.1. However, a wide
range of applications is opened up with the realization that the proof of Theorem 2.1 applies
with minor modification to martingale sequences.

The basic idea is as follows: Suppose we have a random variable Z = F (X1, . . . , Xn) that
is a function of a large number n of random variables (not necessarily independent). A priori
our best guess of the value of Z is EZ. We then consider “revealing” (or “exposing”) the values
of each Xi in turn. At stage i our best guess of Z is given by the conditional expectation
E(F (X1, . . . , Xn)|X1, . . . , Xi)). If we can show that at each step, the outcome for Xi cannot
affect the conditional expectation very much, it will follow from Theorem 3.1 below that Z is
concentrated. One should keep in mind the special case Z = Sn = X1 + · · ·Xn of the sum of
independent centered bounded variables, which was already covered by Theorem 2.1 – in this
case, Xi can only affect the full sum by ∥Xi∥L∞ ≤ |bi − ai|.

We formalize the general idea of “revealing” bits of information one at a time using a
(finite) filtration of the probability space.5 Let {∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F be a finite
filtration of a probability space (Ω,F ,P). Recall that a sequence Y0, Y1, . . . , Yn ∈ L1(Ω,F) is
a martingale with respect to the filtration if Yi ∈ L1(Ω,Fi) and E(Yi|Fi−1) = Yi−1 for each
1 ≤ i ≤ n. (Thus Y0 = EYi for all 1 ≤ i ≤ n.) The sequences of differences Xi := Yi − Yi−1

is called a martingale difference sequence. Note that E(Xi|Fi−1) = 0 (in particular EXi = 0)
for all 1 ≤ i ≤ n.

A special case is if Yn − EYn is the sum Sn of independent centered random variables
X1, . . . , Xn, where the filtration is the one generated by the sequence: Fi := σ(X1, . . . , Xi) (if
you haven’t seen martingales before then it would be instructive to verify this).

Theorem 3.1 (Azuma–Hoeffding inequality). Let X1, . . . , Xn be a martingale difference se-
quence on a filtered probability space as above, and assume |Xi| ≤ bi a.s. for all i ∈ [n]. Then

with B := (
∑n

i=1 b
2
i )

1/2, we have that Yn − EYn is O(B)-sub-Gaussian.

Proof. The proof largely follows that of Theorem 2.1. We may assume ESn = 0. To bound
the moment generating function we now write

E exp(λSn) = E exp(λSn−1 + λXn) = E exp(λSn−1)E(exp(λXn)|Fn−1).

Now we can bound the inner expectation

E(exp(λXn)|Fn−1) = exp(O(λ2b2n)) (3.1)

in the same way we established (2.4), and hence

E exp(λSn) = exp(O(λ2b2n))E exp(λSn−1).

5A standard graduate course on probability mostly focuses on the case of infinite filtrations F0 ⊂ F1 ⊂ · · ·
and convergence properties of martingales, but such questions are largely irrelevant for our aims of getting
quantiative, non-asymptotic bounds.
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Iterating, we obtain

E exp(λSn) = exp(O(λ2B2))

and the proof concludes as in the proof of Theorem 2.1. □

3.2. Concentration for Hamming-Lipschitz functions. The general concentration of
measure (CoM) phenomenon is often stated informally as follows:

Lipschitz functions of a large number of independent (or approximately in-
dependent) random variables are typically very close to their expectation.

(CoM)

This phenomenon holds for a wide variety of metric spaces that are “high-dimensional” in some
sense, such as high-dimensional spheres Sd−1 with the geodesic distance (or more generally,
positively curved manifolds – see the appendix of [MS86]), and high-dimensional product
spaces. For the case of product spaces, the choice of metric is important. In this section
we use Azuma’s inequality to give a version of (CoM) for product spaces equipped with the
Hamming metric (or more generally a weighted Hamming metric) known as McDiarmid’s
inequality. Next lecture we’ll see another powerful version of (CoM) on product spaces with
the Euclidean metric.

We’ll deduce McDiarmid’s inequality from Theorem 3.1. For random X in a metric space
(X , d) and a function F : X → R, in order to show F (X) is close to its expectation with high
probability, one aims to find a filtration under which the Doob martingale Yi := E(F (X)|Fi)
has bounded differences, and then from Theorem 3.1 it follows that Yn−EYn = F (X)−EF (X)
is O(B)-sub-Gaussian.

We put this in a general framework. Given metric spaces (X1, d1), . . . , (Xn, dn), we endow
the product space X = X1 × · · · × Xn with the Hamming metric

dH(x, y) :=
n∑
i=1

1xi ̸=yi (3.2)

or more generally, a weighted Hamming metric

dH,b(x, y) :=

n∑
i=1

bi1xi ̸=yi (3.3)

for given positive weights b1, . . . , bn. (So far we are ignoring the metrics di on each factor,
but we include these so that we can talk about random elements Xi ∈ Xi, i.e. measurable
functions from (Ω,F) to Xi equipped with the Borel σ-algebra induced by the metric di. In
many of the cases we’ll consider Xi will be finite sets and the metrics di are unimportant.)

Note that a function F : X → R is 1-Lipschitz with respect to dH,b if F (x) can change by
at most bi when all but the ith coordinate of x is held fixed and xi is allowed to vary. As a
consequence of Theorem 3.1 we have the following:

Theorem 3.2 (McDiarmid’s inequality). In the above setup, let F : X → R be 1-Lipschitz
with respect to dH,b for some weight vector b = (b1, . . . , bn), and let X = (X1, . . . , Xn) ∈ X be

a random element with independent components. Then with B := (
∑n

i=1 b
2
i )

1/2, we have that
F (X)− EF (X) is O(B)-sub-Gaussian.

Proof. Taking the filtration Fi := σ(X1, . . . , Xi) given by successively exposing each co-
ordinate of X, the claim will follow from Theorem 3.1 once we show that the sequence
Yi := E(F (X)|Fi) satisfies the bounded differences assumption |Yi − Yi−1| ≤ bi a.s. To
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show this, we introduce an independent copy X ′ = (X ′
1, . . . , X

′
n) of the vector X, and note

(using the shorthand X<i := (X1, . . . , Xi−1), etc.)

|Yi − Yi−1| = |E(F (X)|X≤i)− E(F (X)|X<i)|
= |E[F (X<i, Xi, X>i)− F (X<i, X

′
i, X>i)|X≤i]|

≤ E[|F (X<i, Xi, X>i)− F (X<i, X
′
i, X>i)||X≤i]

≤ bi

as desired. □

Example 3.3 (Random walk in a Banach space). Let f1, . . . , fn be elements of a normed
space (V, ∥·∥), let X1, . . . , Xn be iid Rademacher variables, and set Z := ∥X1f1+ · · ·+Xnfn∥.
We claim

P(|Z − EZ| ≥ t) ≤ 2 exp(−ct2/B2) ∀t ≥ 0 (3.4)

with B := (
∑n

i=1 ∥fi∥2)1/2. Indeed, with F : {−1, 1}n → R given by F (x1, . . . , xn) = ∥x1f1 +
· · ·+ xnfn∥, we have Z = F (X) with X = (X1, . . . , Xn). From the triangle inequality, if x, y
differ only on coordinate i, then

|F (x)− F (y)| ≤ ∥(xi − yi)fi∥ = 2∥fi∥
so F is 1-Lipschitz under the weighted Hamming metric dH,b with bi = 2∥fi∥. The claim now
follows from Theorem 3.2. ♢

Example 3.4 (Longest common subsequence). For two elements x, y ∈ {0, 1}n let F (x, y) be
the length of the longest common subsequence of the two vectors. That is, F (x, y) is the largest
k for which there are increasing sequences 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n
such that

xi1 = yi1 , . . . , xik = yik .

(The problem of finding long common subsequences of long sequences of bits, or more generally
of letters from other finite alphabets such as {A,C,G, T}, is of relevance for the problem of
matching samples of DNA sequences.)

Let X1, . . . , Xn, Y1, . . . , Yn be independent Bernoulli variables (possibly with different ex-
pectations. We claim that F (X,Y ) − EF (X,Y ) is O(

√
n)-sub-Gaussian. Indeed, suppose

F (x, y) = ℓ, and note that modifying a single coordinate of x or y can only decrease the
length of the longest common subsequence by at most 1 – if the modified coordinate was
part of the optimizing subsequence, simply deleting it gives a common subsequence of length
ℓ − 1, which is a lower bound for the longest common subsequence of the new sequences.
Thus, given two pairs (x, y), (x′, y′) ∈ {0, 1}2n that differ on a single coordinate, we have
F (x′, y′) ≥ F (x, y)− 1. Applying this bound with (x, y) and (x′, y′) reversed shows that F is
1-Lipschitz under the Hamming metric dH on the hypercube {0, 1}2n, and the claim follows
from Theorem 3.2. ♢

Remark 3.5. We showed that the longest common subsequence for length-n random binary
inputs is concentrates at scale at most O(

√
n) around its expectation EF (X,Y ). However,

we haven’t said anything about the order of magnitude of the expectation. A sub-additivity
argument shows that for iid Bernoulli(12) inputs,

1
nEF (X,Y ) converges to a constant γ2 (called

the Chvátal–Sankoff constant) as n → ∞, but the value of this constant is unknown as of
this writing. (One similarly has existence of a constant γk for inputs drawn uniformly from
an alphabet of size k.) The current best results due to G. S. Lueker put γ2 in the range
(0.788071, 0.826280) [?].
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3.3. The chromatic number of Erdős–Rényi graphs. Recall that the chromatic number
χ(G) of a graph G is the minimal number of colors needed to color the vertices of G so that
no edge has the same color at both endpoints (such a coloring is called a proper coloring).
Alternatively, χ(G) is the minimal number of parts in a partition of the vertices of G into
independent sets.

Let n ∈ N and p ∈ (0, 1), and let Gn,p be an Erdős–Rényi random graph on labeled vertices
1, . . . , n – that is, each pair {i, j} ⊂ [n] is included as an edge of Gn,p independently with
probability p. Let {Aij}1≤i<j≤n be the iid Bernoulli(p) indicator variables for the events
Eij = {{i, j} is an edge in Gn,p}. Let Z := χ(Gn,p).

Theorem 3.6 (Shamir and Spencer ’87). Z − EZ is O(
√
n)-sub-Gaussian (specifically, it is√

2(n− 1)-sub-Gaussian).

(The sharp bound
√

2(n− 1) follows from the same argument as below and applying The-
orem 3.2 with the sharp value for c there.)

Let us first describe the proof at an informal level. We consider the filtration (Fi)ni=0 that
reveals the induced subgraph on vertices 1, . . . , i for each 1 ≤ i ≤ n. Thus, at step i we are
told which vertices in [i− 1] are neighbors in i. Since we can always introduce a new color for
vertex i, this new information at step i can only affect the conditional expectation of Z by at
most 1. Thus, the result will follow from Theorem 3.1, taking all weights bi equal to 1.

We can argue more formally using Theorem 3.2 as follows.

Proof. Since the
(
n
2

)
potential edges are included independently, Gn,p is a random sample from

a product probability space. That is, we associate the set of graphs over [n] with the discrete

cube Gn = {0, 1}(
[n]
2 ), where g = (gij)1≤i<j≤n ∈ Gn is associated to the graph that includes

edge {i, j} whenever gij = 1. For each 2 ≤ k ≤ n let Ek = {{i, k} : 1 ≤ i ≤ k − 1} be the set
of potential edges joining k to an earlier vertex in the ordering. E2, . . . , En is a partition of

the set
(
[n]
2

)
of potential edges. This gives a product space decomposition Gn = X2×· · ·×Xn,

where Xk = {0, 1}Ek . For each 1 ≤ k ≤ n let Xk = (Aik)
k−1
i=1 ∈ Xk be the random Bernoulli

vector determining the neighbors of vertex k in [k−1] in the random graph Gn,p. An element
(x2, . . . , xn) ∈ X2 × · · · × Xn determines a graph g ∈ Gn, and we define F (x2, . . . , xn) to be
χ(g). We have thus represented χ(Gn,p) as a function F (X2, · · · , Xn) of independent random
elements of the respective cubes X2, . . . ,Xn.

The claim that Z−EZ is O(
√
n)-sub-Gaussian will follow from Theorem 3.2 as soon as we

can show that F is O(1)-Lipschitz under the Hamming metric dH on X2× · · · ×Xn. Consider
arbitrary x, y ∈ X2×· · ·×Xn such that x and y differ on a single factor Xk for some 2 ≤ k ≤ n.
Thus, the associated graphs only differ on the set of edges joining k to [k− 1]. We claim that

F (y) ≤ F (x) + 1. (3.5)

By applying the same bound with x and y reversed it will then follow that F is 1-Lipschitz.
To see why (3.5) is true, we consider a fixed coloring of the vertices that is proper for the
graph associated to x and uses the minimal number F (x) of colors. From this coloring, we
can get a proper coloring for the graph associated to y by simply assigning a new color to
vertex k, thus using F (x) + 1 colors. The minimal number of colors needed is thus at most
F (x) + 1, and (3.5) follows, completing the proof of Theorem 3.6. □
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4. Jan 25: Concentration from isoperimetry

Last time we saw how the martingale method can be used to formalize the general principle
(CoM) for functions on product spaces that are Lipschitz under the Hamming metric. Now
we consider functions that are Lipschitz under the Euclidean metric (or a geodesic distance
derived from an ambient Euclidean metric). The basic approach exploits isoperimetric theo-
rems (or weak versions of isoperimetric theorems). Later in the course we’ll see an alternative
approach through log-Sobolev inequalities.

Whereas the martingale method led naturally to bounds for the deviation of random vari-
ables from their expectation, we’ll see that the isoperimetric approach instead leads naturally
to bounds on deviations from the median. The difference will be unimportant for applications
we’ll consider, as shown in the following.

Exercise 4.1 (Equivalence of concentration about the mean and median). Recall that m ∈ R
is a median for a real-valued random variable if

P(X ≤ m) ≥ 1/2 and P(X ≥ m) ≥ 1/2.

(a) Show that any real random variable X has at least one median, and that the set of all
medians of X is a closed interval. Give an example of a random variable having more
than one median value.

(b) Let m be any median of X, and suppose there are a ∈ R and K > 0 such that

P(|X − a| ≥ t) ≤ 2 exp(−t2/K2) ∀t ≥ 0. (4.1)

Show that |a−m| = O(K), and deduce that

P(|X −m| ≥ t) ≤ 2 exp(−ct2/K2) ∀t ≥ 0 (4.2)

for some universal constant c > 0. Deduce from this that |m − EX| = O(K), and that
(4.2) holds with m replaced by EX, for a possibly smaller universal constant c > 0.

(Hint: Note that the bound (4.2) holds trivially for t ≤ K
√
(log 2)/c, so by shrinking

c we may assume without loss of generality that t ≥ CK for any fixed constant C > 0 as
large as we please.)

(c) Show that if (4.1) holds then Var(X) = O(K2). Deduce that if X ≥ 0 almost surely, then

(4.2) holds with m replaced by (EX2)1/2, for a possibly smaller universal constant c > 0.

4.1. From isoperimetry to concentration. Let (X , d, µ) be a metric measure space, that
is, a metric space (X , d) equipped with a Borel σ-algebra B generated by the topology induced
by d, and a (not necessarily probability) measure µ : B → [0,+∞]. For A ∈ B, we can define
the t-blowups

At := {x ∈ X : d(x,A) ≤ t} (4.3)

and the boundary measure

µ+(A) := lim inf
t→0

1

t
µ(At \A). (4.4)

A basic problem is to determine, for give a > 0, the minimizers of the isoperimetric ratio

µ+(A)/µ(A) (4.5)

over all A of measure µ(A) = a.

For the case of Rd equipped with the Euclidean metric and Lebesgue measure µ = vold, we
denote vold−1(∂A) := µ+(A). We have the following classical result:
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Theorem 4.1 (Isoperimetric theorem). Let A ⊂ Rd be nonempty and Lebesgue measurable
and let B be a Euclidean ball of the same volume. Then for any t ≥ 0,

vold(At) ≥ vold(Bt) (4.6)

and hence (if A has smooth boundary, say),

vold−1(∂A) ≥ vold−1(∂B). (4.7)

We give the proof of Theorem 4.1 in Section 4.2, using the Brunn–Minkowski inequality.

Another setting in which the isoperimetric problem has been solved is the sphere Sd−1 (with
the Euclidean geodesic distance), where the extremizing sets are spherical caps, i.e. sets of
the form

Cv,b := {u ∈ Sd−1 : ⟨u, v⟩ ≥ b} (4.8)

for some v ∈ Sd−1 and b ∈ [−1, 1].

Theorem 4.2 (Lévy’s isoperimetric theorem). On Sd−1, let dg be the Euclidean geodesic
distance and let σ be the uniform surface measure (normalized to be a probability measure).
For any a > 0 and A ⊂ Sd−1 with σ(A) = a, we have

σ(At) ≥ σ(Ct) ∀t ≥ 0 (4.9)

where C is a spherical cap of measure σ(C) = a.

(An inequality of the form (4.7) follows from this but will not be needed.)

Exercise 4.2. Use Theorem 4.2 to prove Theorem 4.1.

We do not give the proof of Theorem 4.2 in these notes, but show how it combines with
the computation of the measure of spherical caps from Proposition 1.2 to imply a general
concentration of measure phenomenon.

