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What this is

Our goal for Math 690 (Spring 2024) is to obtain a working understanding of the
relationship between degenerations of projective manifolds (to singular projective
varieties) and mixed Hodge structures. We will cover: classical Hodge theory of
Kéhler manifolds; variations of Hodge structures; Torelli theorems; mixed Hodge
structures; degenerations of algebraic varieties, the Clemens-Schmid exact sequence
and applications. It is not possible to cover all these topics in full generality or
in significant depth in one semester; rather I aim to give an overview, illuminated
by special cases and examples. The guiding reference is the survey [KK98|, and is
supplemented by [Aral2, CMSP17, CEZGT14, Gri84, GH94, PS08, Voi07].

We work over C.

The appendix of these notes summarizes some standard results from complex
algebraic geometry, and is likely to be a useful resource throughout the course. As
the semester progresses I will flesh out the body of the notes with: (i) brief summary
of some of the material discussed in class, including homework exercises; and (ii) the

degenerations that we will study at the end of the course (time allowing).

Caveat emptor

These notes are subject to revision and updates. I appreciate learning of any typos

Oor errors.

Remark on our approach to sheaf cohomology

Good references for sheaves and sheaf cohomology, well-suited to the perspective of
this course, include [Aral2, GH94]. (The first is available electronically from Duke
Libraries.) We will implicitly use the fact that sheaf cohomology is isomorphic to
Cech cohomology HY(X,S) ~ HY({U,},S) when {U;} is a Leray cover of X with
respect to S. (That is, HY(U;,S) = 0 for all ¢,k > 1.) For example, if X is a

smooth manifold, it admits a good cover; this is a locally finite cover by open balls



with the property that all nonempty intersections are also homeomorphic to open
balls. The Poincaré lemma implies that a good cover is a Leray cover for the sheaf of
smooth k-forms, and the sheaf of smooth (p, ¢)-forms. If X is an algebraic variety and
S is quasi-coherent (this includes sheaves of sections of vector bundles), then Serre

vanishing (§A.4.4) implies that any open cover by affine varieties is Leray.

Notation

Let A = {s € C s.t. |s| < 1} denote the unit disc in the complex plane, and A* =
{s € Cs.t. 0 < |s| < 1} the punctured disc.

Given a vector space H over a field F, the dual vector space will be denoted
HY = Homg(H,F).

We will write X C P to indicate that X is a projective variety.
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Chapter 1

Complex Algebraic Geometry

1.1 Algebraic varieties and complex analytic spaces

1.1.1 Algebraic varieties

Definition 1.1.1. An algebraic set V' C C™ is the zero locus of a collection { f, }aea C
Clz] = Clz,. .., z,] of polynomials.

Exercise 1.1.2. Let V C C" be an algebraic set. Show that the Hilbert basis theorem
(§A.3.1) implies that the ideal

1(V) = {f €Cl st flv =0}
is finitely generated.

Exercise 1.1.3. The Zariski topology on C" is defined by declaring algebraic sets to
be the closed sets.
(a) Show that this does indeed specify a well-defined topology.

(b) Is the Zariski topology Hausdorff? (If yes, give a proof; if no, give a counter-

example.)



(c) Is the Zariski topology separable? (If yes, give a proof; if no, give a counter-

example.)
Exercise 1.1.4. If V; € C" and V5, C C™ are algebraic sets, then so is V; x V5.

Definition 1.1.5. The ring of regular functions is C[V] = C|z]/1(V). We say f :
Vi — Vs is a regular map (or morphism) it f = (f1,..., fn) with f; € C[V4].

Exercise 1.1.6. (a) Show that the inclusion map i : V' < C" is regular.

(b) Show that the projection Vi x V5 — Vj is regular.

Exercise 1.1.7 (). A regular map is equivalent to a morphism f* : C[V3] —
CVi] s.t. f*(z) = f;.

Definition 1.1.8. V' is irreducible if I(V') is prime.

Exercise 1.1.9. (a) If V is irreducible and V' = V] U V5, then V = V; for some
i=1,2.

(b) Every V is a finite union of irreducible V;.

(c) If V is irreducible, then C[V] is an integral domain.

Definition 1.1.10. Let V' be an irreducible algebraic set.! The quotient field of C[V/]
is the field C(V') of rational functions. The dimension of V' is the transcendence degree
of this field over C. (The cardinality of a maximal set of algebraically independent
elements.) The local ring at a € V is the ring Oy, = {f/g € C(V) s.t. ga) #
0} of rational functions that are regular at a. The mazimal ideal is the subring
my, = {h € Oy, s.t. h(a) = 0} of functions vanishing at a. The tangent space

at a is Ty, = (my,e/my,)". The local rings are the stalks of the structure sheaf

Ov(U) = {f/geC(V)st.gla) A0V a € U}.

Exercise 1.1.11 (x). Hilbert’s Nullstellensatz’s (§A.3.1) implies Oy (V) = C[V].

!The definitions that follow can be modified, to account for the presence of zero divisors in C[V],

when V' is not irreducible.



Exercise 1.1.12. (a) Given a regular map f : Vi — V5, show that prescribes
fe()(p) = v(f*p), with v € Ty, , and p € Ty, f(a), a well-defined linear map
fe: Tvia = Ty f(a)-

(b) If i : V. — C" is the inclusion, show that i, : Ty, — T, is injective.

(c) If f: Vi — V; is injective, is f, necessarily injective?