Corollary 4.3 (Concentration on the sphere, blowup form). For any A ⊂ Sd−1 with σ(A) ≥
1
2 , we have

σ(Act) ≤ 2 exp(−ct2d) ∀t ≥ 0 (4.10)

(writing Ac := Sd−1 \A for A ⊂ Sd−1).

(One can remove the factor 2 in (4.10) using the proof of Proposition 1.2, but this is not
important for us.)

Proof. Fixing A and t ≥ 0, by Theorem 4.2,

σ(Act) = 1− σ(At) ≤ 1− σ(Ct) = σ(Cct )

where C is a spherical cap of measure σ(C) = σ(A) ≥ 1
2 . From Proposition 1.2, σ(Cct ) ≤

2 exp(−ct2d) for all t ≥ 0, and the claim follows. □

From this we also deduce a general concentration of measure result of the type (CoM).

Corollary 4.4 (Concentration on the sphere, functional form). Let f : Sd−1 → R be 1-
Lipschitz under the Euclidean geodesic distance dg, and let U ∈ Sd−1 have distribution σ.
Then

P(|f(U)−mf | ≥ t) ≤ 2 exp(−ct2d) ∀t ≥ 0

for a universal constant c > 0, where mf is the (unique) median of f(U).
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Proof. Uniqueness of the median in this case is left as an exercise. Taking A = {f ≤ mf}, we
have by the Lipschitz property that {f ≥ mf + t} ⊆ Act , so by Corollary 4.3,

P(f(U) ≥ mf + t) ≤ P(U ∈ Act) ≤ exp(−ct2d).

We similarly obtain the same bound for the lower tail by taking A = {f ≥ mf}, and the claim
follows. □

In fact the blowup and functional formulations of the concentration of measure phenomenon
are equivalent.

Exercise 4.3. Show that Corollary 4.4 implies Corollary 4.3.

One notes that the arguments to deduce Corollaries 4.3 and 4.4 from Theorem 4.2 ap-
ply quite generally, showing how to deduce concentration of measure from an isoperimetric
theorem together with a bound for the measure of extremizing sets.

Another important case where the isoperimetric theorem has been solved is for Rn equipped
with the standard Gaussian measure γn rather than the Lebesgue measure.

Exercise 4.4 (Gaussian concentration from isoperimetry). The isoperimetric theorem for
n-dimensional Gauss space (i.e. Rn equipped with the Euclidean distance d2(x, y) = ∥x− y∥2
and the standard Gaussian measure γn) states that for any m ∈ (0, 1) and r > 0, among all
Borel sets A ⊂ Rn of measure γn(A) = m, the ones that minimize γn(Ar) are half-spaces, i.e.
sets of the form

Hu,a = {x ∈ Rn : ⟨x, u⟩ ≤ a}
for some u ∈ Sn−1 and a ∈ R. Use this fact to show that for any 1-Lipschitz function
f : Rn → R, f(G) − Ef(G) is K-sub-Gaussian with K = O(1), where G ∼ N(0, In) is a
standard Gaussian vector. (You may find a result from Exercise 4.1 helpful for this.) Bonus:
find the optimal value of K.

Corollary 4.4 and Exercise 4.4 give two important examples where concentration of measure
for Lipschitz functions can be deduced from an isoperimetric theorem. In fact, isoperimetric
theorems are only known in a few cases (another is the discrete hypercube with the uniform
measure and Hamming metric, leading to another proof of Theorem 3.2). Concentration of
measure is generally easier to establish than an isoperimetric principle (particularly if you
don’t care about the optimal constant c). In particular, in Section 4.2 we give a proof of
Corollary 4.4 using the Brunn–Minkowsky inequality for Lebesgue measure that bypasses the
more difficult Theorem 4.2.

4.2. (Optional) Proof of the classical isoperimetric theorem. Here we write λ = λd
for Lebesgue measure on Rd. The Brunn–Minkowski theorem (BMI = BMI(d)) says

λ(A+B)1/d ≥ λ(A)1/d + λ(B)1/d ∀ A,B (4.11)

(where A,B are assumed to be measurable and non-empty here and in the sequel). This is
often stated in the equivalent form

λ(θA+ (1− θ)B) ≥ λ(A)θλ(B)1−θ ∀θ ∈ [0, 1] ∀ A,B. (4.12)

Claim 4.5. (4.11) ⇔ (4.12).
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Proof. (⇒) Let θ ∈ [0, 1]. From (4.11) and the weighted AM-GM inequality (or Jensen after
taking logs) we have

λ(θA+ (1− θ)B)1/d ≥ λ(θA)1/d + λ((1− θ)B)1/d

= θλ(A)1/d + (1− θ)λ(B)1/d

≥ λ(A)θ/dλ(B)(1−θ)/d □

(⇐) Fix sets A,B. Applying (4.12) with dilates A/θ, B/(1− θ) in place of A,B, we have

λ(A+B) ≥ λ(A/θ)θλ(B/(1− θ))1−θ

for all θ ∈ [0, 1]. Taking dth roots on both sides,

λ(A+B)1/d ≥ (λ(A)1/d/θ)θ(λ(B)1/d/(1− θ))1−θ.

Optimizing θ on the right hand side yields the claim. □

. . .

5. Jan 30: Talagrand’s inequality

References:

• Talagrand’s original papers [Tal96,Tal95] (the shorter review [Tal96] is a nice intro-
duction).

• These notes
• Alon & Spencer [AS16]
• [Tao12, §2.1]

5.1. Dimension-free concentration for product measures? From Exercise 4.4 we see
that 1-Lipschitz functions (under the Euclidean metric) of standard Gaussian vectors in Rn
enjoy sub-Gaussian concentration about their means (or, equivalently, their medians) of width
O(1). Thus, Gaussian vectors enjoy dimension-free concentration under the Euclidean metric.

It’s worth noting how this can improve on McDiarmid’s inequality, which is only sensitive
to the coordinate-wise Lipschitz behavior of functions. Let f : Rn → R be 1-Lipschitz under
∥ · ∥2, and let h : Rn → Rn be the mapping that applies the arctangent function entrywise,
thus h(x) = (arctan(xi))

n
i=1. Then F = f ◦ h is ∥ · ∥2-Lipschitz. Moreover, because of the

composition with h we have that F is O(1)-Hamming Lipschitz, so McDiarmid’s inequality
implies that for G ∼ N(0, In), F (G)−EF (G) is O(

√
n)-sub-Gaussian, which is far worse that

than the scale O(1) implied by Exercise 4.4. (We only applied h in order to get a vector
with almost-surely bounded entries, a minor technical point since Gaussians have very light
tails.) In fact, for the example f(x) = ∥x∥2 the result of McDiarmid’s inequality is trivial, as
F (G) = O(

√
n) a.s. in this case. Thus, the Euclidean 1-Lipschitz property is an important

strengthening of the Hamming-Lipschitz property.

It is then natural to ask the following:

Question 5.1. Does dimension-free concentration for Euclidean Lipschitz functions extend
to general product measures (apart form the Gaussian)?

https://services.math.duke.edu/~nickcook/talagrand.pdf
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The answer to this turns out to be “no”, as shown by the following:

Example 5.2. Let A = {x ∈ {0, 1}n :
∑
xi ≤ n/2} and let F : Rn → R be the function

F (x) = d2(x,A) (where we write d2(x, y) = ∥x − y∥2 for the Euclidean metric). Then F is
1-Lipschitz under d2. Letting X ∈ {0, 1}n be uniform random, we claim that F (X) does not

concentrate at scale O(1), or in fact at any scale o(n1/4). First, note that 0 is a median of
F (X) since A contains at least half of the discrete cube. On the other hand, for small δ > 0
let

Bδ = {x ∈ {0, 1}n :
∑
i

xi ≥ n/2 + δ
√
n}.

We claim Bδ ⊆ Ac
δ1/2n1/4 , where At = {x ∈ Rn : d2(x,A) ≤ t} is the t-blowup of A under d2.

Indeed, for any x ∈ Bδ and y ∈ A, we have

δ
√
n ≤

∑
i

xi − n/2 ≤
∑
i

xi − yi ≤
∑
i

(xi − yi)
2 (5.1)

where in the last bound we crucially used that both x and y lie in the discrete cube. Thus
∥x− y∥2 ≥ δ1/2n1/4 as claimed. We hence have

P(F (X) ≥ δ1/2n1/4) ≥ P(X ∈ Bδ).

But since Sn =
∑n

i=1Xi has mean n/2 and standard deviation ≳
√
n, one can easily show

that P(X ∈ Bδ) ≥ 1
10 , say, if δ is a sufficiently small universal constant. Thus we have

P(F (X) ≤ 0) ≥ 1

2
and P(F (X) ≥ cn1/4) ≥ 1

10

for a sufficiently small constant c > 0, so F (X) does not concentrate at a scale smaller than

cn1/4. ♢

A key feature of the function F in the above example is the integrality gap between elements
of the subset A of the discrete cube, which was applied in the last inequality in (5.1). As
the next result shows, if instead of d2(x,A) we had taken F (x) to be the distance from x to

the convex hull Ã of A, then F (X) would enjoy dimension-free concentration (and one checks

that the last bound in (5.1) would fail for this example, for general y ∈ Ã).

Theorem 5.3 (Talagrand’s inequality, convex functional form). Let F : Rn → R be 1-
Lipschitz under ∥ · ∥2 and convex, and let X ∈ [−1, 1]n have independent components. Then
for any median mF of F (X), we have that F (X)−mF is O(1)-sub-Gaussian. In fact,

P(|F (X)−mF | ≥ t) ≤ 4 exp(−t2/16) ∀t ≥ 0. (5.2)

Remark 5.4. In fact, as the proof shows, we may relax the convexity assumption to assume
only that the sub-level sets {F ≤ a} are convex for all a ∈ R (this is sometimes called
quasi-convexity).

Remark 5.5. From Exercise 4.1 we get that F (X)−EF (X) is O(1)-sub-Gaussian, and if F is

non-negative then F (X)− (EF (X)2)1/2 is O(1)-sub-Gaussian.

Exercise 5.1. Deduce from Theorem 5.3 the more general statement that if F is convex and
L-Lipschitz, and X ∈ Rn has independent entries bounded in absolute value by K a.s., then
F (X) is O(KL)-sub-Gaussian.

Here are some examples of functions to which Theorem 5.3 applies.
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Example 5.6 (Distance to a subspace). If A ⊂ Rn is convex, then F (x) := d2(x,A) is convex
and 1-Lipschitz under d2, and Theorem 5.3 implies that d2(X,A) enjoys O(1)-sub-Gaussian
concentration for any random vector X with independent components of size O(1) a.s.

An important special case in the study of random matrices is that A is a fixed d-dimensional
subspace V ⊂ Rn. A computation shows Ed2(X,V )2 = n − d if X has standardized entries
(centered and unit variance), and Theorem 5.3, together with a result from Exercise 4.1, shows
that d2(X,V ) −

√
n− d is O(1)-sub-Gaussian. Here again is a situation where McDiarmid’s

inequality only provides concentration at the trivial scale O(
√
n). ♢

Example 5.7 (Norm of a random matrix). Identifying the space of n × n matrices with

real entries with Rn×n, the Euclidean norm is given by ∥A∥2 = (
∑n

i,j=1A
2
ij)

1/2 = ∥A∥F , the
Frobenius (or Hilbert–Schmidt) norm. Let F (A) := ∥A∥op = supu∈Sn−1 ∥Au∥2 be the ℓ2 → ℓ2

operator norm of A. Since

∥A∥2F =
n∑
i=1

σi(A)
2 ≥ σ1(A)

2 = F (A)2

where σ1(A) ≥ · · · ≥ σn(A) ≥ 0 are the singular values of A, it follows that F is 1-Lipschitz
under the Euclidean metric. Since F is a norm, we have by the triangle inequality and
homogeneity that

F (θA+ (1− θ)B) ≤ θF (A) + (1− θ)F (B) ∀A,B ∈ Rn×n , θ ∈ [0, 1]

so F is convex. From Theorem 5.3 it follows that if X = (Xij) is an n×n random matrix with
independent entries Xij ∈ [−1, 1], then ∥X∥op−mF is O(1)-sub-Gaussian for any median mF

of ∥X∥op.
We can compare this with the typical order of ∥X∥op. So far everything we’ve said applies

to the matrix of all zeros, but if the entries have variances uniformly bounded below then it’s
not hard to show that any median of ∥X∥op is of size ≳

√
n (and in fact with a bit more

work one has a matching upper bound O(
√
n)). This is particularly easy for the random

sign matrix with iid Rademacher entries (thus X is uniform in {−1, 1}n×n). Then ∥X∥op ≥
∥Xe1∥2 = (

∑n
i=1X

2
i1)

1/2 =
√
n a.s., where e1 = (1, 0, . . . , 0) is the first standard basis vector.

♢

Remark 5.8. While this dimension-free concentration for the norm of random matrices is a
surprising and useful fact, it turns out that in fact ∥X∥op has fluctuations of order n−1/6!

Moreover, n1/6(∥X∥op − 2
√
n) converges in distribution to a Tracy–Widom distribution, a

measure which, like the Gaussian, arises for mysterious reasons in diverse contexts. Tracy–
Widom universality aside, the concentration at scale smaller than what is implied by the
“off-the-shelf” concentration result of Theorem 5.3 is an instance of what is known as the
superconcentration phenomenon – see [Cha14] for more on this. (We may have time to explore
this a bit later in the course.) Below we’ll consider concentration for another example of a
random variable enjoying superconcentration (as well as Tracy–Widom universality) – the
longest increasing subsequence of iid samples Xi ∈ [0, 1] – using a related concentration
inequality of Talagrand of a more combinatorial nature.

As we’ll see, Talagrand’s inequalities (Theorem 5.3 and the combinatorial version we state
below) are particularly effective for showing concentration for functions F involving an opti-
mization problem over linear/sub-linear functionals. (Note that both of the preceding exam-
ples are of this type.)
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5.2. Another proof of the Johnson–Lindenstrauss Lemma. As another quick appli-
cation of Theorem 5.3, we give another proof of Theorem 1.5. (The following more general
statement could have been proved by the same lines as our first proof of Theorem 1.5, just
using the general Hoeffding inequality of Theorem 2.1 in place of Theorem 1.4.)

Theorem 5.9 (Johnson–Lindenstrauss lemma). Let x1, . . . , xm be fixed (deterministic) points
in RN . Let X be an N × d matrix with independent standardized real entries Xij (that is,
EXij = 0 and EX2

ij = 1 for all i, j) with |Xij | ≤ B a.s. for all i, j and some finite B. For

each i ∈ [m] set

yi :=
1√
d
XTxi. (5.3)

For any ε ∈ (0, 1), if

d ≥ Cε−2 logm (5.4)

then

1− ε ≤ ∥yi − yj∥22
∥xi − xj∥22

≤ 1 + ε ∀1 ≤ i < j ≤ m (5.5)

except with probability at most exp(−cε2d).

Proof. We may assume without loss of generality that ε ≤ 1
2 . For fixed u ∈ SN−1 consider

the function Fu : RN×d → R given by

Fu(A) := ∥ATu∥2.

Then for any A,B ∈ RN×d,

Fu(A)− Fu(B) ≤ ∥(A−B)Tu∥2 ≤ ∥A−B∥op ≤ ∥A−B∥F
so Fu is 1-Lipschitz under the Euclidean Frobenius norm on RN×d. One similarly sees from the
triangle inequality and homogeneity of norms that Fu is convex. From Theorem 5.3 it follows
that Fu(X) − mu is O(B)-sub-Gaussian for any fixed u ∈ SN−1, where mu is any median

of Fu(X). From Exercise 4.1 we get that Fu(X) − (EFu(X)2)1/2 is O(B)-sub-Gaussian. We

already computed in the proof of Theorem 1.5 that EFu(X)2 = d, so ∥XTu∥2 −
√
d is O(B)-

sub-Gaussian. Applying this with u = (xi − xj)/∥xi − xj∥2 for any 1 ≤ i < j ≤ m (we may
assume without loss of generality that all m points are distinct) gives

P
(∣∣∣∣ ∥yi − yj∥22

∥xi − xj∥22
− 1

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣ ∥yi − yj∥2
∥xi − xj∥2

− 1

∣∣∣∣ > cε

)
= P(|∥XTu∥2 −

√
d| > cε

√
d)

≤ 2 exp(−cε2d)

for a sufficiently small constant c > 0, where in the first bound we used that the mapping
t 7→ t2 is O(1)-Lipschitz on [12 ,

3
2 ]. The proof concludes by a union bound over all pairs {i, j}

just as in the proof of Theorem 1.5. □

6. Feb 01: Talagrand’s inequality – proof and further applications

6.1. Talagrand’s inequality on the discrete cube. The general form of Talagrand’s in-
equality involves an interesting way of quantifying the distance between a point and a set
that is somewhat hard to absorb at first. To motivate the idea we consider the special case
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of product measures on the discrete cube Qn = {0, 1}n, where the ideas are more transpar-
ent. (Recall that the counterexample of Example 5.2 was in this special setting.) We’ll then
explain how to generalize the definition and argument in the next subsection.

Theorem 6.1 (Talagrand’s inequality – discrete cube case). Let X = (X1, . . . , Xn) ∈ Qn
have independent components. For any convex set D ⊂ Rn with P(X ∈ D) > 0, we have

E exp(d2(X,D)2/4) ≤ 1

P(X ∈ D)
. (6.1)

Exercise 6.1. Use Theorem 6.1 to deduce the functional form Theorem 5.3 for the case that
X is supported in {−1, 1}n.