Exercise 1.1.13. Assume V is irreducible. Suppose that I(V) = (f1,..., fx). Let
f: (fla'--afk):(cn—)(ck.
0

(a) Define 0;, = s Prove that Ten, = spanc {0}

Jlz=a
(b) Given a € V, prove that Ty, = ker{d,f : C* — C*}.
(c) Define ¢ = magc{rank d.f}. Prove that U = {a € V s.t. rankd, f = ¢} is Zariski
ac
open, and that dimV =dim7y, =n —cforalla € U.

The points of U are the nonsingular (or smooth) points of V. The implicit

function theorem implies that U is a complex manifold.

Definition 1.1.14. An affine variety is a pair (V, Oy ) consisting of an algebraic set

V and its structure sheaf Oy .

Example 1.1.15. Any Zariski open subset U = {a € V s.t. fi(a),..., fr(a) # 0} is
also an affine variety. (Here f; € C[V].) We realize U as an algebraic set in C"™ cut
out by I(V) and the w; f;(2) =1 € Clz1,..., 25, wy,..., wy|.

Exercise 1.1.16. If V' is irreducible, then U is irreducible and C(U) ~ C(V).

Definition 1.1.17. A ringed space (X, Ox) is an algebraic variety if there exists a
finite cover X = UV; by open dense V; C X so that the (V;, Ox)y,) are isomorphic to
affine varieties and X is separable: the image of the diagonal map A = (id,id) : X —
X x X is closed. The field of rational functions on X is the set C(X) of equivalence
classes [f, U] with U C X open affine and f € C(U). We have (f1,U;) ~ (f2,Us) if
Ji=faon Uy NUs.

10



Exercise 1.1.18. Prove that any subset Y C X that is either open or closed is an

algebraic subvariety.

Exercise 1.1.19 (x). Show that complex projective n-space P* = P(C"™!) is a
nonsingular algebraic variety, and that the closed subsets are the X = {f1,..., fx =

0}, with f; € Clzo, #1, . . ., 2,) homogeneous polynomials.

Definition 1.1.20. The field of rational functions on X is the set C(X) of equivalence
classes [f, U] with U C X open affine and f € C(U). We have (f1,U;) ~ (f2,Us) if
fi=foon U NUs,.

More generally, a rational mapping ® : X — Y is an equivalence class of pairs
(¢,U) where U C X is open and ¢y : U — Y is a morphism. We say (¢1,U;) ~
(2, Us) if ¢ = ¢9 on Uy N Us. Every equivalence class & = [¢, U] contains a unique
representative (¢, U) with U maximal; this is the domain of definition. If ¢(U) is
dense in Y, then we have ¢* : C(Y) — C(X). The map is birational if ¢* is an

isomorphism.

Definition 1.1.21. Let Y C X be smooth, dim X = n and dimY = n — m. The
blow-up of X along Y is the map 7 : X’ — X defined as follows:

1. Cover X by open affine Uy,...,U;. Set Y; =Y NUj. Let u;1,...u;m € ClUj]
be polynomials generating I(Y;). Let (¢; : ... : t,,) be homogeneous coordinates

on P™ ! and define
Ul = {ujaty =ujpts | 1 <a,b<m} C Uy x P71

(Equivalently, U; can be characterized as the closure of the graph of (wjgc---:
Ujm) : Uj\Y; — P~ in Uy x P™~1) Then 7; : U} — Uj is an isomorphism away
from Y}, and 7Tj_1(:13) =P ! forall z € Y].

2. Prove that the definition of U} does not depend on the choice of defining poly-
nomials u;, (HW). This implies that the U} C U; x P™~1 may be glued together
into X' C X x P L.

11



Exercise 1.1.22 (k). Let 7 : X’ — X be the blow-up of a smooth variety X along
a smooth subvariety C' C X.

(a) Prove that X’ is an algebraic variety and that 7 is a birational morphism.

(b) Let No = Ty|c/Te denote the normal bundle. Show that 7~*(C') C X’ may be
naturally identified with the projectivized normal bundle P(N¢) — C.

Theorem 1.1.23 (Hironaka 1964). Let ¢ : X — Y be a rational mapping of nonsin-
gular algebraic varieties. There exists a composition o : X' — X of (a sequence of)

blow-ups and a morphism ¢' : X' =Y so that ¢’ = poo

X/
le

1.1.2 Complex analytic spaces

Here we work with the (usual) analytic topology on C", and analytic functions. Re-

view the notations and results of §A.3.2 (especially Definition A.3.3).

Definition 1.1.24. We say V' C C" is an analytic set if every a € V admits a
neighborhood a € U C C" and f1,..., fr € O,(U) so that VNU = {f1,..., fo = 0}.
The ideals I,(V) = {f € Opost. f =0onanbda € U C V} define the stalks
Ov = Ona/1.(V) of the structure sheaf Oy. Given an open U C V, the ring Oy (U)
consists of all functions f : U — C with the property that for every a € U, there exists
e>0and g € O,(A},) so that f =g on UNA}_. A continuous map ¢ : Vi — V5 is
holomorphic if for all a € V; and f € Oy, ¢(a), the functions fo¢ : Vi — Cis analytic;

that is, we have a ring morphism f* : Oy, sa) — Ovya-

Definition 1.1.25. We say V is rreducible if V = Vi NV, implies V' = V; for some
j=1,2. And V is irreducible at a if I,(V') is prime.

12



Exercise 1.1.26. Show that V = {y* = 2? + 2*} C C? is irreducible, but reducible
at the singular point (0, 0).

Definition 1.1.27. Assume V is irreducible. Then a € V' is a regular (or smooth)
point if dim Ty, = min,cy{dimTy.}. (As in HW 1.1.13, the regular points form a
dense open subset.) Points that are not regular are singular. And dimV = dim Ty,

with a regular.

Definition 1.1.28. If V' is irreducible at a € V, then the quotient field of the ring
Ov,, are meromorphic fractions. In general, we say f/g is a meromorphic fraction if
g is not a zero divisor of Oy,. A meromorphic function f € M(V) is a collection
f =AU, fi/g9:)} s.t. {U;} is an open cover of X, f;, g; € Oy (U;), with g; not a zero
divisor, and f; g; = f; g; on U; N U;.

Definition 1.1.29. The pair (V,Oy) is an analytic variety. A complex analytic
space is a ringed Hausdorff space (X, Ox) equipped with an open cover X = UV, so
that each (V;, Ox)y,) is isomorphic to an analytic variety. The space X is a complex

manifold (or nonsingular complex analytic space) if every x € X is regular.

1.1.3 Algebraic varieties versus complex analytic spaces

Every algebraic set V' naturally admits the structure of an analytic set. Every regular
function f € Oy (U) is a holomorphic function with respect to this structure; and
every rational h € C(V') is a meromorphic function. If (V, Oy) is an affine variety, we
let (V2 Oyan) denote the associated analytic variety. This association is an example

of an analytification functor.

When is a complex manifold algebraic?

In general, the analytification functor {algebraic varieties} — {complex analytic spaces}

is not surjective, and it is a very interesting question to understand when a complex

13



analytic space Y may be realized as Y = X" for some algebraic variety X. A classical

result of this type is

Theorem 1.1.30 (Riemann). Fvery Riemann surface Y has enough meromorphic

functions to realize it as a projective algebraic curve Y C P".

More generally, finite coverings X — Y of Riemann surfaces are classified (as topologi-
cal spaces) by permutation representations of the fundamental group of Y\ {ramification pts}.
It’s not difficult to see that these covers are complex analytic maps. Moreover, we

have

Theorem 1.1.31 (Riemann existence). These finite coverings are coverings of alge-

braic curves: they come from finite extensions of the function field C(Y').

Let A =~ Z* be a lattice in C9. Then Y = C9/A is a complex torus. As a smooth
manifold Y is diffeomorphic to (51)%. We call Y an abelian variety when it can also
be realized as a projective algebraic variety. Every complex torus of dimension g = 1
can be realized as a projective variety (HW 1.1.33). However, most complex tori do
not admit an algebraic structure. The test for algebraicity (which may be interpreted

as a special case of Kodaira’s embedding theorem (§A.3.11)) is

Theorem 1.1.32 (Lefschetz [MumO08]). The complex torus Y = C9/A is an abelian
variety if and only if C9 admits a positive definite hermitian form h = g — iw whose

imaginary part —w takes integral values on A.

Exercise 1.1.33. How that every one dimensional complex torus Y = C/A is an

abelian variety.
The most famous comparison result in algebraic geometry is
Theorem 1.1.34 (Chow 1949). Every analytic subvariety Y C P™ is algebraic.

A necessary condition for Y to be algebraic is that it have “enough” meromorphic

functions. . .

14



Theorem 1.1.35 (Siegel 1955). Let Y be a compact complex manifold. Then the
field M(Y") of meromorphic functions is finitely generated over C and trdege: M(Y) <
dim Y.

If trdege M(Y) < dimY, then Y can not be realized as an algebraic variety. For

complex surfaces, this necessary condition is also sufficient. . .

Theorem 1.1.36 (Kodaira 1954). If Y is a compact complex manifold of dimen-
sion two, admitting two algebraically independent meromorphic functions, then Y 1is

projective algebraic variety.
In general, the necessary condition is not sufficient, but it is close. ..

Theorem 1.1.37 (Moishezon 1966). IfY is a compact complex manifold and dimY =
trdege M(Y'), then there exists a projective algebraic variety Y' and a bi-meromorphic,
holomorphic map w : Y' — 'Y constructed as a composition of (a sequence of) blow-

ups.

Serre’s GAGA

As discussed above, every algebraic variety (X, Ox) may be naturally realized as n
complex analytic space (X?", Oxan). More precisely, the identity map id : X** — X
is a ringed space morphism: the map is continuous (the inverse is not), and we have
id* : Ox — Oxan. We have Ox, C Oxan,. And in general containment is strict; for

example, e” € Ocan\O¢.

Exercise 1.1.38. If f : X — Y is a regular map, then f** =id o foid : X*» — ya»

is holomorphic.
Theorem 1.1.39 (Serre 1956). Let (X,Ox) be an algebraic variety.

(i) X is connected if and only if X*" is connected.

(il) X is irreducible if and only if X* is irreducible.

15



(iii) dim X = dim X*".
(iv) X is compact if and only if X is complete (or proper): for every variety Y
the map X XY — Y sends closed sets to closed sets.

Informally, Serre’s GAGA says that the category of coherent algebraic sheaves
on a complex projective variety X is equivalent to the category of coherent analytic
sheaves on X*". As we will see, the formal statement (Theorem 1.1.45) allows us to

construct algebraic objects using analytic tools (which is pretty awesome).