Proof of Theorem 6.1. First note that we can replaceD with the convex hull of its intersection
with the discrete cube. Indeed, with A := D∩Qn and conv(A) ⊂ Rn the convex hull of A, we
have conv(A) ⊆ D, so the left hand side in (6.1) can only increase when we replace D with
conv(A), while the right hand side is unchanged. It thus suffices to show

E exp(d2(X, conv(A))
2/4) ≤ 1

P(X ∈ A)
∀A ⊆ Qn. (6.2)

We proceed by induction on the dimension n. For the base case n = 1, the desired bound
(6.2) reads

p+ e1/4(1− p) ≤ 1/p (6.3)

where p = P(X ∈ A), and one easily verifies this inequality holds for any p ∈ [0, 1].

Now letting n ≥ 2, we aim to establish (6.2) assuming the statement holds with n − 1 in
place of n. Fix A ⊆ Qn. For a general point x ∈ Qn we’ll write x = (x′, xn) ∈ Qn−1 × {0, 1}.
We define three subsets of Qn−1:

Ab := {x′ ∈ Qn−1 : (x
′, b) ∈ A} , b = 0, 1, B := A0 ∪A1. (6.4)

Thus, A0, A1 are the two slices of A according to the value of the last coordinate, and B is
the projection of A to Qn−1. The key to the induction is the following claim controlling the
distance from x to conv(A) in terms of the distance from x′ to the convex hulls of A0, A1 and
B.

Claim 6.2. For any x = (x′, xn) ∈ Qn and λ ∈ [0, 1],

d2(x, conv(A))
2 ≤ λd2(x

′, conv(Axn))
2 + (1− λ)d2(x

′, conv(B))2 + (1− λ)2. (6.5)

Assuming the claim for now, let X = (X ′, Xn) ∈ Qn have independent components. We
write E′ := EX′ for expectation under the randomness of X ′ only (i.e. conditional on Xn).
Talagrand notes that the key to the proof is to resist the temptation to optimize the bound
(6.5) in λ at this point! Instead, we first exponentiate the inequality and average over X ′, to
bound

E′ exp(d2(X, conv(A))
2/4) ≤ e(1−λ)

2/4E′
[(
ed2(X

′,conv(AXn ))
2/4

)λ(
ed2(X

′,conv(B))2/4
)1−λ]

≤ e(1−λ)
2/4

(
E′ed2(X

′,conv(AXn ))
2/4

)λ(
E′ed2(X

′,conv(B))2/4
)1−λ

≤ e(1−λ)
2/4P′(X ′ ∈ AXn)

−λP(X ′ ∈ B)λ−1



26 N. COOK

where in the second line we applied Hölder’s inequality and in the third line we used the
induction hypothesis. We can express the right hand side in the last line as

P(X ′ ∈ B)−1e(1−λ)
2/4r−λ

where r := P′(X ′ ∈ AXn)/P(X ′ ∈ B) ∈ [0, 1]. Now we optimize λ depending on r. With the
choice

λ(r) := (1 + 2 log r)1r∈[e−1/4,1]

one can show (exercise) that

e(1−λ(r))
2/4r−λ(r) ≤ 2− r ∀r ∈ [0, 1].

Substituting into the previous bound, we’ve shown

E′ exp(d2(X, conv(A))
2/4) ≤ P(X ′ ∈ B)−1(2− P′(X ′ ∈ AXn)

P(X ′ ∈ B)
).

Writing u := P(X ∈ A)/P(X ′ ∈ B) ∈ [0, 1], upon averaging the above inequality over Xn we
obtain

E exp(d2(X, conv(A))
2/4) ≤ P(X ′ ∈ B)−1(2− u) = P(X ∈ A)−1u(2− u) ≤ P(X ∈ A)−1

giving (6.2) to complete the proof of Theorem 6.1 given Claim 6.2. □

For the proof of Claim 6.2 we need an elementary lemma. For A ⊂ Qn we write A↑ for
the upwards closure of A, i.e. the set of all vectors 1J = (1j∈J)

n
j=1 such that J contains the

support of some vector y ∈ A. Thus, A↑ is a monotone subset of Qn, in the sense that

y ∈ A↑, z ∈ Qn, yi ≤ zi ∀i =⇒ z ∈ A↑.

Lemma 6.3. For any A ⊂ Qn, we have d2(0, conv(A)) = d2(0, conv(A↑)).

(The reason for passing to A↑ will become clear in the proof of Claim 6.2.)

Intuitively, the reason for Lemma 6.3 is that the extra points we’ve included in A↑ are on
the “opposite side” of conv(A) from the origin.

Proof. It suffices to consider adding one point of the upward closure at a time: we claim
that for any E ⊂ Qn and z ∈ Qn \ E such that supp(y) ⊂ supp(z) for some y ∈ E, writing
E′ := E ∪ {z}, we have

d2(0, conv(E)) = d2(0, conv(E
′)). (6.6)

That the left hand side is at least as large as the right is obvious. For the reverse inequality,
note we can express any w ∈ conv(E′) \ conv(E) as w = αx + (1 − α)z for x ∈ E and
α ∈ [0, 1]. Then note that the point w0 = αx + (1 − α)y ∈ conv(E) is closer to the origin,
since all components of w − w0 = (1− λ)(z − y) are non-negative. □

Proof of Claim 6.2. We can apply an isometry of Qn to assume x = 0. Specifically, viewing
Qn as the abelian group (Z/2Z)n, the map y 7→ ϕ(y) = y− x is an isometry and takes x to 0.
(Note that ±x ± y are all equal to (1xi ̸=yi)

n
i=1 in (Z/2Z)n!) So replacing A with ϕ−1(A) we

may assume x = 0.

With this reduction and from Lemma 6.3, to establish the claim it now suffices to show

d2(0, conv(A↑))
2 ≤ λd2(0, conv(A0))

2 + (1− λ)d2(0, conv(B))2 + (1− λ)2. (6.7)

To see this, first note that
v ∈ A0 ⇒ (v, 0) ∈ A ⊆ A↑ (6.8)
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and

w ∈ B ⇒ (w, 1) ∈ A↑ (6.9)

(here is where we needed to pass to A↑, as we can’t guarantee (w, 1) lies in A). Taking convex
hulls, we deduce that

v ∈ conv(A0) , w ∈ conv(B) =⇒ (v, 0), (w, 1) ∈ conv(A↑) (6.10)

and hence

λ(v, 0) + (1− λ)(w, 1) ∈ conv(A↑) ∀v ∈ conv(A0), w ∈ conv(B), λ ∈ [0, 1]. (6.11)

Applying this with v, w of minimal ℓ2-norm, we conclude

d2(0, conv(A↑))
2 ≤ ∥(λv + (1− λ)w, 1− λ)∥22
= ∥λv + (1− λ)w∥22 + (1− λ)2

≤ λ∥v∥22 + (1− λ)∥w∥22 + (1− λ)2

= λd2(0, conv(A0))
2 + (1− λ)d2(0, conv(B))2 + (1− λ)2

giving (6.7), where we used Pythagoras’s theorem in the second line and convexity in the
third line. □

6.2. Generalizing to arbitrary product measures. Now we generalize Theorem 6.1 to
arbitrary product probability spaces. That is let, (Xi, µi), i ∈ [n] be probability spaces, and
form the product space (X , µ) with X = X1 × · · · × Xn, µ = µ1 ⊗ · · · ⊗ µn.

Recall that Theorem 6.1 is equivalent to the statement (see (6.2))

E exp(d2(X, conv(A))
2/4) ≤ 1

P(X ∈ A)
∀A ⊆ Qn (6.12)

for any subset A of the discrete cube Qn = {0, 1}n, where X ∈ Qn is any random vector with
independent components. In the general product space setting the notions of convex hull
and Euclidean distance don’t make sense, so the expression d2(X, conv(A)) has no meaning.
The following result replaces d2(X, conv(A)) with a quantity dC(X,A) called the convex (or
sometimes combinatorial) distance from X to A.

Let x ∈ X and A ⊆ X measurable. The basic idea for defining dC(x,A) is to treat X just
like the discrete cube – on each coordinate we’ll only keep track of the Boolean variable of
whether or not we can go from x to A by varying i. First, we let

U ′
A(x) = {(1xi ̸=yi)

n
i=1 : y ∈ A}. (6.13)

In words, this is the set of all vectors 1J ∈ Qn for J ⊆ [n] for which there exists y ∈ A such
that x and y differ on exactly the indices in J . Thus, for any 1J ∈ U ′

A(x), one can get from
x to A by changing only those coordinates j ∈ J . (Note that for the case X = Qn, the set
U ′
A(x) is exactly the recentered set A − x that we used in the proof of Theorem 6.1, with

subtraction taken in (Z/2Z)n.) We define

dC(x,A) := d2(0, conv(U
′
A(x))). (6.14)

From Lemma 6.3, the above is equivalent to

dC(x,A) := d2(0, VA(x)) (6.15)

where VA(x) := conv(UA(x)) and UA(x) := U ′
A(x)↑ is the set of all vectors 1J ∈ Qn such that

one can get from x to A by varying coordinates in J (but possibly not needing to change all
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of them). This passage to the monotone set UA(x) is needed for the same reason as in the
proof of Theorem 6.1.

One checks that for the case of the Boolean cube X = Qn, dC(x,A) = d2(x, conv(A)).

With the convex distance thus defined, we can state the general result.

Theorem 6.4 (Talagrand’s inequality). Let X be a random element of a product space X =
X1 × · · · × Xn with independent components X1, . . . , Xn. For any A ⊆ X with P(X ∈ A) > 0,
we have

E exp(dC(X,A)
2/4) ≤ 1

P(X ∈ A)
. (6.16)

Exercise 6.2. Prove Theorem 6.4 by adapting the proof of Theorem 6.1.

In Exercise 6.1 we used Theorem 6.1 to establish Theorem 5.3 for the case of Bernoulli
vectors. To deduce Theorem 5.3 in general we have the following:

Lemma 6.5 (Convex distance controls Euclidean distance). For any convex A ⊂ [0, 1]n and
x ∈ [0, 1]n, we have d2(x,A) ≤ dC(x,A).

Proof. Let w ∈ VA(x) be such that ∥w∥2 = dC(x,A). We can express w =
∑

s∈UA(x) λss

for weights λs ≥ 0 with
∑

s∈UA(x) λs = 1. By definition, for each s ∈ UA(x) there exists

zs = (zsi )
n
i=1 ∈ A−x such that |zsi | ≤ si for all i ∈ [n] (note that the entries of zs lie in [−1, 1]

since A and x are both contained in [0, 1]n). Letting z :=
∑

s∈UA(x) λszs, we have |zi| ≤ |wi|
for all i ∈ [n], so d2(x,A) = infy∈A−x ∥y∥2 ≤ ∥z∥2 ≤ ∥w∥2 = dC(x,A). □

Exercise 6.3. Use Theorem 6.4 and Lemma 6.5 to prove Theorem 5.3.

Exercise 6.4. Generalize Theorem 5.3 to allow F : Rnd → R 1-Lipschitz and convex, and
X ∈ (Bd)n with independent components, for arbitrary d ∈ N, where Bd is the closed Euclidean
unit ball in Rd.

6.3. A combinatorial perspective on the convex distance. The convex distance can
alternatively be expressed as a supremum over weighted Hamming distances dαH , which is
useful towards applications to combinatorial optimization, as well as for clarifying the way
in which Theorem 6.4 improves over McDiarmid’s inequality. Recall the weighted Hamming
distances on a product space X = X1 × · · · × Xn:

dαH(x, y) :=

n∑
i=1

αi1xi ̸=yi (6.17)

for a vector α = (α1, . . . , αn) ∈ Rn+ of positive weights. As usual we take dαH(x,A) =
infy∈A d

α
H(x, y).

Lemma 6.6. We have

dC(x,A) = DH(x,A) := sup
∥α∥2=1

dαH(x,A). (6.18)

Proof. This is perhaps easiest to see with Sion’s minimax theorem, but we spell out the
argument for both inequalities.

(≤): Let w ∈ VA(x) = conv(UA(x)) attain the infimum in the definition of dC(x,A), thus
∥w∥2 = dC(x,A). Then the hyperplane through w and perpendicular to w separates the
origin from VA(x), so for every v ∈ VA(x) we have v · w/∥w∥2 ≥ w · w/∥w∥2 = ∥w∥2. With
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α = w/∥w∥2 we then have 1J ·α ≥ ∥w∥2 for every 1J ∈ UA(x), and hence DH(x,A) ≥
dαH(x,A) ≥ ∥w∥2 = dC(x,A).

(≥): Fixing arbitrary α ∈ Sn−1 ∩ Rn+ and w ∈ VA(x), it suffices to show ∥w∥2 ≥ dαH(x,A).
We can express w =

∑
s∈UA(x) λss for some weights λs ≥ 0 such that

∑
s∈UA(x) λs = 1. Then

∥w∥2 ≥ α · w =
∑

s λsα · s ≥ mins∈UA(x) α · s = dαH(x,A) as desired. □

The relation to weighted Hamming distances gives us the following.

Corollary 6.7. Let X = (X1, . . . , Xn) be a random element of a product space X = X1×· · ·×
Xn. Suppose f : X → R has the property that for every x ∈ X there exists α(x) ∈ Sn−1 ∩ Rn+
such that

f(x) ≤ f(y) + Ld
α(x)
H (x, y) ∀y ∈ X (6.19)

for some L > 0. Then for any a ∈ R,

P(f(X) ≤ a)P(f(X) ≥ a+ t) ≤ exp(− t2

4L2
). (6.20)

As a consequence by taking a and a+ t , respectively, to be medians of f(X) in (6.20), we
have

P(|f(X)−mf | ≥ t) ≤ 4 exp(− t2

4L2
) ∀t ≥ 0 (6.21)

for any median mf of f(X). From Exercise 4.1 we deduce that f(X) − Ef(X) is O(L)-sub-
Gaussian.

The freedom in the Lipschitz condition (6.19) to choose weights α(x) depending on the point
x can give considerable power over McDiarmid’s inequality, particularly when f is defined as a
supremum (or infimum) over simpler random variables. We illustrate this with two examples
– for further examples we refer to [Ste97,AS16].

Example 6.8 (Largest eigenvalue of a random matrix [AKV02]). Let W be a random n× n
symmetric matrix with independent entries Wij on and above the diagonal ranging in [0, 1].
(This includes, for instance, the adjacency matrix for an Erdős–Rényi graph, withWii ≡ 0 and
Wij iid Bernoulli(p) for i < j.) We identify n×n symmetric matrices A with entries Aij ∈ [0, 1]

with elements of the
(
n+1
2

)
-dimensional product space [0, 1]S where S = {(i, j) : 1 ≤ i ≤ j ≤

n}. For A ∈ [0, 1]S let λ1(A) be the right-most eigenvalue of the associated symmetric matrix
(a.k.a. the Perron–Frobenius eigenvalue). We claim that for any A,B ∈ [0, 1]S , we have

λ1(B) ≤ λ1(A) + Cd
α(B)
H (A,B) ∀A,B ∈ [0, 1]S (6.22)

for an appropriate unit vector (α(B)ij)1≤i≤j≤n of non-negative weights depending on B. In-
deed, fixing such A,B, let v be a unit eigenvector of B with associated eigenvalue λ1(B). By
the Courant–Fischer minimax formula we have

λ1(B)− λ1(A) ≤ vT(B −A)v =

n∑
i,j=1

vivj(Bij −Aij)

≤
n∑

i,j=1

|vivj |1Aij ̸=Bij
=

∑
i≤j

(1 + 1i ̸=j)|vivj |1Aij ̸=Bij
.

Since ∑
i≤j

(1 + 1i ̸=j)
2|vivj |2 ≤ 2

n∑
i,j=1

v2i v
2
j = 2
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we see that (6.22) holds with the unit vector α(B) having entries proportional to |vivj |,
where the constant of proportionality is of size Θ(1). From Corollary 6.7 and Exercise 4.1 we
conclude that λ1(W )− Eλ1(W ) is O(1)-sub-Gaussian.

On the other hand, if Wij , 1 ≤ i < j ≤ n are iid Bernoulli(p), it is not hard to show
that λ1(W ) is typically of order np, the average degree in the associated random graph, so
the concentration scale O(1) is drastically smaller than the typical scale of λ1(W ). We also
note that the same argument as above applies when the entries are centered taking values in
a bounded range, in which case λ1(W ) is typically of size Θ(

√
n), which is still much larger

than the scale of fluctuations.

Finally, we note that, as with the operator norm in Example 5.7, the true scale of fluc-
tuations in the centered case is n−1/6. (One way to see that Talagrand’s inequality cannot
capture this is that the argument applies equally to centered and uncentered random matrices,
and the fluctuation scale O(1) is optimal for the uncentered case considered above.) ♢

We note that O(1)-sub-Gaussian concentration for λ1(W ) can also be deduced from The-
orem 5.3 by a similar argument as in Example 5.7.

Example 6.9 (Longest increasing subsequence (see also [Tal96, Theorem 6.5]). For a finite
sequence x = (x1, . . . , xn) ∈ [0, 1]n, let f(x) be the length of the longest increasing subse-
quence, that is, the largest ℓ such that there exist i1 < · · · < iℓ such that xi1 < · · · < xiℓ . By
a similar argument as in Example 3.4 one can show that f is 1-Hamming Lipschitz (changing
one coordinate can only decrease the longest increasing subsequence in length by at most 1),
and from Theorem 3.2 we deduce that for X ∈ [0, 1]n is random with independent compo-
nents, f(X) has sub-Gaussian concentration around its expectation at scale O(

√
n). However,

it turns out that Ef(X) is itself of order
√
n (see [Ste97]) so this concentration is not even

enough to deduce a law of large numbers for f(X).