Definition 1.1.40. A sheaf S of Oy—modules on a ringed space (Y, Oy) is coherent
if
(i) The sheaf is of finite type: for all y € Y there exists a neighborhood U and a
surjective morphism O (U) — S(U). (Locally the sheaf is finite generated.)

(ii) For all open U C Y and morphisms ¢ : Oy (U)" — S(U) of Oy (U)-modules, the
kernel ker ¢ is of finite type. (This says there are essentially only finitely many

relations among the generators.)

Theorem 1.1.41 ([GR84]). (i) The sheaf Oxan is coherent (Oka 1950).
(ii) The sheaf Ox is coherent (Serre 1955).

Example 1.1.42. Let Y be either a complex manifold or a non-singular algebraic
variety, and £ — Y a (holomorphic or algebraic) vector bundle. The theorems of

Oka and Serre implies that the sheaf of sections £%(F) is coherent.

Remark 1.1.43. Intuitively, coherent sheaves may be seen as a generalization of
vector bundles: they are the smallest abelian category containing vector bundles. For
further discussion of coherent sheaves from a perspective well-suited to this course,
see [Aral2].

Theorem 1.1.44 (Oka—Cartan [GR84)). The ideal sheaf of an analytic set in a com-
plex space is coherent (H. Cartan 1950).

16



Given an sheaf & of Ox-modules over X, there is a natural sheaf
San = ld_ls ®1d71(OX) OXan
of Oxan-modules over X** (given by the analytification functor).

Theorem 1.1.45 (Serre’'s GAGA 1956). Let (X,Ox) be an algebraic variety.? Let

(X, Oxan) be the associated complex analytic space.

(i) The identity id : X*™ — X is a morphism of ringed spaces.

(ii) Given a morphism f : (X,0x) — (Y,Oy), there exists a morphism f** :
(X, Oxan) — (Y, Oyan) satisfying f oidx = idy o f*. If f is an open
immersion, then so is f*".

(ili) For every sheaf S over (X,Ox), there is a sheaf S = id 'S ®;q4-10, Oxan
over (X* Oxan) and a map of sheaves id* : § — id,.S* over (X,Ox). The
correspondence S — S* is an exact functor Sh(X, Ox) — Sh(X?*", Oxan)

(iv) Given a morphism f: (X,Ox) — (Y, Oy) and a coherent sheaf S over (X, Ox),
the map (f.S)*™ — f2S* is injective.
If f is proper, the map is an isomorphism and we have isomorphisms (R’ f,S)™ ~

RifanSan of all higher direct image sheaves.

Now assume that (X, Ox) is projective algebraic. (In particular, X is proper/complete
and X®" is compact.) Let S,G be coherent sheaves over (X, Ox).

(a) The natural morphism HY(X,S) — HI(X* S*) is an isomorphism.

(b) The natural morphism Homo , (S, G) — Homo ., (1d*S,id*G) is an isomorphism.

(c) FEwvery coherent sheaf over (X", Oxan) is isomorphic to id*S for a unique coher-
ent sheaf over (X, Ox).

2GAGA holds more generally for schemes of finite type over C. In this setting the identity map

is replaced by an inclusion X" < X, where X3" is the set of closed points.
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1.2 Complex manifolds

1.2.1 Hermitian vector bundles

Let X be a complex manifold, and 7 : £ — X a holomorphic vector bundle of rank
r. Let EY(E) denote the sheaf of smooth sections of E; let EX(E) = £% @ EY(E)
denote the sheaf of smooth k-forms taking value in F; and let EXY(F) = ERT QR EY(E)

denote the sheaf of smooth (p, ¢)-forms taking value in E.

Definition 1.2.1. A (smooth) framing of E over U C X is a collection of sections
e1,...,e. € EX(E)(U) of E over U so that {e;(z),...,e.(x)} is a basis of E, for all

x € U. The framing is holomorphic if each section e, is holomorphic.

Exercise 1.2.2. Prove that E is trivial over U if and only if £ admits a holomorphic

framing over U.

Exercise 1.2.3. Show that 0 : £27 — £%7*! induces a well-defined operator 9 :
EPYE) — EXTY(E). (Your proof should use the fact that E is holomorphic. It is

not true, in general, that the exterior derivative d induces an operator d : E%(F) —
EX(E).)

Definition 1.2.4. We say E is hermitian if each fibre E, = 7=!(z) is equipped with
a hermitian scalar product h, which depends smoothly (not necessarily holomorphi-
cally) on E. We call this structure a hermitian metric on E. The local framing is

unitary if h(eq, €p) = ap.
Exercise 1.2.5. Show that £ admits a hermitian metric. [Hint. Partition of unity.]

Remark 1.2.6. Given a holomorphic framing we may apply the Gram-Schmidt or-

thogonalization process to obtain a unitary frame (possibly after shrinking U).

Definition 1.2.7. A connection on E is a mapping
D:EY(E) — Ex(E)
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satisfying the Leibniz rule
D(fa) = df @a + fDa (1.2.8)
for all smooth functions f € £% and smooth sections « € EY(E).

Definition 1.2.9. Fix a (smooth) framing {e;,...,e.} of E over U. The local
connection 1-forms 08 € Ex(U) (with respect to the local framing) are defined by
De, = 6° @ e,. Together the Leibniz rule (1.2.8) and the local connection 1-forms

determine the connection D on U.

Definition 1.2.10. The Chern connection is the unique connection on £ — X

satisfying the following conditions:

(i) The natural map £%(E) 3 £L(E) — EXY(E) is given by 0.

(ii) The hermitian metric is parallel: d(c, 8) = (Da, 8) + (o, DB) for all sections
a, B.

Exercise 1.2.11. Show that the hermitian metric is parallel if and only if the local

connection 1-forms with respect to a local unitary frame satisfy 0 = 67 + «9_2

Lemma 1.2.12. The Chern connection 1-forms with respect to a local holomorphic
framing {e1,...,e,} over U C X are given by 05 = (Ohg)(h~1)b € EX°(U), where
hab = h(ea, eb).

Definition 1.2.13. The connection induces a mapping D : EX(F) — EXTH(E) by
setting D(¢p®@a) = dgp® a+ (—1)k¢® Da for all smooth k-forms ¢ € £% and sections

a € E%. The curvature of the connection is the induced map D?: EY(E) — E%(E).

Exercise 1.2.14. Show that the curvature D? : E%(E) — E%(E) is a E%-linear
operator. That is, the map is induced by a bundle mapping E — A*(TX)" ® E.?

3Here (TX)V is the real cotangent bundle, the cotangent bundle with respect to underlying

smooth manifold structure, not the holomorphic co-tangent bundle Ty of §1.1.2.
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Exercise 1.2.15. Given a local framing {e;} € EX(FE)(U), define ©) € £X(U) by

D?¢; = ©} ® e;. These forms are the coefficients curvature matriz © = (0%) of D

with respect to {e;}.

(a) If {e/}EX(E)(U) is a second framing, then ¢} = g’ ¢; for some g} € £5(U). Show
that © = gOg~!.

(b) Show that Cartan’s structure equation © = df — @ A 6 holds.

1.2.2 Kahler manifolds

Let X be a complex manifold with complex structure J : TX — TX. Here TX is
the real tangent bundle, to be distinguished from the holomorphic tangent bundle T
of §1.1.2. The two are related by the decomposition of the complexification T'X ®
C = Tx ® Tx into J-eigenbundles; the holomorphic tangent bundle T is the +i-

eigenbundle. In a mild abuse of notation, we will regard T’y as a subspace of TV X ®C.

Definition 1.2.16. We say X is hermitian if the holomorphic tangent bundle T is
equipped with a hermitian metric h. This metric is naturally regarded as a tensor
heTy®Ty C TVX ® C; locally we write h = hgd2® ® dz°

Remark 1.2.17. The take-away from HW 1.2.18 and 1.2.19 is that a hermitian
manifold (X, h) is equivalent to the data of a Riemannian manifold (X, g) equipped
with an (integrable) complex structure J that is an isometry of the metric g; and
together the Riemannian metric and complex structure define a positive (1, 1)-form

w(u,v) = —g(u, Jv).

Exercise 1.2.18. Let i be a hermitian metric on X. Define g = Reh = (h + h)
and w = —Imh = 1(h — h).

(a) Show that ¢ is a Riemannian metric on X.
(b) Show that .J is an isometry of g; that is, g(u,v) = g(Ju, Jv).

(¢) Show that w(u,v) = —g(u, Jv).
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Exercise 1.2.19. Fix a Riemannian metric g on X, and assume that .J is an isometry
of the metric; that is, g(u,v) = g(Ju, Jv). Define w(u,v) = —g(u, Jv).
(a) Show that w is a real (1,1)-form.
(b) Show that w is positive. That is, w is a real (1, 1)-form satisfying w(v, Jv) > 0
for all nonzero v € T X; equivalently, —iw(u, @) > 0 for all nonzero u € T.
(c) Show that h = g — iw is a hermitian metric.

Definition 1.2.20. The hermitian manifold (X, ) is Kdhler if dw = 0. In this case

we say that w is the Kahler form w.

Exercise 1.2.21 (Fubini-Study metric). Let (ug : - : u,) be homogeneous coordi-

nates on P". Let U; = {u; # 0} C P".

(a) Show that the w; = i091log >y, ux/u;|* € Epi (U;) agree on intersections, and
so define a closed (1,1)—form w on P".

(b) Show that w is a Kéhler form. (The associated metric is the Fubini-Study metric
on P".)

Exercise 1.2.22. Show that every complex submanifold Y C X of a Kéhler manifold

is also Kahler.

Exercise 1.2.23. Show that (X, h) is hermitian if and only if J is parallel with
respect to the Levi-Civita connection of g. That is, Kahler manifolds are Riemannian

manifolds (M, ¢g) with dimg M = 2n and holonomy group contained in U(n).

1.3 Line bundles and divisors

Let X be a complex manifold, O% the sheaf of no-where vanishing holomorphic
functions (the units in Ox), and M7 the sheaf of meromorphic functions that are
not identically zero (the units in My).

Given an open cover {U,} of X we set Uys = U, N Us.
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Definition 1.3.1. A (holomorphic) line bundle is a submersion 7 : L — X of complex
manifolds s.t. each fibre L, = 7! is canonically a one-dimensional vector space
over C, and there exists an open cover {U,} of X and local trivializations given by

biholomorphisms
N U,) 2= U, x C

(
Ua
so that ¢, : L, — {x} x C is an isomorphism of C vector spaces for all z € U,. This
definition implies that we have transition functions g.p € O%(Uyp) so that
psowy (2,v) = (2,9as()v)

for all z € U,s = U, N Us. Note that {gas} € H (X, 0%).