We can prove stronger concentration by verifying a stronger Lipschitz property of the form
(6.19) (in fact we will get a slight variant of a “self-bounding” type). The problem is to come
up with the right weight vector α(x) depending on x. For each x ∈ [0, 1]n let J(x) ⊂ [n] be
a set of indices of size |J(x)| = f(x) that realizes the longest increasing subsequence, thus
xi < xj for all i, j ∈ J(x) with i < j. (We can select J(x) in some measurable fashion
depending on x.) Then the same argument to show f(x) is 1-Hamming Lipschitz actually
shows

f(x) ≤ f(y) +
∑
i∈J(x)

1xi ̸=yi ∀x, y ∈ [0, 1]n. (6.23)

Indeed, given a longest increasing subsequence of x on indices J(x), then deleting the elements
where xi ̸= yi yields an increasing subsequence for y, whose length is at most f(y). Taking

the weight vector α(x) = f(x)−1/2 1J(x) ∈ Sn−1, (6.23) can be reexpressed

f(x) ≤ f(y) + f(x)1/2d
α(x)
H (x, y) ∀x, y ∈ [0, 1]n. (6.24)

Here we can’t directly apply Corollary 6.7 since the coefficient f(x)1/2 of the weighted Ham-
ming distance depends on x. Instead we go back to Theorem 6.4 together with the identity
of Lemma 6.6. Let a ∈ R, t > 0 be arbitrary and set A := {f ≤ a}, B := {f ≥ a + t}. From
Equation (6.24) it follows that for any x ∈ [0, 1]n and y ∈ A,

f(x)− a√
f(x)

≤ f(x)− f(y)√
f(x)

≤ d
α(x)
H (x, y).
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Taking the infimum over y ∈ A, we get

f(x)− a√
f(x)

≤ d
α(x)
H (x,A) ≤ dC(x,A)

by Lemma 6.6. Now since s 7→ (s− a)/
√
s is monotone increasing for s ≥ a, we have for any

t > 0 that

P(f(X) ≥ a+ t) ≤ P(
f(X)− a√

f(X)
≥ t

a+ t
)

≤ P(dC(X,A) ≥
t

a+ t
)

≤ 1

P(f(X) ≤ a)
exp(− t2

4(a+ t)
)

where the last bound follows from Theorem 6.4 and Markov’s inequality. Taking a to be a
median mf for f(X) and mf − t, respectively, yields the Bernstein-type upper and lower tail
bounds

P(f(X) ≥ mf + t) ≤ 2 exp(− t2

4(mf + t)
) , P(f(X) ≤ mf − t) ≤ 2 exp(− t2

4mf
) . (6.25)

♢

Remark 6.10. Like the largest eigenvalue/singular value of a centered random matrix, the
longest increasing sub-sequence is another example of a random variable that “superconcen-
trates” at a scale not captured by Talagrand’s inequality, and moreover has asymptotically
Tracy–Widom fluctuations. For a heuristic explanation of the superconcentration property
see the discussion after Theorem 6.5 in [Tal96].

7. Feb 06: Random matrices – bounds on singular values

References:

• These notes
• [Ver18, Chapter 4].

7.1. Singular values of rectangular matrices. For an n×m matrix M with complex en-
tries, the singular values are the eigenvalues ofM∗M (orMM∗, up to inclusion of max(m,n)−
min(m,n) singular values that are trivially zero). We label the first min(m,n) singular values
in nonincreasing order

σ1(M) ≥ · · · ≥ σmin(m,n)(M) ≥ 0

with the remaining singular values σmin(m,n)+1(M) = · · · = σmax(m,n)(M) = 0.

Consider the case the case m ≤ n and the entries of M are real. Then M defines a linear
transformation from Rm to Rn (that we abusively denote by M). The transformation is
injective if and only if σm(M) > 0. In fact, σm(M) quantifies “how injective” M is. Indeed,
from the Courant–Fischer minimax theorem we have

σm(M) = inf
u∈Sm−1

∥Mu∥2 , σ1(M) = ∥M∥op = sup
u∈Sm−1

∥Mu∥2 (7.1)

https://services.math.duke.edu/~nickcook/geometric-rmt.pdf
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so σm(M), σ1(M) are the smallest and largest factors, respectively, by which a vector is
stretched by M . In order for an additive perturbation M ′ = M + A to be non-injective, A
must have norm at least σm(M), since

σm(M
′) ≥ inf

u∈Sm−1

{
∥Mu∥2 − ∥Au∥2

}
≥ inf

u∈Sm−1
∥Mu∥2 − ∥A∥op = σm(M)− ∥A∥op.

Geometrically, σ1(M), . . . , σm(M) are the principal radii of the ellipsoid MBn, i.e. the
image under M of the closed Euclidean unit ball. The ellipsoid lies in an m-dimensional
subspace of Rn, and the ellipsoid is of maximal dimension m if and only if σm(M) > 0.

7.2. Singular values of random rectangular matrices: the Marchenko–Pastur law.
Now consider an n×m matrix X with independent real random entries ξij that are centered
and of unit variance. (We will later relax some of these distributional assumptions.) Our focus
in the next couple of lectures will be to get upper and lower bounds, correct up to constant
factors, for the largest and smallest singular values of X.

First we review what asymptotic random matrix theory says. Suppose n ≥ m and m = mn

is such that mn/n convertges to a constant α ∈ (0, 1] as n → ∞, and for each n we have a

random matrix X(n) as above (we will often suppress the dependence on n from the notation).
The Marchenko–Pastur law states that for any fixed interval J ⊂ R,

1

m
|{k ∈ [m] : σk(

1√
n
X(n))2 ∈ J}| −→ να(J) (7.2)

in probability, where να is the compactly supported continuous distribution on R with density

να(dx) =
1

2παx

√
(β+ − x)(x− β−) 1x∈[β−,β+]dx (7.3)

with respect to Lebesgue measure, where β± := (1 ±
√
α)2. We only focus on the fact that

the left and right ends of the limiting support are β±.

The Marchenko–Pastur law suggests that

1√
n
σm(X) → β

1/2
− ,

1√
n
σ1(X) → β

1/2
+ (7.4)

in probability as n→ ∞. However, since the limiting law να only controls linear proportions
of singular values, the Machenko–Pastur law does not rule out the possibility that, say, n0.9

singular values escape to 0 or +∞. (It does, however, show that lim sup 1√
n
σm(X) ≤ β− + ε

and lim inf 1√
n
σ1(X) ≥ β+ − ε with probability 1− oε(1) for any ε > 0. (Exercise!).)

In particular, we expect that when m,n are larger and n/m ≥ 1+δ for fixed δ > 0, then all
singular values of X should be of size ≍

√
n with high probability. This turns out to indeed

be the case, at least under some additional tail assumptions on the entries ξij .

The Bai–Yin law states that if the entries of X(n) have uniformly bounded fourth moment,
i.e.

sup
n∈N,i≤n,j≤mn

E(ξ(n)ij )4 <∞ (7.5)

then (7.4) holds in probability. (One can get almost-sure convergence under some slightly
stronger assumptions, but as we are eventually concerned with quantitative bounds at finite
n we do not comment on this further.) Thus, in the parlance of random matrix theory, we

have that the extreme singular values of X(n) “stick to the bulk” (i.e. the edges of the limiting
support of the empirical singular value distribution).
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The Bai–Yin law is established by the moment method, which controls the operator norm
via control on spectral moments: noting that for any ℓ ∈ N,

∥X∥2ℓop = λ1(X
T)2ℓ ≤

n∑
j=1

λj(X
TX)2ℓ = Tr[(XTX)2ℓ] (7.6)

one aims to estimate ETr[(XTX)2ℓ] to leading order for large powers ℓ. Expanding out
(XTX)2ℓ, we get a sum over products of 4ℓ entries of X. Many of these terms disappear after
taking expectation (for instance any product of entries where some entry appears exactly once
in the product, by the independence and centering assumption). It turns out that the leading
order contribution comes from “walks” of length 4ℓ with each participating entry appearing
exactly twice, and we reduce to a counting problem. We refer to the books [AGZ10,Tao12]
for detailed arguments.

We will instead take an easier geometric route to showing a softer bound O(
√
n) of the

correct order for the operator norm. The advantage of the geometric approach is that it is
much shorter, and also easier to generalize to matrices with structure or dependence among
entries.

7.3. The square case. Note that when m = n, the Bai–Yin law already follows quickly
from the Marchenko–Pastur law. Indeed, we have σn(X/

√
n) ≥ 0 for all n, whereas if

σn(X/
√
n) ≥ ε infinitely often then we get a contradiction to (7.2) since ν1 has positive

density in a neighborhood of 0.

The question is then: what is the order of vanishing of σn(X/
√
n)? In particular we have

the very basic question: Is X invertible with high probability?

(7.2) suggests that σn(X/
√
n) may be of order 1/n, assuming the singular values are roughly

evenly spaced within the limiting support [0, 4], and this turns out to be the case, but this
fact was not obtained in any level of generality until the past couple of decades (whereas the
problem was brought up by von Neuymann in the 1940s, motivated by his work in numerical
analysis for the Los Alamos project).

The invertibility question is trivially “yes, with probability 1” for matrices with densities
that are continuous with respect to Lebesgue measure, since the set of singular matrices is a
variety of Lebesgue measure zero in the space Rn×n (the zero set of the determinant polyno-
mial). But it turned out to be a surprisingly subtle question in the discrete case, of which
the most basic example is random Bernoulli matrices. The first positive answer in this case
came from Komlós in 1967 [Kom67], making an ingenious connection with anticoncentration
properties for scalar random walks, which later motivated a long line of refinements of his
bound on the singularity probability using methods from additive combinatorics. An optimal
bound at exponential scale was only obtained in the last few years by Tikhomirov [Tik20]; we
refer to his work and references therein for more history on this problem.

8. Feb 08: Random matrices – bounds on singular values (cont.)

8.1. Easy arguments. To get a feel for the problem of bounding the typical size of singular
values, we see first see how far we can get from very basic observations. We’ll be a bit loose
with language (saying “with high probability”) but these arguments can be made precise for
X having iid entries and suitable tail hypotheses.
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First it’s not hard to see

σ1(X) ≳
√
n (8.1)

with high probability. Indeed, from the variational formula, we see the norm is bounded below
by the norm of the first column of X:

σ1(X) = ∥X∥op = sup
u∈Sm−1

∥Xu∥2 ≥ ∥Xe1∥2

where e1 is the first canonical basis vector. Now ∥Xe1∥22 =
∑n

j=1 ξ
2
j1 is a sum of independent

variables with mean n, so ∥Xe1∥2 ≳
√
n with high probability.

On the other hand, it’s also not hard to see that most singular values are of size O(
√
n)

with high probability, i.e. for any ε ∈ (0, 1), with high probability

σ⌊εm⌋(X) ≲ε

√
n. (8.2)

Indeed, we can express the Frobenius norm of X in two different ways:∑
i,j

ξ2ij = ∥X∥2F =
m∑
k=1

σk(X)2. (8.3)

The left hand side is a sum of independent variables of expectation 1, so from Markov’s
inequality,

P(∥X∥2F ≥ Knm) ≤ 1/K

for all K > 0. Hence, with probability 1−O(K−1),

1

m

m∑
k=1

σk(X)2 ≤ Kn.

On the event that the above bound holds, an application of Markov’s inequality to the sum
over k shows that all but at most εn of the singular values have size Oε.K(

√
n), as claimed.

(One can improve the probability bound under higher moment assumptions on the entries
– for instance if they are sub-Gaussian than we have a Bernstein-type exponential tail for
∥X∥2F − nm (exercise!).)

The bounds (8.1) and (8.3) are weak but already capture the correct scale
√
n for typical

singular values.

8.2. Upper tail for the norm. Recall that a random vector X ∈ Rn is K-sub-Gaussian if
⟨X,u⟩ is K-sub-Gaussian for every deterministic u ∈ Sn−1. The following gives a wide class
of such vectors:

Lemma 8.1. Let X = (ξ1, . . . , ξn) have independent K-sub-Gaussian components. Then X
is K-sub-Gaussian.

Proof. Fix an arbitrary u ∈ Sn−1. From (2.6) and homogeneity of the ψ2-norm,

∥⟨X,u⟩∥2ψ2
≲

n∑
i=1

∥uiξi∥2ψ2
=

n∑
i=1

u2i ∥ξi∥2ψ2
≤ K2∥u∥22 = K2

as desired. □
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Further examples of K-sub-Gaussian vectors not covered by Lemma 8.1 include uniform
random points in the scaled sphere

√
nSn−1, and Gaussian vectors X ∼ N(0,Σ) (with K =

O(∥Σ∥op)).
In this subsection we prove the following:

Theorem 8.2 (Upper tail for the operator norm). Let X be n× n with independent K-sub-
Gaussian rows R1, . . . , Rn. Then

P(∥X∥op ≥ t
√
n) ≤ exp(−ct2n/K2) ∀t ≥ C0K (8.4)

for some absolute constant C0.

Remark 8.3. Note this implies the more general statement assuming X is n×m with m ≤ n,
since such a matrix can be extended to an n× n matrix as in Theorem 8.2 by adding n−m
columns of zeros.

The proof will be broadly similar to the proof of the Johnson–Lindenstrauss lemma (The-
orem 1.5), in that we will first get an upper tail for the norm ∥Xu∥2 of the image of a fixed
vector u in the sphere, and then get uniform control over all points by taking a union bound.
However, in Theorem 1.5 the collection of points is finite from the start. Here we need to
control the random continuous function u 7→ ∥Xu∥2 over the uncountable set Sn−1. This will
require a discretization step.

Lemma 8.4. With X as in Theorem 8.2, let u ∈ Sn−1 be arbitrary and deterministic (or
independent of X). Then

P(∥Xu∥2 ≥ t
√
n) ≤ exp(−ct2n/K2) ∀t ≥ CK. (8.5)

Proof. Fix u. By definition, for each i ∈ [n] we have

E exp(⟨X,u⟩2/K2) ≤ 2.

By independence,

E exp(∥Xu∥22/K2) =
n∏
i=1

E exp(⟨X,u⟩2/K2) ≤ 2n.

The claim then follows from Markov’s inequality. □

Definition 8.5 (ε-net). Let T be a subset of a metric space. A subset N ⊂ T is an ε-net for
T if for every x ∈ T there exists y ∈ N that is within distance at most ε of x.

Any compact subset of Rn has an ε-net. However, in high-dimensional probability we tend
to need ε-nets of size that is quantitatively controlled in terms of the dimension n. Thus, the
size of an ε-net for a set T quantifies “how compact” T is. The logarithm of the minimal size
of an ε-net is sometimes called the “metric entropy” of T . The following then says that the
metric entropy of the sphere in Rn is on the order of its dimension n.

Lemma 8.6 (Metric entropy of the sphere). For any T ⊂ Sn−1 and ε ∈ (0, 1), T has an ε-net
(under the Euclidean metric on Rn) of size at most (3/ε)n.

Proof. We consider the special case T = Sn−1 (which is all we need to prove Theorem 8.2),
leaving the general case as an exercise. Let N ⊂ Sn−1 be an ε-separated set that is maximal
under the partial order ⊆ of set inclusion. Thus, ∥x − y∥2 ≥ ε for all distinct x, y ∈ N and
any set N ′ = N ∪ {z} formed by adjoining a single new element of Sn−1 is not ε-separated.
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One can obtain such N by starting with a set of a single point N1 = {x1} and for each k ≥ 2
finding a point xk that is distance at least ε from Nk−1, and setting Nk := Nk−1 ∪{xk}. This
procedure is guaranteed to stop within a finite number of steps depending only on n and ε
(why?), ending with a maximal ε-separated set.

We claim N is an ε-net of the claimed cardinality. To see that N is an ε-net, assume toward
a contradiction that there exists z ∈ Sn−1 of distance at least ε from every point of N . Then
N ∪ {z} would be ε-separated, contradicting the maximality assumption.

To see the cardinality bound, note that the set E = N + ε
2B

n (the union of balls of radius
ε
2 with centers at the points of N ) is a union of |N | pairwise disjoint such balls. Assume for
convenience that the balls are open. Indeed, if two of the balls had nonempty overlap, by
the triangle inequality we would contradict the assumption that N is ε-separated. Thus, the
Lebesgue measure of E is

Leb(E) = |N |Leb( ε2B
n) = |N |(ε/2)nLeb(Bn).

On the other hand, we certainly have E ⊂ 3
2B

n, so

Leb(E) ≤ Leb(32B
n) = (3/2)nLeb(Bn).

Combining with the previous bound yields the claim. □

(Note how we didn’t need to know the volume of Bn for the above argument.)

Exercise 8.1. Prove the general case of Lemma 8.6.

Exercise 8.2. Formulate and prove a generalization of Lemma 8.6 for Rn equipped with a
general norm ∥ · ∥ in place of ∥ · ∥2.

9. Feb 13: Random matrices – singular values and restricted isometry
property

9.1. Concluding the proof of Theorem 8.2. Now that we have nets of reasonable size,
we need a continuity argument to pass from the supremum over Sn−1 to a maximum over a
finite net.