Exercise 1.3.2. (a) Given a collection {gns € O%(Uap)} such that g, = 1 and
9aB 98+ §va = 1, show that there exists a line bundle with these transition func-

tions.

(b) Show that the line bundle is trivial if there exists h, € O%(U,) so that g, =
hs/he.

Remark 1.3.3. It follows that the Picard group of line bundles on X is Pic(X) =
H'(X,0%).

Exercise 1.3.4. Show that every line bundle admits a (smooth) hermitian metric h.

[Hint. partition of unity.|
Definition 1.3.5. The Chern form
e(L,h) = —5L85bgh e EV(X)
T

is determined as follows. Over U, we have a holomorphic framing s,(x) = ¢! (x, 1)
of L, and hy(z) = h(sq(7)) > 0 is smooth. Define 9d1logh, = 0dloghz on Uy if
suffices to observe that s, (z) = gpgl(x, 9op(®)1) = gap(x) sg(x), so that hy = |gasl*hs-
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Exercise 1.3.6. The tautological line bundle over P" is
Opn(—1) = {(t,v) €P" x C""' st. v €L},
If w=(up:---:u,) are homogeneous coordinates, then s; = %u is a holomorphic
framing of Opn(—1) over U; = {u; # 0} C P".
(a) Show that |s;|* = \%u!z is a globally well-defined hermitian metric on Opn(—1).

(b) What is the relationship between the Chern form ¢; (Opr (—1), h) and the Kéhler form
of the Fubini-Study metric (HW 1.2.21)?

Exercise 1.3.7. Show that the de Rham cohomology class [c1(L,h)] € H3(X,R) is
independent of h. Let ¢;(L) € H3(X,R) denote this Chern class.

Exercise 1.3.8. Suppose that w is a real closed (1,1)—form representing the first
Chern class ¢;(L). Use the d9-lemma (HW 2.2.10) to show that there exists a metric
h on L so that w = ¢;(L, h).

Remark 1.3.9. It is a consequence consequence of the Hodge decomposition (§2.2)

on a compact Kéahler manifold is that the set of Chern classes coincides with H?(X, Z).

Definition 1.3.10. A hypersurface is an irreducible complex analytic space V C X
with dimV = dim X — 1.

Exercise 1.3.11. (a) Prove that (V) = (f) for some f € Ox,. [Hint. §A.3.2.]
(b) Prove that I.(V') = (f) for every z’ sufficiently close to z.

(c¢) Conclude that there exists an open cover {U,} of X and f € Ox(U,) so that
V NU, = {fa =0}. These are the local defining equations of V.

(d) Suppose that x € U,p and g € Oy, is not identically zero. Define 0 < k,, kg € Z
and h,,hy € O%, by specifying g = ha, fie = hg f5°. Prove that k, = ks.
Conclude that ordy (g) = k,, the order of vanishing of g along V', is well-defined.

It f e M)X(x is not identically zero, then f = g/h, with neither of g,h € Ox,
identically zero, and we define ordy (f) = ordy (g) — ordy (h).
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Definition 1.3.12. A divisor is any (locally finite) formal linear combination D =

> n;V; with n; € Z. The group of all divisors is
Div(X) = H°(X, M%/0O%).

The divisor is effective (written D > 0) if n;, > 0. Every (nonzero) meromorphic

function f on X determines a divisor

(f) = > ordv(f)V.

These are the principal divisors Div?(X) = {(f) s.t. f € M%(X)}. The divisor (f)
is effective if and only if f is holomorphic. We say two divisors are linearly equivalent
(written D; ~ Dy) if Dy — Dy € Div?(X). The divisor class group is the associated

group of equivalence classes
Cl(X) = Div(X)/Div’(X).

Remark 1.3.13. Fix a hypersurface V' C X. The linear functional ¢ fvgb on
H?"72(X,Z) determines a homology class (V) € Hs, o(X,Z). The Poincaré dual
my € H?(X,C) is the fundamental class of V. It may be shown that m, = ¢i([V]),
cf. [GH94].

Exercise 1.3.14. Show that the line bundle associated to the divisor P*~! C P" is

[P"1] = Opa(1) 2= Opn(—1).

Exercise 1.3.15. (a) Show that the line bundle [D] is trivial if and only if D €
Div’(X).

(b) Show that [D; + Ds] = [D1] ® [Ds].

Conclude that [-] : C1(X) — Pic(X) is a well-defined morphism.

Exercise 1.3.16. (a) Let s be a meromorphic section of L. Prove that [(s)] = L.

(b) Show that [D] has a meromorphic section s with divisor (s) = D.
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(c) Show that the space H°(X,[D]) of holomorphic sections of [D] may be identified
with the space of meromorphic functions f on X such that (f)+ D > 0.

Remark 1.3.17. If X is projective, then every line bundle L — X admits a nonzero
meromorphic section. In this case, every line bundle can be realized as the line bundle
L = [D] = [(s)] associated to a divisor. So, when X is projective, [-] : C1(X) — Pic(X)
is an isomorphism. However, Kleiman has exhibited a complete, non-projective 3-
dimensional, irreducible scheme that is equipped with a line bundle having no nonzero

rational section [Har70, Example 1.3].

Exercise 1.3.18. Fix two effective divisors D; and D,, and set D = Dy — Ds.
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Chapter 2

Hodge theory

2.1 Hodge theory on complex manifolds

Recommended reference: [Aral2, GH94, Huy05]; also [Gre94, Lectures 1 & 2] for a
nice overview.

Assume X is a compact, complex manifold.

2.1.1 de Rham cohomology
Harmonic representatives of de Rham cohomology

Definition 2.1.1. A choice of hermitian metric on X determines

a) a hermitian product (o, 3) — a, 3) dvol on the space H(X,Ex) of global
X

sections of differential forms Ex = @ E ;“{;

(b) a Hodge x operator ER? — EY "1 by (a,f)dvol = a A xf, and satisfying
#? = (—1)P*1d; and

(c) an adjoint
d* = —*xds: HO(X,E5MY) — HO(X, &)

to the exterior derivative d : HO(X, &%) — 5! also satisfying (d*)? = 0.
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The Laplacian is the self-adjoint Aq = (d + d*)? = dd* + d*d. The kernel
H = ker{Aq: H'(X,Ex) — H°(X,Ex)}

is the space of harmonic forms. (Note that the definition of the harmonic forms

depends on the choice of Hermitian metric.)

Theorem 2.1.2 (Hodge'). We have a decomposition of the k-forms
HY(X,&y) = H* @ dH(X,EY") @ d"HO (X, E5M),

and the closed forms are kerd = HF @ dH°(X, Ef(_l). In particular, each de Rham
cohomology class admits a unique harmonic representative, and HY¥(X, C) is canon-
ically isomorphic to H¥. This implies that HY(X,C) is finite dimensional, as H* is

the solution space of an elliptic differential operator.

de Rham’s theorem

Let £% be the sheaf of smooth, C-valued, differential k-forms. The space of globally
defined forms is naturally identified with the O-th sheaf cohomology group £%(X) =
HO(X,EY). These sheaves are fine, because X admits partitions of unity. Conse-
quently the sheaf cohomology groups in positive degree vanish: H4(X, %) = 0. Then
de Rham’s theorem asserts that the singular cohomology with complex coefficients
(left-hand side) is given by the de Rham cohomology (right-hand side)
HHNX.C) = HE(X.,C) l.<er{d c HO(X, 55‘;)1% HO(X, E57)) |
im{d: HO(X,Ey ') — HO(X,E%)}

2.1.2 Dolbeault cohomology
Harmonic representatives
Definition 2.1.3. Define an adjoint

0" = — % 0% : HO(X, &L — HO(X,ER9)

'Hodge’s initial arguments were completed in Kodaira and others in the 1940s.
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to the Dolbeault differential & : H(X, &%) — HO(X, &%), a Laplacian Ay =

00 + 0*0 and the corresponding space of harmonic forms

q dfn

HP == ker{Ag: H*(X,ER") — H°(X,EX")}.

Theorem 2.1.4. We have a decomposition of the (p, q)-forms
HO(X,E29) = HPY @ GHO(X,ELY) @ 9" HO(X, ERTHYY,

and the O-closed forms are ker 0 = HP9 @ OH(X,EXY™). As a corollary, HZY(X,C)

is finite dimensional.

Remark 2.1.5. The Hodge * operator commutes with Ag, and so induces the

Kodaira—Serre isomorphism

* o HP — HPTO

Dolbeault’s theorem

The complex structure on X induces a decomposition % = @, - ER?. The sheaves
ER are also fine. The exterior derivative d : E% — E%! decomposes as d = 9 + 0
with 9 : ERT — €079 and 9 : €Y — ERIT'. Let Q% = ker{0 : £2° — &X'} denote
the sheaves of holomorphic p-forms. The Dolbeault theorem asserts that the sheaf
cohomology (left-hand side) is given by Dolbeault cohomology (right-hand side)

9. g0 D,q 0 p,g+1
HO(X, ) = Hro(x,c) A KRt I EC) & HIX &)}
? im{d : HO(X, L") — HO(X,EL)}

For a proof see Example 5.4.21 and Example A.4.13.

Definition 2.1.6. Given a holomorphic vector bundle £ — X, let Ox(E) denote the
sheaf of holomorphic sections, and let EY?(E) denote the sheaf of smooth, E-valued,
(p, q)-forms on X.

Exercise 2.1.7. Show that:
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(a) The operator 0 : E29 — 24" naturally induces a well-defined operator Jp :
EXUE) — EXY(E) satisfying 0% = 0. Consequently we have a well-defined
Dolbeault cohomology groups

ooz A er{D HOXLEV(E) — 1K 077 (E)
o im{d : HO(X, EY""1(E)) — H(X, £°(E))}

(b) The kernel of 9 : EY(E) — EYN(E) is Ox(E).
Remark 2.1.8. The Dolbeault theorem generalizes to vector-bundle valued forms:

the sheaf cohomology (left-hand side) is given by

HY(X,2 ® O(E)) = HI(X,E). (2.1.9)

2.2 Hodge theory on Kahler manifolds

In general, the two operators Ay and Ay are completely unrelated. However, if the

compact, complex manifold X is also Kdhler (§1.2.2), then
A = 2705 = 2A,. (2.2.1)

As a corollary

HE = @ HP9 and HP4 = HIP,
p+q=Fk
and we have the Hodge decomposition

HY(X,C) = P HM(X),
ptq=k

with HP?(X) the de Rham cohomology classes that can be represented by (p,q)—

forms.