Lemma 9.1 (Passing to a net). Let ε ∈ (0, 1) and let N be an ε-net for Sn−1. For any m×n
matrix M ,

∥M∥op = sup
u∈Sn−1

∥Mu∥2 ≤
1

1− ε
sup
u∈N

∥Mu∥2. (9.1)

Proof. Let v ∈ Sn−1 such that ∥Mv∥2 = ∥M∥op. There exists u ∈ N such that ∥v − u∥2 ≤ ε.
Then by the triangle inequality and the definition of the operator norm,

∥M∥op = ∥Mv∥2 = ∥Mu+M(v−u)∥2 ≤ ∥Mu∥2+∥M(v−u)∥2 ≤ ∥Mu∥2+∥M∥op∥v−u∥2 ≤ ∥Mu∥2+ε∥M∥op.

Rearranging and taking the supremum over u completes the proof. □

Proof of Theorem 8.2. From Lemma 8.6 we may fix a 1
2 -net N for Sn−1 of cardinality |N | ≤

6n. Then from Lemma 9.1 and the union bound,

P(∥X∥op ≥ t
√
n) ≤ P(∃u ∈ N : ∥X∥op ≥ 1

2 t
√
n) ≤

∑
u∈N

P(∥Xu∥2 ≥ 1
2 t
√
n).



37

From Lemma 8.4 and taking C0 sufficiently large, each term in the sum is bounded by
exp(−ct2n/K2). Thus,

P(∥X∥op ≥ t
√
n) ≤ |N | exp(−ct2n/K2) ≤ exp(n(log 6− ct2/K2)) ≤ exp(−1

2ct
2n/K2)

taking C0 larger if necessary. □

Remark 9.2. The proof of Theorem 8.2 illustrates a common thread to many arguments
in high-dimensional probability to get uniform control on an extreme values of a stochastic
process (Xt)t∈T , where the index set T is a general metric space. By passing to a net and
taking a union bound, the upper tail for the supremum supt∈T Xt comes down to a competition
between the metric entropy of T and the exponential tail for Xt at arbitrary fixed t provided
by concentration of measure. A similar but slightly more delicate approach is needed to
control the smallest singular value of rectangular matrices, i.e. N × n with N ≥ (1 + δ)n for
an arbitrary constant δ > 0 – then the competition is between the metric entropy of Sn−1

and small ball probabilities for the image of a fixed vector. Later in the course we’ll see more
advanced arguments based on chaining, where one uses a sequence of approximations to the
maximizing point t at multiple scales, which is sometimes necessary in order to capture the
correct order of the upper tail.

9.2. Tall isotropic random matrices are almost isometries. For rectangular matrices of
sufficiently large aspect ratio N/n we can control both ends of the singular value distribution
using a similar argument as for the proof of Theorem 8.2. Of course, to control the smallest
singular value from below we need some additional assumption on the distribution of the rows
(recall that Theorem 8.2 covers the matrix of all zeros).

Theorem 9.3 (Very tall sub-Gaussian matrices are almost isometries). Let X be an N ×
n matrix with independent K-sub-Gaussian rows R1, . . . , RN ∈ Rn that are centered and
isotropic, i.e. ERi = 0 and ERT

i Ri = In. For every ε ∈ (0, 1), if N ≥ C0K
4ε−2n, then

P
(

sup
u∈Sn−1

∣∣∣∣ 1√
N

∥Xu∥2 − 1

∣∣∣∣ ≥ ε

)
≤ exp(−cε2N/K4). (9.2)

We may equivalently express the event in (9.2) as

1− ε ≤ σn(
1√
N
X) ≤ σ1(

1√
N
X) ≤ 1 + ε. (9.3)

In particular we have as an immediate corollary the following non-asymptotic result recovering
the correct scaling 1 + O(

√
α) of the edges of the support with the aspect ratio α = n/N as

in the Bai–Yin theorem.

Corollary 9.4. If n/N ≤ α then with probability at least 1 − e−n, all of the singular values
of 1√

N
X lie in [1−O(K

√
α), 1 +O(K

√
α)].

We can deduce Theorem 9.3 from the following result of independent interest.

Theorem 9.5 (Quantitative Law of Large Numbers for sample covariance matrices). With
assumptions as in Theorem 9.3, we have

P(∥ 1

N
XTX − In∥op ≥ ε) ≤ exp(−cε2N/K4) . (9.4)

In the language of statistics, we consider a collection R1, . . . , RN of iid samples from a
distribution on Rn of mean µ ∈ Rn and covariance matrix Σ = ERT

i Ri. The sample mean
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R = 1
N

∑N
i=1Ri provides an unbiased estimator of the population mean µ, and the sample

covariance matrix Σ̂ = 1
N

∑N
i=1(Ri − R)T(Ri − R) is a nearly unbiased estimator of the

population covariance matrix Σ (a computation shows EΣ̂ = (1− 1
N )Σ, so that this estimator

has slight bias). (With slight abuse of terminology, in random matrix theory we often refer

to a matrix of the form 1
NX

TX = 1
N

∑N
i=1R

T
i Ri for centered random row vectors Ri as a

sample covariance matrix, removing the small shifts by the sample mean.)

In the centered isotropic setting of Theorem 9.5, the law of large numbers says in the large
sample limit N → ∞ with n fixed, the sample covariance matrix 1

NX
TN converges to the

population covariance matrix In (in any norm). Theorem 9.5 refines this to a non-asymptotic
result, showing that 1

NX
TX is a good approximation for the population mean as soon as N

is at least a sufficiently large constant times the dimension n of the data (for fixed K and ε).
This result allows both n and N to be large, which is important for modern applications to
high-dimensional data.

To see how Theorem 9.5 implies Theorem 9.3, note that for arbitrary fixed u ∈ Sn−1 we
have ∣∣∣∣ 1√

N
∥Xu∥2 − 1

∣∣∣∣ ≤ ∣∣∣∣ 1N ∥Xu∥22 − 1

∣∣∣∣ = ∣∣〈u, ( 1
NX

TXu− In
)
u
〉∣∣ ≤ ∥∥ 1

NX
TX − In

∥∥
op
.

Theorem 9.5 can be proved using a net and concentration of measure

Exercise 9.1. Prove Theorem 9.5. (Hint: use a net to get uniform control on the quadratic
form ⟨u, ( 1

NX
TX − In)u⟩ for u ∈ Sn−1. For pointwise tails you can use something like

Lemma 1.8 from the proof of the Johnson–Lindenstrauss lemma.)

9.3. The restricted isometry property for random matrices. In the field of compressed
sensing, one is interested in solving an underdetermined linear system

y = Ax (9.5)

for given y ∈ Rm and m × n matrix A with n ≫ m. We call A a measurement matrix and
think of the given data y = (yk)

m
k=1 as a list of “measurements” yk = ⟨rk, x⟩ of the vector x,

where ri are the rows of A. For instance, we might measure a signal x by measuring a few of
its Fourier coefficients, taking rk = (exp(2πijk/n))nj=1 (or the real or imaginary part of this);
in this case A is formed by taking m rows from the discrete Fourier transform matrix.

Of course, from linear algebra we know that if this system has a solution, it is not uniquely
determined. However, in many applications we know more about x: that it is sparse in some
basis. Then if the measurement vectors rk are sufficiently “incoherent” in this basis, it turns
out that x can be recovered exactly by a solving simple convex optimization problem.

There is a natural extension of this problem to incorporate possible noise in the measure-
ments, taking instead

y = Ax+ w (9.6)

where w has, say, independent Gaussian entries of some variance σ2. However, we don’t
consider the noisy recover problem in these notes and refer to [Ver18, Chapter 10].

For v ∈ Rn we write ∥v∥0 := | supp(v)| for the cardinality of its support supp(v) = {j ∈
[n] : vj ̸= 0}. A vector v is said to be r-sparse if ∥v∥0 ≤ r.

Definition 9.6 (Restricted isometry property). For integers m,n, r and ε ∈ (0, 1), an m× n
matrix A is said to have the restricted isometry property with parameters r, ε (or, “A is
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RIP(r, ε)” for short) if

(1− ε)∥v∥2 ≤ ∥Av∥2 ≤ (1 + ε)∥v∥2 for all r-sparse v ∈ Rn. (9.7)

Equivalently, A is RIP(r, ε) if

1− ε ≤ σr(AJ) ≤ σ1(AJ) ≤ 1 + ε (9.8)

for all J ∈
(
[n]
r

)
(the set of subsets of [n] of size r), where AJ is the m× r matrix formed by

the columns of A lying in J .

The usefulness of the RIP for compressed sensing is encapsulated by the following:

Theorem 9.7. Let s,m, n ∈ N and suppose an m×n matrix A is RIP(r, ε) for some ε ∈ (0, 1)
and integer r > 4s

(1−ε)2 . For any y ∈ Rm, the unique s-sparse solution to the system (9.5) is

given by the (unique) solution x̂ to the optimization problem

minimize ∥x∥1 s.t. Ax = y. (9.9)

Proof. See [Ver18, §10.5.2]. □

It is thus of interest to have measurement matrices with the restricted isometry property,
ideally with very few rows compared to the dimension n of the data. Note that an RIP(r, ε)
matrix necessarily as at least r rows. As an easy corollary of Theorem 9.3 we see that matrices
with independent isotropic sub-Gaussian rows have this property with high probability, as
soon as m is at least a log factor larger than the sparsity of the data.

Theorem 9.8 (RIP for random matrices). Let X be m×n with independent centered isotropic
K-sub-Gaussian rows. Then for every r ≤ n and ε ∈ (0, 1), if

m ≥ C0K
4ε−2r log( enr ) (9.10)

then 1√
m
X is RIP(r, ε) with probability at least 1− exp(−cε2m/K4).

Informally, to recover r-sparse signals in Rn, we can use a random matrix as in Theorem 9.8
with ≫ r log n rows.

Proof. From (9.8), we want to show

P(G) ≥ 1− exp(−c0ε2m/K4) (9.11)

for some constant c0 > 0, where

G :=
⋂

J∈([n]
r )

GJ , GJ := {1− ε ≤ σr(
1√
m
XJ) ≤ σ1(

1√
m
XJ) ≤ 1 + ε}.

From Theorem 9.3 and (9.3), for each J ∈
(
[n]
r

)
we have

P(GJ) ≥ 1− exp(−c1ε2m/K4)

for some constant c1 > 0, as long as m ≥ C0K
4ε−2r, which holds by our assumption (9.10).

Applying the union bound,

P(Gc) ≤
∑

J∈([n]
r )

P(GcJ) ≤
(
n

r

)
exp(−c1ε2m/K4) ≤ exp

(
r log( enr )− c1ε

2m/K4
)

where we applied the elementary estimate
(
n
r

)
≤ ( enr )

r for Binomial coefficients. The claim
(9.11) now follows from the assumption (9.10), taking c0 = c1/2 and C0 sufficiently large. □
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The RIP was introduced in the work [CT06] of Candès and Tao (where it was called the
Uniform Uncertainty Principle). That work established Theorem 9.8 for the case that X has
iid Gaussian or Rademacher entries, as well as the much more challenging case that the m
rows are sampled uniformly and independently (without replacement) from the n×n discrete
Fourier transform matrix, showing that m ≫ r logC n Fourier coefficients are sufficient for
some constant C. This latter result has been sharpened (lowering the order C of the poly-log
factor); see [RV08,Bou14,?].

The difficulty for establishing RIP for sub-sampled Fourier matrices is that there is less
randomness (in particular less concentration of measure) to compete with the union bounds
taken over all subsets of columns and all points in nets for the respective spheres. These
results rely on a more subtle net construction based on an idea going back to an argument of
Maurey, and is summarized in the following exercise. The basic idea for efficiently covering a
set T with balls is to contain T in a convex set U with a small number of extreme points; an
efficient covering of U is then obtained by a probabilistic argument.

Exercise 9.2 (Maurey’s empirical method for constructing nets). In this exercise the set of
r-sparse unit vectors in Rn is denoted

Sn,r = {u ∈ Sn−1 : | supp(u)| ≤ r}. (9.12)

(a) Let w1, . . . , wm ∈ Rn be m points in the cube Bn∞, i.e. ∥wi∥∞ ≤ 1 for each i, and let
T be their convex hull. For a given y =

∑m
k=1 αkwk ∈ T , let Y1, . . . , YN be iid vectors

in {w1, . . . , wm} with distribution
∑m

k=1 αkδwk
(so P(Yi = wk) = αk for each i, k). With

Y N = 1
N

∑N
i=1 Yi the sample mean, show that for any ε > 0,

P(∥y − Y N∥∞ > ε) ≤ 2n exp(−cε2N).

(Hoeffding’s inequality will be useful for this.)
(b) Deduce that T can be covered by exp(O(ε−2(log n)(logm))) translates of ε · Bn∞ with

centers in T (i.e. T has an ε-net under the ℓ∞ metric of size exp(O(ε−2(log n)(logm)))).
(c) Let H be an n× n matrix with entries bounded by 1. With Sn,r as in (9.12), show that

Sn,r ⊂
√
rBn1 , and use this to construct an ε-net for HSn,r = {Hu : u ∈ Sn,r} under the

ℓ∞ metric of size exp(O(ε−2r(log n)2)). (Hint: Note that Bn1 is the convex hull of the 2n
signed standard basis vectors ±e1, . . . ,±en.)

But how about constructing RIP matrices with no randomness at all? Currently the best
result direction is by Bourgain et al. [BDF+11], using techniques from additive combinatorics
and number theory. This was the first work to break the “square-root barrier” for deterministic
constructions, achieving RIP(r, ε) with m = Θ(r2−c) for a small universal constant c > 0.

10. Feb 15: Anticoncentration and the smallest singular value

10.1. The smallest singular value for rectangular matrices. Theorem 9.3 shows the
smallest singular value of an N × n matrix X with independent isotropic sub-Gaussian rows
is of size ≳

√
N with high probability, provided N is a sufficiently large constant multiple

of n. Recall that a key element of the proof was concentration properties of inner products
⟨Ri, u⟩ with a row of X and a fixed unit vector u ∈ Sn−1.

We turn now to lower bounds on the smallest singular value σn(X) for matrices with
N ∼ (1 + γ)n for an arbitrary fixed γ ≥ 0, the square case γ = 0 being the most del-
icate. As we’ll see, the key to lower bounding the smallest singular value boils down to
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anti-concentration properties of projections of rows. For this the strong sub-Gaussian tail
property is not important – we will hence make much lighter tail assumptions on the entries,
only assuming a bounded third moment (which could be relaxed to bounded moments of
order 2 + ε without much more work). We do however assume the entries of the rows are
independent.

We first consider the case that N ≥ (1 + γ)n for arbitrary fixed γ > 0, which is covered by
the following result from [LPRTJ05].

Theorem 10.1. Let N,n ∈ N with N ≥ (1+ γ)n for some γ > 0. Let X be an N ×n matrix
with independent real entries ξij satisfying

Eξij = 0 , Eξ2ij = 1 , E|ξij |3 ≤ A

for some finite A. For any L > 0, there exist a = a(γ,A, L) > 0 and b = b(A) > 0 such that

P(σn(X) ≤ a
√
N , σ1(X) ≤ L

√
N) ≤ 2e−bN . (10.1)

Remark 10.2. While we only assume a uniformly bounded third moment for the entries, it’s
worth noting that one needs to assume at least a uniformly bounded fourth moment for the
event that ∥X∥ ≤ L

√
N to hold with high probability. In any case, these moment hypotheses

are much weaker than the sub-Gaussian hypothesis from Theorem 9.3.

As in the proof of Theorem 9.3, we will use nets to get simultaneous control on the size
of ∥Xu∥2 for all u ∈ Sn−1. After a union bound over an appropriate net our task is then

to bound the probability that ∥Xu∥2 ≤ ε
√
N for some fixed u ∈ Sn−1 and sufficiently small

fixed ε > 0. As in the proof of Theorem 9.3, we note that the squared norm of Xu is a sum
of independent random variables:

∥Xu∥22 =
N∑
i=1

⟨Ri, u⟩2

where Ri are the independent rows of X. For Ri isotropic and sub-Gaussian, ⟨Ri, u⟩2 has
sub-exponential concentration around 1. However, here we only assume the entries of Ri have
finite third moment. Instead we’ll use anticoncentration (or small ball) estimates to control
the event that many of the dot products ⟨Ri, u⟩ are small.

We quantify anticoncentration as follows:

Definition 10.3. For a random vector Y ∈ Rd, the Lévy concentration function is

L(Y, t) := sup
y∈Rd

P(∥Y − y∥ ≤ t) , t ≥ 0. (10.2)

That is, L(Y, t) is the largest measure the distribution of Y assigns to a Euclidean ball of
radius t.

To get some intuition, let’s first consider the Lévy concentration function for dot products

W = ⟨R, u⟩ =
n∑
j=1

ξjuj

for the case that R = (ξ1, . . . , ξn) ∈ {−1, 1}n is a vector of independent Rademacher variables
ξi, and let u ∈ Sn−1. Here we write W for “walk”, as we view the sum as a random walk,
where the vector of step lengths |uj | is fixed. (In some sense the Rademacher case already
captures the essential challenges for sharp anticoncentration estimates for dot products.)
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Consider t ∈ (0, 1
10), say (we are ultimately interested in arbitrarily small t > 0). What is

the best bound we can hope to achieve for general u ∈ Sn−1? For the case u = e1 we have

L(⟨R, e1⟩, t) = L(ξ1, t) = 1/2,

a bound that does not improve as t gets smaller, but at least we are bounded away from 1,
which will be useful in some cases. It turns out such a crude bound holds for general u, as
shown in the following:

Exercise 10.1 (Crude anticoncentration for scalar random variables). Let ξ be a standardized
(centered and unit variance) real random variable.

(a) Show that

L(ξ, 14E|ξ|) ≤ 1− c0(E|ξ|)2 (10.3)

for some absolute constant c0 > 0. Show this bound is sharp in the sense that for
arbitrarily small ε > 0 there is a standardized random variable ξ with E|ξ| ≤ ε and
for which the reverse of the above inequality holds (for some possibly modified value
of c0 – you don’t need to find the sharp constant).

(b) Show that if we further assume E|ξ|q ≤ A for some q > 2 and A <∞ then

L(ξ, 0.99) ≤ 1− c1 (10.4)

for some c1 > 0 depending only on q and A. (Thus, a mild concentration assumption
– namely, the moment bound E|ξ|q ≤ A – is enough to guarantee some amount of
anticoncentration for a standardized variable ξ.)

(Hint: use (or adapt the proof of) the Paley–Zygmund inequality.)

On the other hand, for the case u = n−1/2(1, . . . , 1) we have

W =
1√
n

n∑
j=1

ξj . (10.5)

The CLT says that this random variable converges in distribution to a standard Gaussian
G ∼ N(0, 1) in the large-n limit. The Gaussian G enjoys a strong anticoncentration bound
L(G, t) = O(t) for all t ≥ 0. Indeed, since G has a density that is bounded by 1/

√
2π,

L(G, t) ≤ t/
√
2π ∀t ≥ 0.

This is a strong small ball estimate in the sense that it becomes arbitrarily small as the scale
t shrinks. Of course, this doesn’t carry over to the discrete random variable (10.5), which

assigns measure at least 2−n to all points in its support, and measure as large as Θ(n−1/2)

to points in a O(n−1/2)-neighborhood of the origin (in particular, when n is even we have

P(W = 0) =
(
n
n/2

)
2−n ≍ n−1/2). However, we can deduce a nontrivial anticoncentration

bound for W from the following quantitative version of the CLT:

Theorem 10.4 (Berry–Esseen theorem for non-identically distributed summands). Let ζ1, . . . , ζn
be independent centered random variables with E|ζi|3 <∞ for each i ∈ [n], set

S =
( n∑
i=1

Eζ2i
)−1/2

n∑
i=1

ζi,



43

and let G be a standard Gaussian variable. For any t ∈ R we have

|P(S < t)− P(G < t)| ≲
∑n

i=1 E|ζi|3(∑n
i=1 Eζ2i

)3/2
.

From Theorem 10.4 we get

L(W, t) = L(G, t) +O(n−1/2) ≲ t+ n−1/2 ∀t ≥ 0 (10.6)

for W as in (10.5). Informally, the distribution of W behaves like a continuous random

variable with bounded density on intervals above scale n−1/2.

Exercise 10.2 (Anti-concentration from Berry–Esseen). Using Theorem 10.4, show that if
R = (ξ1, . . . , ξn) is uniform in {−1, 1}n and u ∈ Sn−1 is a fixed unit vector satisfying

n∑
i=1

u2i 1|ui|≤b/
√
n ≥ a2

then

L(⟨R, u⟩, t) ≲ t/a ∀t ≥ b√
n
.

Thus, although ⟨R, u⟩ is a discrete random variable, it effectively has bounded density at

scales ≫ n−1/2 if u has a constant proportion of its ℓ2 mass on coordinates of size O(1/
√
n)

(a property that holds for generic u ∈ Sn−1).

(Hint: condition on variables ξi for which ui is large.)

11. Feb 20&22: Metric entropy vs. anticoncentration

11.1. Anticoncentration for the image of a general unit vector.

Lemma 11.1 (Crude anticoncentration for random walks). Let R = (ξ1, . . . , ξn) be a vector
of independent centered random variables with Eξ2i = 1 and E|ξi|q ≤ A for some q > 2 and
A <∞. Then for any fixed u ∈ Sn−1, we have

L(⟨R, u⟩, 0.99) ≤ 1− c′1

for some constant c′1 > 0 depending only on q and A.

Proof. We follow an argument from [LPRTJ05]. From part (b) of Exercise 10.1 if suffices to
show

E|⟨R, u⟩|q ≲q,A 1. (11.1)

Let R′ = (ξ′i) be an independent copy of R, and let (εi) be an independent sequence of iid
Rademacher variables. From Jensen’s inequality and the assumption that the ξi are centered,
we have

E|
∑
i

ξi|q = E|
∑
i

ξi − Eξ′i|q ≤ E|
∑
i

ξi − ξ′i|q = E|
∑
i

εi(ξi − ξ′i)|q

where in the final equality we used symmetry. Applying Khinchine’s inequality, we have

E|
∑
i

ξi|q ≲ E|
∑
i

(ξi − ξ′i)
2u2i |q/2 ≲q E|

∑
i

ξ2i u
2
i |q/2

where in the last bound we used the triangle inequality. Now we note that the function

ϕ : ∆n → R≥0 , ϕ(s) := E|
∑
i

ξ2i si|q/2
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is convex on the simplex ∆n (since q ≥ 2), and thus it is bounded by its maximum over the
extreme points e1, . . . , en. This gives

ϕ(s) ≤ max
i

E|ξi|q ≤ A

to complete the proof. □

Now we leverage the scalar anticoncentration of Lemma 11.1 to get anticoncentration for
the image of a fixed unit vector under X.

Lemma 11.2 (Image of fixed vector). Let X be an N × n matrix with independent rows
R1, . . . , RN satisfying the distribution assumptions of Lemma 11.1. For any fixed u ∈ Sn−1

we have

P(∥Xu∥2 ≤ c
√
N) ≤ e−cN

for some c = c(q, A) > 0 depending only on q and A.

Remark 11.3. Note that the lemma makes no assumption on the size of n relative to N , in
particular we allow n > N . We will later reuse this lemma with N = n− 1.

Proof. Let c > 0 to be taken sufficiently small over the course of the proof, and fix an arbitrary
u ∈ Sn−1. Letting β ∈ (0, 12 ] to be chosen later, on the event that

∥Xu∥22 =
N∑
i=1

⟨Ri, u⟩2 ≤ c2N (11.2)

we have that |⟨Ri, u⟩| ≤ c/β for at least (1 − β2)N values of i ∈ [N ]. Applying the union
bound to fix these rows and using independence, we have

P(∥Xu∥2 ≤ c
√
N) ≤

∑
I∈( [N ]

⌊(1−β2)N⌋)

∏
i∈I

P
(
|⟨Ri, u⟩| ≤ c/β

)
. (11.3)

Assuming

c ≤ 0.99β (11.4)

we can apply Lemma 11.1 to the terms in (11.3) to get

P(∥Xu∥2 ≤ c
√
N) ≤

(
N

⌊(1− β2)N⌋

)
(1− c′1)

⌊(1−β2)N⌋ (11.5)

Using the bounds
(
k
k−ℓ

)
=

(
k
ℓ

)
≤ ( ekℓ )

ℓ and 1− c′1 ≤ e−c
′
1 , we thus have

P(∥Xu∥2 ≤ c
√
N) ≤ exp

(
N
(
β2 log

1

β2
− c′1(1− β2)

))
≤ exp(−1

2
c′1N)

where in the last bound we fixed β = β(q, A) sufficiently small depending on c′1. Taking
c = min(0.99β, 12c

′
1) completes the proof. □

As in the proof of Theorem 8.2 will combine Lemma 11.2 with a union bound over a net,
via the following:

Lemma 11.4 (Passing to a net). Let M be an m×n random matrix, let ε > 0, and let N be
an ε-net for a subset T of Sn−1. For any L > 0, we have the containment of events

{∥M∥op ≤ L
√
n} ∩

{
inf
v∈T

∥Mv∥2 ≤ εL
√
n
}
⊂

{
inf
u∈N

∥Mu∥2 ≤ 2εL
√
n
}
.
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Proof. On the event on the left hand side, fix v ∈ T such that ∥Mv∥2 ≤ εL
√
n, and let u ∈ N

be such that ∥u− v∥2 ≤ ε. Then

∥Mu∥2 ≤ ∥Mv∥2 + ∥M(u− v)∥2 ≤ ∥Mv∥2 + ∥M∥op∥u− v∥2 ≤ 2εL
√
n. □

A straightforward combination of Lemma 11.2 with Lemma 11.4 fails to establish Theo-
rem 10.1. Indeed, letting N be an ε-net for Sn−1 of size O(1/ε)n, we obtain

P(σn(X) ≤ ε
√
N, ∥X∥op ≤ L

√
N) ≤

∑
u∈N

P(∥Xu∥2 ≤ 2εL
√
N) ≤ O(1/ε)ne−cN

if ε is at most a sufficiently small constant multiple of 1/L. However, the right hand side
above is only a nontrivial bound for N ≥ Cn log(1/ε), whereas we aim to allow N ≥ (1+ γ)n
for arbitrary fixed γ > 0.

The key will be to split the sphere into two parts and control the infimum over each part
by different arguments. The first part is the so-called “compressible” vectors, which are well
approximated by δn-sparse vectors for a sufficiently small constant δ. For this set we can
follow the above line together with a union bound to fix the support, similarly to how we
argued for Theorem 9.8. On the complementary set of “incompressible” vectors we will be
able to establish a stronger anticoncentration bound than Lemma 11.2 using Exercise 10.2.

Definition 11.5. Recall the set Sn,r of r-sparse unit vectors defined in (9.12). For δ, ε ∈ (0, 1),
we define the set of (δ, ε)-compressible unit vectors to be the ε-neighborhood in Sn−1 of Sn,δn,
that is

Comp(δ, ε) := Sn−1 ∩ (Sn,δn + ε · Bn)
= {u ∈ Sn−1 : ∃v ∈ Sn−1, ∥v∥0 ≤ δn, ∥u− v∥2 ≤ ε}

and the complementary set of (δ, ε)-incompressible unit vectors

Incomp(δ, ε) := Sn−1 \ Comp(δ, ε). (11.6)

Denote the boundedness event

BL := {∥X∥op ≤ L
√
N}. (11.7)

Proposition 11.6 (Invertibility over compressible vectors). Let X be as in Lemma 11.2, and
assume n ≤ 100N . There exists c0 = c0(q,A) > 0 such that

P(BL ∩ { inf
u∈Comp(c0,c0/L)

∥Xu∥2 ≤ c0
√
N}) ≤ exp(−c0N). (11.8)

Exercise 11.1. Use Lemmas 11.2 and 11.4 to prove Proposition 11.6.

Proposition 11.7 (Invertibility over incompressible vectors). Let X be as in Theorem 10.1.
There exists β0 > 0 depending only on δ, ε, L, γ such that

P(BL ∩ { inf
u∈Incomp(δ,ε)

∥Xu∥2 ≤ β0
√
N}) ≤ e−N

for all N sufficiently large.

Since Sn−1 = Comp(δ, ε) ∪ Incomp(δ, ε), Theorem 10.1 follows from an application of the
union bound followed by Propositions 11.6 and 11.7.

Lemma 11.8 (Incompressible vectors are spread). Let u ∈ Incomp(δ, ε).

(1) There exists J0 ⊂ [n] with |J0| ≥ δn such that |uj | ≥ ε/
√
n for all j ∈ J0.
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(2) There exists J ⊂ [n] with |J | ≥ δn/2 such that |uj | ∈ [ ε√
n
, 2√

δn
] for all j ∈ J .

Proof. For (1) we take J0 to be the set of the largest δn coordinates of u. Then uJ0 , the
projection of u to RJ0 , is δn-sparse. If |uj | < ε/

√
n for some j ∈ J0, then |uj | < ε/

√
n for all

j ∈ [n] \ J0 and so ∥u− uJ0∥ < ε. This implies u is within distance ε of a δn-sparse vector, a
contradiction.

Now for (2), since u ∈ Sn−1, |uj | > 2/
√
δn for at most δn/4 values of j ∈ [n] (by Markov’s

inequality). We can thus obtain the desired set J by removing at most δn/4 bad elements
from J0. □

Lemma 11.9 (Image of a fixed incompressible vector). For u ∈ Incomp(δ, ε),

L(Xu, t
√
N) = Oδ,ε(t)

m ∀t ≥ n−1/2.

To prove Lemma 11.9 we combine the Berry–Esseen anticoncentration bound of Exer-
cise 10.2 with the following:

Exercise 11.2 (Tensorization of Anticoncentration)). The Lévy concentration function for a
random vector X ∈ Rd is defined

L(X, t) := sup
x0∈Rd

P(∥X − x0∥2 ≤ t) , t ≥ 0 (11.9)

generalizing (10.3) for the case d = 1. Suppose X = (ξ1, . . . , ξd) has independent components.

(a) Show that if L(ξi, a) ≤ b for some a > 0 and b ∈ (0, 1) and all i ∈ [n], then L(X, c
√
d) ≤

exp(−cd) for some c > 0 depending only on a, b.

(b) Show that if L(ξi, ε) ≤ Lε for all ε ≥ ε0 and i ∈ [n], then L(X, ε
√
d) ≤ O(Lε)d for all

ε ≥ ε0.

(Hint: after fixing x0, you can control the event that a sum S of independent random
variables is small by bounding an inverse exponential moment E exp(−λS) for some λ > 0.)

Proof of Lemma 11.9. This follows by combining the results of Exercise 10.2, Exercise 11.2(b),
and Lemma 11.8. □

Proof of Proposition 11.7. By removing rows from X (which can only decrease the smallest
singular value and the norm – exercise!) we may assume N = ⌊(1 + γ)n⌋. Let β > 0 to be
chosen sufficiently small, and let N ⊂ Sn−1 be a β-net for Incomp(δ, ε) of size O(1/β)n (the
existence of which is guaranteed by Lemma 8.6). From Lemma 11.4 we have

P(∃u ∈ Incomp(δ, ε) : ∥Xu∥2 ≤ βL
√
N,BL) ≤ P(∃u ∈ N : ∥Xu∥2 ≤ 2βL

√
N)

≤ O(1/β)nOδ,ε(βL)
N = Oδ,ε,L(β

γ/(1+γ))N

where for the last line we apply Lemma 11.9 and assume βL ≥ 1/
√
n. The claim follows by

taking β sufficiently small depending on δ, ε, L. □

12. Feb 27&29: Square random matrices

See these notes.

https://services.math.duke.edu/~nickcook/geometric-rmt.pdf
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13. Feb 29: Suprema of Gaussian processes

Sources: [Ver18, Chapter 7], [vH], [Zei]

We covered:

• General random processes: definitions and examples (random walk, Branching random
walk, norm of random matrix)

• The Borell–TIS inequality (see [Zei, Section 2], [Led01, Section 7.1])
• Slepian’s inequality (statement and interpretation)

14. Mar 05: Suprema of Gaussian processes: comparison inequalities

Sources: [Ver18, Section 7.2], [vH], [Zei]

We covered:

• Application of Slepian’s inequality: speed of the right-most particle in a Gaussian
binary branching random walk

• Proof of Slepian by Gaussian interpolation (following [Ver18])

14.1. The right-most particle in a branching random walk. We set up some notation
to index the edges/vertices of a binary tree of depth n. We index the leaves by Tn = {0, 1}n.
Let T≤n =

⋃n
m=1{m}× Tm, which indexes the edges of the tree (the point is to treat Tm as a

disjoint set from Tn rather than as a subset). We associate the elements of T≤n with binary
strings of length at most n. For s ∈ Tm, t ∈ Tn with m ≤ n, write s ≤ t if s is a prefix of t.

Let (gs)s∈T≤n
be iid standard Gaussian variables. For each t ∈ Tn set

Xt :=
∑
s≤t

gs. (14.1)

This is a process on the leaves of the tree, with value at leaf t given by the sum of the n
Gaussian weights on the edges of the path leading from t back to the root. Thus, (Xt)t∈Tn is
a collection of 2n centered Gaussians of variance n. The correlation structure is determined
by the (ultra)metric structure of the tree. For s, t ∈ Tn let s ∧ t be the generation of their
most recent common ancestor, that is

s ∧ t = max{m : (s1, . . . , sm) = (t1, . . . , tm)}. (14.2)

Then

EXsXt = s ∧ t (14.3)

so the canonical metric is

d(s, t) = ∥Xs −Xt∥L2 =
√
2(n− s ∧ t). (14.4)

We are interested in the supremum of this process:

Mn := max
t∈Tn

Xt (14.5)

which one can interpret as the position of the right-most particle in the nth generation of
a binary Gaussian branching random walk (BRW). A lot is known about Mn – we refer
to [Zei16]. Here we will just use Slepian’s inequality to get an upper bound on EMn that
turns out to be sharp to leading order in n.
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What is a simpler process we can compare with? Let’s consider (Yt)t∈Tn to be 2n iid
centered Gaussians of variance n. Thus, Y has pointwise the same means and variances as
X, but has no correlations. We compute

E(Ys − Yt)
2 = 2n ≥ E(Xs −Xt)

2. (14.6)

From Slepian’s inequality we conclude

EMn ≤ E sup
t∈Tn

Yt. (14.7)

An exercise shows the right hand side is cn+ O(1) for c =
√
2 log 2 (an upper bound for the

asymptotic speed of the right-most particle that turns out to be sharp). In fact a more careful
computation gives a refined asymptotic

E sup
t∈Tn

Yt = cn− 1

2c
log n+O(1).

An important result going back to Bramson in the setting of branching Brownian motion is
that

EMn = cn− 3

2c
log n+O(1). (14.8)

Thus, the correlation structure of the BRW shows itself in the sub-leading logarithmic term
with a factor 3. This turns out to be a universal feature of extremes of logarithmically
correlated fields – another example being the planar discrete Gaussian free field. Again we
refer to [Zei16] for further background.

15. Mar 07: Suprema of Gaussian processes: comparison inequalities

Source: [Ver18, Sections 7.2–7.4]

• Sudakov–Fernique inequality
• Application: norm of a Gaussian random matrix
• Sudakov Minoration inequality
• Application: Gaussian width and covering numbers for polytopes

16. Mar 19: Chaining

16.1. Motivation: Uniform laws of large numbers for empirical processes. The basic
Monte Carlo method for approximating an integral

∫
fdµ over a probability space (X ,Σ, µ)

is to consider the empirical average

µn(f) =

∫
fdµn =

1

n

n∑
i=1

f(Xi)

for an iid sample X1, . . . , Xn ∼ µ, where we define the empirical measure

µn :=
1

n

n∑
i=1

δXi .

Note this is a random probability measure.
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For a fixed function f that is bounded, say, the Law of Large Numbers tells us µn(f) →
µ(f) = Ef(X1) in probability. A uniform law of large numbers seeks uniform control over a
class of test functions F , i.e. to show

sup
f∈F

|µn(f)− µ(f)| → 0

in probability, say. Here is an example.

Theorem 16.1. Let F be the class of 1-Lipschitz functions on [0, 1], and let X1, . . . , Xn be
iid in [0, 1] with law µ. Then

E sup
f∈F

|µn(f)− µ(f)| ≲ n−1/2.

The 1-Wasserstein distance between probability measures µ, ν on a common metric space
(X , d) is

W1(µ, ν) = sup
f∈F

|µ(f)− ν(f)|

where the supremum is taken over the class of 1-Lipschitz functions f : X → R. Thus,
Theorem 16.1 implies (via Markov’s inequailty) that µn → µ in probability under the 1-
Wasserstein distance.

To prove Theorem 16.1 we will develop a basic result of the chaining method known as
Dudley’s inequality. However, let’s first see what we can get from a more basic approach that
we’ve already applied to estimate the norm of random matrices, combining concentration of
measure with a union bound over a net.

Proof of Theorem 16.1 – first attempt. By subtracting constants we may take F = { 1-Lipschitz
f : [0, 1] → [−1, 1]}. We view

Xf := µn(f)− µ(f) =
1

n

n∑
i=1

f(Xi)− Ef(Xi) (16.1)

as a stochastic process indexed by F . For any fixed f ∈ F , from Hoeffding’s inequality we
have

P(|Xf | ≥ λn−1/2) ≤ 2 exp(−cλ2) , ∀λ ≥ 0. (16.2)

To pass to fixed f we’ll apply a union bound over a net, and to pass to a net we need some
continuity of f 7→ Xf . For this we note that for any f, g ∈ F ,

|Xf −Xg| = |Xf−g| ≤ 2∥f − g∥L∞ a.s. (16.3)

So let’s construct an ε-net Nε for F under the L∞ metric. We can take Nε to be the set of
functions constant on the intervals [εk, ε(k + 1)) and taking values in an ε-mesh for [−1, 1],

which has size |Nε| = O(1/ε)1/ε. In fact, a more careful use of the Lipschitz property gives a

net Nε of size O(1)1/ε (exercise!).

Letting ε ∈ (0, 12) to be chosen later, on the event that f∗ ∈ F is such that |Xf∗ | ≥
supf∈F |Xf |−ε, there exists g ∈ Nε such that ∥f∗−g∥L∞ ≤ ε, and hence |Xg| ≥ supf∈F |Xf |−
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3ε. We can then apply the union bound and Hoeffding’s inequality (16.2): for any λ ≥ 6ε
√
n,

P(sup
f∈F

|Xf | ≥ λn−1/2) ≤ P(max
g∈Nε

|Xg| ≥ 1
2λn

−1/2)

≤ |Nε| exp(−cλ2)
≤ exp(Cε−1 − cλ2)

≤ exp(−1
2cλ

2)

where in the last line we assumed λ ≥ C ′/
√
ε for a sufficiently large constant C ′. To meet the

two constraints we’ve placed on ε in relation to λ, we cannot take λ any smaller than Cn1/6

for a sufficiently large constant C (hence taking ε of order n−1/3). We thus obtain the bound

E sup
f∈F

|Xf | ≲ n−1/3 (16.4)

which falls short of our goal by a factor n1/6 (though for some applications this can be
fine!). □

16.2. Dudley’s inequality. Following [Ver18, Section 8.1], we proved the following:

Theorem 16.2 (Dudley’s inequality). Let (Xt)t∈T be a centered random process on a metric
space (T, d) with K-sub-Gaussian increments, i.e.

∥Xs −Xt∥ψ2 ≤ Kd(s, t) ∀s, t ∈ T. (16.5)

Then

E sup
t∈T

Xt ≲ K
∑
k∈Z

2−k
√
logNd(T, ε) (16.6)

where we recall that Nd(T, ε) is the minimal cardinality of an ε-net for T . Equivalently (up
to modification of the implicit constant),

E sup
t∈T

Xt ≲ K

∫ ∞

0

√
logNd(T, ε)dε . (16.7)

Moreover, the same bound holds for E supt∈T |Xt − Xt0 | for any fixed t0 ∈ t without the
assumption that the process is centered, and consequently also for E sups,t∈T |Xs −Xt|.

Lemma 16.3 (1-step chaining, a.k.a. the union bound). For a finite collection of K-sub-
Gaussian variables (Xt)t∈T (not assumed to be independent), we have

P
(
max
t∈T

|Xk| > λK
√
1 + log |T |

)
≤ (e|T |)−λ2/2 ∀λ ≥ 2 (16.8)

and

Emax
t∈T

|Xt| ≲ K
√
1 + log |T | . (16.9)

Proof. Applying the union bound, the left hand side in (16.8) is

P(∃t ∈ T : |Xk| > λK
√

log(e|T |)) ≤
∑
t∈T

P(|Xk| > λK
√

log(e|T |))

≤ 2|T | exp(−λ2 log(e|T |))
≤ exp(−1

2λ
2 log(e|T |))
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as claimed. Then from Fubini–Tonelli,

Emax
t∈T

|Xt| =
∫ ∞

0
P(max

t∈T
|Xt| ≥ λ)dλ

≤ 2
√
K log |T |+

∫ ∞

2K
√

log |T |
P(max

t∈T
|Xt| ≥ λ)dλ

≲
√
K log |T |+

∫ ∞

2K
√

log |T |
exp(−1

2λ
2/K2)dλ

≲ K
√
log |T | .

□

The chaining argument to prove Theorem 16.2 applies (16.9) at dyadic scales ε = 2−k, with
T replaced by a 2−k-net Tk for T . We refer to [Ver18, Section 8.1] for the details.

Exercise 16.1. Prove a matching lower bound for (16.9) for the case that the variables Xt

are iid Gaussians.

Exercise 16.2. Let X1, . . . , Xn be K-sub-Gaussian variables. Show

E max
1≤k≤n

Xk√
1 + log k

≲ K. (16.10)

16.3. Proof of Theorem 16.1. See [Ver18, Section 8.2.2].

17. Mar 21: Covering numbers and VC-dimension

(Based mainly on [Ver18, Section 8.3].)

Now we consider uniform laws of large numbers for classes of Boolean functions on a
probability space (X ,Σ, µ), that is, measurable functions f : X → {0, 1}. (Such functions
can be identified with their supports.) In Theorem 16.1 we controlled an empirical process
indexed by a class of Lipschitz functions f : X → R using a net under the L∞ metric. For
Boolean functions the L∞ metric is not very useful, as ∥f − g∥L∞ = 1 unless f = g µ-a.e.,
so we don’t get any reduction in cardinality by passing to nets. Instead we’ll work with the
L2 metric. Toward an application of Dudley’s inequality, our task is reduced to bounding
the metric entropy numbers logNL2(µ)(F , ε). These in turn can be controlled in terms of a
combinatorial quantity called the VC dimension (the initials are for the originators Vapnik
and Chervonenkis).

Definition 17.1 (VC dimension). For a class F ⊆ {0, 1}X of Boolean functions on a domain
X , we say a set A ⊆ X is shattered by F if any Boolean function g : A → {0, 1} is the
restriction f |A of some f ∈ F . The VC dimension of F , denoted vc(F), is the cardinality
of the largest set A ⊆ X that is shattered by F (if there is no largest such set then we set
vc(F) := ∞).

With slight abuse of terminology, we can also refer to the VC dimension of a family A of
subsets A ⊆ X (also called a set system over X ), which we take to mean the VC dimension
of the associated class of indicator functions FA = {χA : A ∈ A}. A set system A shatters a
set B ⊆ X if FA shatters B, i.e. if

{A ∩B : A ∈ A} = 2B
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(where the right hand side is the power set of B). The left hand side above is often called the
trace of A on B, and denoted TrA(B).

Exercise 17.1.

(a) For X = R, show that the family of closed intervals {[a, b] : a, b ∈ R, a ≤ b} has VC
dimension 2.

(b) For X = Rd, let Hd be the family of halfspaces and Bd the family of balls of any radius
and center. Show vc(Bd) ≥ vc(Hd) ≥ d+ 1.

(c) Show vc(Bd) = d+ 1 (and hence also vc(Hd) = d+ 1).

The Sauer–Shelah lemma, Corollary 17.3 below, is a useful tool for controlling the size of
finite set systems in terms of the VC dimension. It is a consequence of the following.

Lemma 17.2 (Pajor’s lemma). Let F be a class of Boolean functions on a finite set X with
|X | = n, and let

SF = {B ⊆ X : B is shattered by F} (17.1)

where we include ∅ ∈ S(F). Then

|F| ≤ |SF |. (17.2)

Proof. We proceed by induction on n. For the case n = 1, if F shatters the singleton set
X = {x1} then |F| = 2, while SF ) = {∅,X} also has two elements. If F does not shatter X
then |F| = 1 and SF = {∅} has one element. (So in both cases we actually have equality in
(17.2).)

Now assume the claim holds for any set system over any set of size n, and let X have size
n + 1. Fix an arbitrary x0 ∈ X and let X0 = X \ {x0}. The class F is the disjoint union
F = F0 ∪ F1, with

Fi := {f ∈ F : f(x0) = i} , i = 0, 1.

We claim

|SF | ≥ |SF0 |+ |SF1 |. (17.3)

To see this, note that any element A of SFi , i = 0, 1 must be contained in X0. Also,

SFi ⊆ SF , i = 0, 1

since Fi ⊆ F . Finally, we note that if A is shattered by both F0 and F1, then both A and
A ∪ {x0} are shattered by F . From this we deduce (17.3).

Now with F ′
i = {f |X0 : f ∈ Fi}, which has the same cardinality as Fi, from the induction

hypothesis we have

|Fi| = |F ′
i | ≤ |SF ′

i
| = |SFi |

for i = 0, 1. The claim now follows from the above and (17.3). □

Corollary 17.3 (Sauer–Shelah lemma). Let A be a set system over a finite set X with
|X | = n, and let d = vc(A) be its VC dimension. Then

|A| ≤
d∑
i=0

(
n

i

)
≤

(en
d

)d
.

Remark 17.4. The Sauer–Shelah lemma is often invoked in the contrapositive: if a set system

A over a finite set X of size n has size |A| >
∑k−1

i=0

(
n
i

)
, then there is a set B ⊆ X of size k

that is shattered by A.
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Proof. By definition any B ∈ S(A) has size at most d. The number of subsets of X of size at

most d is
∑d

i=0

(
n
i

)
, which together with Lemma 17.2 yields the claim (the final bound is left

as an exercise). □

The Sauer–Shelah lemma controls the size of classes F of Boolean functions over finite
sets X . We can combine it with a discretization argument to control covering numbers of
potentially infinite classes F , giving the following:

Proposition 17.5 (VC dimension controls metric entropy). Let F be a class of Boolean
functions on a probability space (X ,Σ, µ). Assume |X | <∞. For any ε ∈ (0, 1),

logNL2(µ)(F , ε) ≲ vc(F) log(2/ε). (17.4)

Remark 17.6. Note this bound has the same shape as the volumetric bound

logNℓ2(Sd−1, ε) ≤ d log(3/ε)

for the metric entropy of the sphere from Lemma 8.6.

Proof. It is enough to show that for any set G ⊂ F that is ε-separated in L2(µ) we have

|G| ≤ O(1/ε)O(vc(F)). (17.5)

(Note that any ε-separated set G must be finite. Indeed, the diameter of the set of all Boolean
functions on X is bounded by 1 in L2(µ), and L2(µ) is finite-dimensional by the finiteness of
X , so G must be finite by volumetric considerations.) Taking G to be a maximal ε-separated
set, we have that G is an ε-net, and hence |G| ≥ NL2(µ)(F , ε), and the claim follows from
(17.5). (The implicit constant in the base can be adjusted to 2 by adjusting the implicit
constant in the exponent.)

Turning to prove (17.5), fix an arbitrary such G. We will apply the Sauer–Shelah lemma
not to G, but to the restrictions of its elements to a small randomly sampled subset.

Claim 17.7. There exists a set Y = {y1, . . . , yn} ⊂ X of size

n ≲ ε−4 log |G| (17.6)

such that the restrictions {g|Y : g ∈ G} are all distinct.

Indeed, we show a random set has this property with high probability. Let Y1, . . . Yn ∈ X
be iid with distribution µ, and let µn = 1

n

∑n
i=1 δYi denote their empirical measure. We will

show that G is ε/2-separated in L2(µn) with positive probability, from which the claim follows.
Consider an arbitrary fixed pair f, g ∈ G.

∥f − g∥2L2(µn)
=

1

n

n∑
i=1

|f(Yi)− g(Yi)|2 (17.7)

is a normalized sum of n iid random variables almost-surely bounded by 1, with expectation

E|f(Yi)− g(Yi)|2 = ∥f − g∥2L2(µ) ≥ ε2.

From Hoeffding’s inequality we have

P(∥f − g∥L2(µn) ≤ ε/2) ≤ P(|∥f − g∥2L2(µn)
− E∥f − g∥2L2(µn)

| > ε2/2)

≤ 2 exp(−cε4n).
Taking a union bound over all pairs, we have

P(∃f, g ∈ G : f ̸= g, ∥f − g∥L2(µn) ≤ ε/2) ≤ |G|22 exp(−cε4n) ≤ exp(−1
2cε

4n)
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if n ≥ Cε−4 log |G| for a sufficiently large constant C, and Claim 17.7 follows.

Now fix a set Y as in Claim 17.7, and let G′ = {g|Y : g ∈ G}. From the claim we have
that |G′| = |G|. Since the elements of G′ are restrictions of elements of G ⊆ F we have
d′ := vc(G′) ≤ vc(F). From Corollary 17.3, letting d′ = vc(G′), we have

|G| = |G′| ≤
(en
d′

)d′
= O

( log |G|
ε4d′

)d′
. (17.8)

Then bounding 1
d′ log |G| = 2 log(|G|1/2d′) ≤ 2|G|1/2d′ , substituting this bound on the right

hand side above and rearranging yields

|G| = O(ε−4)2d
′
= O(1/ε)d

′ ≤ O(1/ε)O(vc(F))

giving (17.5), which concludes the proof. □

Exercise 17.2. Does Proposition 17.5 extend to the case that X has infinite cardinality?
Prove or give a counterexample.

We can use Corollary 17.3 and Proposition 17.5 to control the supremum over empirical
processes indexed by Boolean functions. To pass to control of increments in L2 rather than
L∞ (as in the proof of Theorem 16.1) we use the following:

Lemma 17.8 (Symmetrization). Let F be a class of functions on a probability space (X ,Σ, µ),
let X1, . . . , Xn be iid with distribution µ, and let εi, i ≥ 1 be iid Rademacher variables, inde-
pendent from (Xi)

n
i=1. We have

E sup
f∈F

∣∣∣∣ n∑
i=1

f(Xi)− Ef(Xi)

∣∣∣∣ ≤ 2E sup
f∈F

∣∣∣∣ n∑
i=1

εif(Xi)

∣∣∣∣ . (17.9)

The inequality still holds if we remove the absolute value bars on both sides.

Exercise 17.3.

(a) Prove Lemma 17.8.
(b) Show that the right hand side in (17.9) is further bounded by

√
2πE sup

f∈F

∣∣∣∣ n∑
i=1

gif(Xi)

∣∣∣∣ (17.10)

where g1, . . . , gn are iid standard Gaussians, and similarly with absolute value bars
removed on both sides.

(c) Give a counter example for the first inequality in Vershynin Exercise 7.1.9. (Hint: you
can do this with N = 1.)

Exercise 17.4 (Supremum of a sub-Gaussian process on the hypercube). Let ξ = (ξ1, . . . , ξn)
be a K-sub-Gaussian vector in Rn, let T ⊂ {0, 1}n, and define a random process (Yt)t∈T by
Yt =

∑n
i=1 ξiti. Let R := maxt∈T ∥t∥2 and d := vc(T ) (viewing T as a class of Boolean

functions on [n]).

(a) Use Lemma 16.3 and Corollary 17.3 to show

E sup
t∈T

|Yt| ≲ KR

√
d log

(en
d

)
. (17.11)

(b) Suppose that the ξi are iid Rademachers (so K = 1). Prove a lower bound ≳ d for the
left hand side of (17.11). In particular, (17.11) holds with equality (up to constant
factors) for the case V = {0, 1}n.
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(c) Show that Yt has K-sub-Gaussian increments with respect to the ℓ2-metric d(s, t) =

∥s− t∥2 = (
∑n

i=1(si − ti)
2)1/2, and deduce

E sup
t∈T

|Yt| ≲ K

∫ 2R

0

√
logNℓ2(T, r)dr . (17.12)

Combine this bound with Proposition 17.5 to conclude

E sup
t∈T

|Yt| ≲ K
√
dn. (17.13)

(Note that a ball of radius r under the ℓ2-metric has radius r/
√
n under the L2-metric,

where ∥s− t∥L2 := ( 1n
∑n

i=1(si − ti)
2)1/2.)

Combining Lemma 17.8 with (17.11), for a class F of Boolean functions on a probability
space (X ,Σ, µ) of VC dimension d = vc(F), and X1, . . . , Xn iid with distribution µ, we have

E sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(Xi)

∣∣∣∣ ≤ 2E
[
E sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣ ∣∣∣∣X1, . . . , Xn

]

≲

√
d

n
log

(en
d

)
(17.14)

where we applied (17.11) to the inner expectation, using that the VC dimension of the (ran-
dom) family F ′ = {f |Xn : f ∈ F} of functions restricted to the random set Xn = {X1, . . . , Xn}
is almost-surely bounded by d.

Using Proposition 17.5 and Dudley’s chaining inequality instead of directly applying the
Sauer–Shelah lemma (Corollary 17.3) and the union bound (Lemma 16.3), we get the following
slight improvement over (17.14).

Theorem 17.9 (Uniform LLN for Boolean function classes). Let F be a class of measurable
Boolean functions on a probability space (X ,Σ, µ) and X1, . . . , Xn iid with distribution µ.
Then

E sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(Xi)

∣∣∣∣ ≲
√
vc(F)

n
. (17.15)

Exercise 17.5. Prove Theorem 17.9. (Hint: you can argue similarly as for the proof of
(17.14), using (17.13) in place of (17.11).)

Combining with esimates on VC dimensions such as the ones in Exercise 17.1 we can obtain
discrepancy-type results for iid point clouds, such as the following.

Corollary 17.10 (Discrepancy bound for balls in Rd). Let X1, . . . , Xn be iid samples from a
distribution µ on Rd, and let µn = 1

n

∑n
i=1 δXi be their empirical distribution. Then

E sup
x∈Rd,r>0

∣∣µn(B(x, r))− µ(B(x, r))
∣∣ ≲ √

d

n
(17.16)

where B(x, r) is the Euclidean ball of radius r.
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18. Mar 26: Generic chaining

Consider a centered process (Xt)t∈T with K-sub-Gaussian increments on a finite state
metric space (T, d) (we’ve seen how we can always reduce to the finite case under separability
conditions, which covers applications of interest). Dudley’s inequality says

E sup
t∈T

≲ K
∑
k

εk
√
log |Tk| (18.1)

for any sequence of εk = 2−k-nets Tk, which we can take to be the optimal size |Tk| =
|Nd(T, 2

−k)|.
We can equivalently formulate Dudley’s inequality by fixing the size of the Tk’s and opti-

mizing the precision εk. We say (Tk)k≥0 is an admissible sequence if |T0| = 1 and |Tk| ≤ 22
k

for all k ≥ 0. Then setting

εk := sup
t∈T

d(t, Tk) (18.2)

one can show (exercise!) that Dudley’s inequality is equivalent to the bound

E sup
t∈T

Xt ≲ K
∑
k≥0

2k/2 sup
t∈T

d(t, Tk). (18.3)

Now consider the following quantity, which in general is smaller than the right hand side
above:

γ2(T, d) := inf
(Tk)k≥0

sup
t∈T

∞∑
k=0

2k/2d(t, Tk) (18.4)

where the infimum is taken over all admissible sequences. This is called the γ2 functional for
(T, d) (following Talagrand). We have the following improvement of Dudley’s inequality:

Theorem 18.1 (Talagrand–Fernique). For a centered process (Xt)t∈T with K-sub-Gaussian
increments on a metric space (T, d), we have

E sup
t∈T

Xt ≲ Kγ2(T, d). (18.5)

Proof. See [Ver18, Section 8.5]. □

We point out that the proof of Theorem 18.1 is not much harder than the proof of Dudley’s
inequality. The following result deep result of Talagrand is harder and we do not give the
proof. We refer to Talagrand’s book [Tal21] for a thorough treatment of the theory of generic
chaining and its applications.

Theorem 18.2 (Talagrand’s majorizing measures theorem). For (Xt)t∈T a centered Gaussian
process, we have

E sup
t∈T

Xt ≍ γ2(T, d) (18.6)

where d(s, t) := ∥Xs −Xt∥L2 is the canonical metric for the process.

The γ2 functional can be hard to compute in practice. (There are some open problems that
reduce to such a computation by the above theorem.) The following important corollary does
not involve the γ2-functional.
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Corollary 18.3 (Talagrand’s comparison inequality). Let (Xt)t∈T , (Yt)t∈T be two centered
processes on a set T , with Y Gaussian, and assume the increments satisfy the comparison
bound

∥Xs −Xt∥ψ2 ≤ K∥Ys − Yt∥L2 ∀s, t ∈ T. (18.7)

Then

E sup
t∈T

Xt ≲ KE sup
t∈T

Yt. (18.8)

Proof. Denoting by d the canonical metric associated to the Gaussian process Y , from Theo-
rem 18.1 and Corollary 18.3 we have

E sup
t∈T

Xt ≲ Kγ2(T, d) ≲ KE sup
t∈T

Yt . □

Corollary 18.3 allows one to obtain bounds for general sub-Gaussian processes by similar
arguments to how we applied the Slepian and Sudakov–Fernique inequalities in the Gaussian
case (we note however that unlike those comparison inequalities, the above loses a universal
constant factor).

Exercise 18.1. Use Corollary 18.3 to give a new proof (see Theorem 8.2) of the bound
E∥A∥op ≲

√
n for an n×n random matrix with independent centered 1-sub-Gaussian entries.

Recall the Gaussian width

w(T ) := E sup
t∈T

⟨g, t⟩ (18.9)

for a subset T ⊆ Rn, where g ∼ N(0, In). As a special case of Corollary 18.3 we get the
following:

Corollary 18.4. Let (Xt)t∈T be a centered process on T ⊆ Rn with sub-Gaussian increments
under the Euclidean metric:

E|Xs −Xt|2 ≤ K2∥s− t∥22 ∀s, t ∈ T. (18.10)

Then

E sup
t∈T

Xt ≲ Kw(T ). (18.11)

19. Mar 28: Entropy methods – subadditivity, LSI on the cube

The next few lecture’s we’ll develop the theory of entropy for functions on product spaces,
and consider proofs and applications for some log-Sobolev inequalities and hypercontractivity
inequalities. The main examples will be the uniform measure on the Boolean hypercube and
the standard Gaussian measure on Rn. The main references for this material are

• [BLM13, Chapters 4–5]
• [Led]
• [Led01]
• [vH]

These notes may at times have different emphasis from the above.
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19.1. Definitions and the duality formula. We consider a measurable space (X ,Σ) with
a probability measure µ. (We prefer not to write Ω instead of X , as we’ll tend to view X as the
range of a random element X ∈ X with distribution µ, following the probabilistic convention
of hiding the sample space from view and leaving it flexible to accommodate additional sources
of randomness.)

For x ≥ 0 denote
Φ(x) := x log x (19.1)

(taking Φ(0) = limx↓0Φ(x) = 0). This is a convex function on R+.

For a non-negative function f ∈ L1(µ) we define

Ent(f) = Entµ(f) :=

∫
Φ(f)dµ− Φ(

∫
fdµ) ∈ [0,+∞]. (19.2)

We can alternatively state this probabilistically as

Ent(f) := EΦ(f(X))− Φ(Ef(X)) (19.3)

for X ∼ µ. The lower bound Ent(f) ≥ 0 follows from Jensen’s inequality and the convexity
of Φ.

We note that the entropy is 1-homogeneous: for any constant c ≥ 0,

Ent(cf) = cEnt(f) . (19.4)

This will allow us to scale f to have mean 1 (i.e. inf fdµ = Ef(X) = 1) in many of the proofs.

We point out a connection to the relative entropy. For the case that∫
fdµ = Ef(X) = 1 (19.5)

we have that dν = fdµ is a probability measure on (X ,Σ), i.e. a measure ν ≪ µ with
Radon–Nikodym derivative dν

dµ = f . Then we have

Entµ(f) =

∫
Φ(f)dµ =

∫
f log fdµ =

∫
(log

dν

dµ
)dν = D(ν∥µ) (19.6)

where we recall the relative entropy or Kullback–Leibler divergence of ν with respect to µ
is defined as above when ν ≪ µ, and taken to be +∞ otherwise. Thus, the entropy of a
non-negative function f of mean 1 is simply the relative entropy of the reweighted measure
fdµ with respect to the reference measure µ.

We will generally have a fixed reference measure µ that will be a product measure (or even
nicer – a uniform measure on a finite product space) and consider bounds on the entropy over
classes of functions f .

We also note that the relative entropy makes sense when µ is not necessarily a probability
measure – it is often convenient to consider entropies relative to an unnormalized Lebesgue or
counting measure – the latter case leads to the better known Shannon entropy (up to flipping
the sign) – we may review this connection in a later lecture, though we are running short on
time!

Lemma 19.1 (Duality formula). We have

Entµ(f) = sup
g

{∫
fgdµ :

∫
egdµ ≤ 1

}
= sup

g

{∫
fgdµ :

∫
egdµ = 1

}
(19.7)

and the supremum is attained at g = log f − log
∫
fdµ.
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(For the latter equality note that the objective function g 7→
∫
fgdµ is monotone under

increasing g.)

We may use this identity in the probabilistic notation:

Entµ(f) = sup
Y

{
Ef(X)Y : EeY ≤ 1

}
. (19.8)

Proof. By the homogeneity property (19.4) we may assume
∫
fdµ = 1. Fix an arbitrary g

such that
∫
egdµ = 1. Setting dν = egdµ, we have

0 ≤ Entν(fe
−g) =

∫
fe−g(log f − g)egdν −

∫
fe−gegdν log

∫
fe−gegdν

=

∫
f log fdµ−

∫
fgdµ = Entµ(f)−

∫
fgdµ

and the claim follows. □

19.2. Subadditivity of the entropy on product spaces. We will henceforth consider the
case that (X ,Σ, µ) is a product probability space, i.e. X = X1×· · ·×Xn and µ = µ1⊗· · ·⊗µn
for probability spaces (Xi,Σi, µi). We continue to write X for a random element of X with
distribution µ. Thus, X = (X1, . . . , Xn) has independent components.

Some notation: for given x ∈ X we’ll write

x(i) := (x1, . . . , xi−1, xi+1, . . . , xn) ∈ X(i) :=
∏
j ̸=i

Xj . (19.9)

When the product reference measure µ is clear from the context, we’ll write

Enti(f) := Entµi(f(x1, . . . , xi−1, · , xi+1, . . . , xn)) (19.10)

That is, we fix all coordinates of x but the ith coordinate and take the entropy of the resulting
function on Xi with respect to µi. Thus, Enti(f) is a function on X(i) :=

∏
j ̸=iXj . Viewed

as a random variable, it is measurable under the σ-algebra σ(X(i)) generated by the variables
{Xj}j ̸=i, with

Enti(f) = EXiΦ(f(X))− Φ(EXif(X)) (19.11)

with EXi denoting expectation conditional on X(i).

Proposition 19.2 (Subadditivity / tensorization of the entropy). In the above setup, we have

Ent(f) ≤
∫ n∑

i=1

Enti(f)dµ . (19.12)

Or, probabilistically:

Ent(f) ≤ E
n∑
i=1

EXiΦ(f(X))− Φ(EXif(X)) . (19.13)

Remark 19.3. In the discrete case that X is countable, Proposition 19.2 is equivalent to
Han’s inequality for the Shannon entropy – see [BLM13, Chapter 4], where it is proved by an
alternative route based on the chain rule for Shannon entropy.

Proposition 19.2 has a well-known analogue for the variance, under replacing Φ with the
convex function x 7→ x2.
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Corollary 19.4 (Effron–Stein inequality). In the above setup, for f ∈ L2(µ) we have

Var f(X) ≤ E
n∑
i=1

(f(X)− EXif(X))2. (19.14)

The Effron–Stein inequality can be proved by considering a martingale difference sequence,
but it is also a quick consequence of the subadditivity of the entropy.

Exercise 19.1. Prove Corollary 19.4 by applying Proposition 19.2 with the function 1 + εf
in place of f , and sending ε to zero.

Proof of Proposition 19.2. Fixing an arbitrary function g such that
∫
egdµ ≤ 1, by Lemma 19.1

it suffices to show ∫
fgdµ ≤

n∑
i=1

Enti(f)dµ. (19.15)

Define random variables

Zi := log
E(eg(X)|X≥i)

E(eg(X)|X>i)
, 1 ≤ i ≤ n (19.16)

where we write X≥i := (Xi, . . . , Xn), X>i := X≥i+1. Then

n∑
i=1

Zi = g(X)− logEeg(X) ≥ g(X) a.s.

since we assumed Eeg(X) ≤ 1. Furthermore, for each i we have

EXiZi = 1. (19.17)

Hence,∫
fgdµ ≤

n∑
i=1

Ef(X)Zi = E
n∑
i=1

EXif(X)Zi ≤ E
n∑
i=1

EXiΦ(f(X))− Φ(EXif(X)) (19.18)

as desired, where in the final bound we applied Lemma 19.1 to the factors µi. □

19.3. The log-Sobolev inequality for the discrete hypercube. Now we consider the
product space X = {−1, 1}n with the uniform measure µ. Thus X ∼ µ has independent
Rademacher components Xi. Throughout this section we write Ent(f) for Entµ(f).

For x = (x1, . . . , xn) ∈ X we denote by

x(i) := (x1, . . . , xi−1,−xi, xi+1, . . . , xn)

the vector with the ith coordinate flipped. We define the discrete gradient of a function
f : X → R by

∇f(x) = (∇1f(x), . . . ,∇nf(x)) , ∇if(x) :=
1

2
(f(x)− f(x(i))) . (19.19)

For X ∼ µ we denote by

X̃(i) = (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn) (19.20)
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the vector with ith coordinate independently resampled, where X ′ = (X ′
1, . . . , X

′
n) is an

independent copy of X. Let

E(f) := 1

2
E

n∑
i=1

(f(X)− f(X̃(i)))2 =
1

4
E

n∑
i=1

(f(X)− f(X
(i)
))2 = E∥∇f(X)∥22 . (19.21)

Theorem 19.5 (Log-Sobolev inequality for the hypercube). For any f : {−1, 1}n → R,

Entµ(f
2) ≤ 2E(f) . (19.22)

Proof. From Proposition 19.2,

Ent(f2) ≤
∫ n∑

i=1

Enti(f
2)dµ

where we recall Enti(f
2) is a function of x(i). Fixing an arbitrary i and conditioning on X(i),

we see it suffices to show

Enti(f
2) ≤ 1

2
EXi(∇if(X))2 a.s.

which would follow from the case n = 1 of the theorem. So we are reduced to the case n = 1.

Now assuming n = 1, writing a := f(1) and b = f(−1), our aim is to show

1

2
a2 log(a2) +

1

2
b2 log(b2)− a2 + b2

2
log

a2 + b2

2
log

a2 + b2

2
≤ 1

2
(a− b)2 (19.23)

for all a, b ∈ R. By symmetry we may assume 0 ≤ b ≤ a. For fixed b ≥ 0 let hb : [b,∞) → R
be given be the difference of the left hand side and the right hand side above. One verifies
that hb(b) = h′b(b) = 0 and that hb is concave, and hence hb(a) ≤ 0 for all a ≥ b. The claim
follows. □

Theorem 19.5 has the following generalization to non-centered product measures on the
cube.

Theorem 19.6. For µp the distribution of a vector X with iid components Xi with P(Xi =
1) = 1− P(Xi = −1) = p, we have

Entµp(f
2) ≤ C(p)E(f)

for all f : {−1, 1}n → R, where C(p) = 1
1−2p log

1−p
p . (Note that C(p) → 2 as p→ 1

2 .)

Proof. See [BLM13], [Led]. □

20. Apr 02: Entropy methods – Gaussian LSI, the Herbst argument

• Deduction of Gaussian LSI from the LSI for the hypercube and CLT [Led]
• Herbst argument for sub-Gaussian concentration from LSI [BLM13]

21. Apr 04: Entropy methods – general Markov semigroups

• Source: [vH] Section 2.2 and Chapter 8

22. Apr 09: Entropy methods – hypercontractivity and threshold phenomena

• Source: [vH, Chapter 8]
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23. Apr 11: Student presentations

• Sofia, Po-Ying and Yuanxin: Sharp nonasymptotic bounds on the norm of random
matrices with independent entries, A. Bandeira and R. van Handel [BvH16]

• Victor, Bryan and Haotian: Stein’s method for concentration inequalities, S. Chatterjee
[Cha07]

24. Apr 16: Student presentations

• Jiayi, Yixin and Nathan: Four Talagrand inequalities under the same umbrella, M.
Ledoux [Led]

• Kai, Angikar and Adway: Testing for high-dimensional geometry in random graphs,
S. Bubeck, J. Ding, R. Eldan and M. Rácz [BDER16]
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