Remark 2.2.2. The cohomology groups H¥(X,C) are topological invariants of X.
The Hodge decomposition depends on the complex structure. While the definition of

harmonic forms depends on the metric, the Hodge decomposition does not.
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Example 2.2.3 (Hodge numbers of projective space). We have

7, k=0 mod 2,

H*P",7Z) =
0, k=1mod 2.

To see this note that P* = C" UP" ! is a CW-complex with exactly one cell in each
degree 2k for each 0 < k& < n, and no cells in odd degree. The attaching maps are

zero, and the claim follows. It follows that the Hodge numbers are
hp,qapm) = o,
for all 0 < p,q < n, and zero otherwise.

Example 2.2.4 (Hodge numbers of complex tori). Fix a complex torus X = C9/A;
here Z* ~ A C CY is a lattice. If (z1,...,2,) are complex coordinates on CY,
then h = > dz, A dZ, is a hermitian metric on X. Writing 2, = z, + iy,, the
associated Riemannian metric and positive (1, 1)—form (of HW 1.2.18) are g = Re h =
> (dx, @ dz, + dy, ® dy,) and w = —Imh =2 dz, A dy,.

It is clear that dw = 0, so that X is a Kahler manifold.

The holomorphic 1-forms on X are H'°(X) = span{dz;...,dz,}. The Hodge
decomposition on H'(X,Z) determines the Hodge decomposition on H*(X,Z) =
AN HY(X,7Z):

2

HPX) = (WHO0) 0 (O R) and wen = (7)(7) = (1)

p/ \4q p
Exercise 2.2.5. Let X be a compact Kahler manifold. Show that the holomorphic

forms are harmonic.

Remark 2.2.6. The equation (2.2.1) is one of the so-called Kdhler identities. An
important consequence of the identities is that w A 77 is harmonic whenever 7 is. In
particular, 0 # w” is harmonic for all 1 < k < dim X. An other useful Kéhler identity

1S

0 =09+ 090".
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Exercise 2.2.7. Let X be a compact Kahler manifold. Prove that the odd Betti

numbers are even, and the even Betti numbers are positive.

Remark 2.2.8. Hopf manifolds violate both these constraints on the Betti numbers,

and this is how one sees that they are non-Kahler complex manifolds.

Exercise 2.2.9. Let i : Y — X be a complex submanifold. Use the fact that ¢*w is

a Kahler form on Y to show that Y is not null-homologous in X.

Exercise 2.2.10 (90-lemma). Let X be a compact Kihler manifold and 7 a closed

(p, q¢)-form. Prove that the following are equivalent:

(a) n is d-exact.
(b) n is 0-exact.
) n is O-exact.
)

(c
(d) n = 00p. And if 1 is real, then p may be chosen so that ip is also real.

Remark 2.2.11. The Hodge theory of the 9 operator extends to Hermitian vec-
tor bundles £ — X. There is a well-defined dg-Laplacian Ag, on EY(E) and
a notion of dg-harmonic sections HP(E) = ker Az C H°(X,EYY(E)) yielding
HPI(E) = HZY(X, E). Consequences of this Hodge theory include Kodaira-Serre
duality (§A.3.12) and the Kodaira vanishing theorem (§A.3.10).

2.2.1 Example: Hodge numbers of a projective hypersurface

Let X C P! be a smooth projective hypersurface of degree d. The Hodge numbers
hP1(X) = dimc H??(X) may be computed from the Lefschetz hyperplane theorem,
Kodaira—Serre duality, and the Riemann-Roch-Hirzebruch theorem [Hir66]. (This
discussion follows the on-line notes of L.I. Nicolaescu.)

First, Example 2.2.3 and the Lefschetz hyperplane theorem (§A.3.7) imply h??(X) =
dpq for all p+ g < n. Then Kodaira-Serre duality (§A.3.12) implies h?9(X) = d,,

31



for all p + ¢ > n. It remains to compute h*?(X) for p + g = n. In this section we
will sketch how this may be done with the Riemann—Roch—Hirzebruch formula. The
approach of yields a generating function, from which extracting the Hodge numbers
is laborious. In §5.4.5 we will discuss a more computationally amenable approach via

the Jacobian ring.

Note that
—1) _1)n—p ppin—p 9
XX Q) = S (—1)7hre = (=17 + (=1) B PR D)
>0 (—=1)? hpP n=2p.
So we need to compute
dfn
Xp(X) == Y P XX, Q%) = Y (-)TRMy
p=>0 P,q20
Set
chy(TY) = 3 4P ch(%).
p>0
Then the Riemann—-Roch—Hirzebruch formula (§A.3.15) yields
W(X) = P (X 0%) = (6d(X)chy(TY), [X]). (22.13)

p=>0

We compute td(X) as follows. Let H = Opn+1(1), and set h = ¢1(H) = ¢, (P").
Then ch(dH) = e?. The adjunction formula (§A.3.6) dH|x = Nx and SES

0 — TX — T]P’"“'1|X — dH‘X — 0

and (A.3.15) yield
td(X)td(dH|x) = td(Tpn+1]x).

To compute td(Tpn+1), let C"** — P! be the trivial line bundle, and define Q =
C""?/HY. Then Tpn1 = H — @, and we have a SES

0 = C — H"™ = Tpr — 0. (2.2.14)
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Then (A.3.15) implies

h n+2
td(Tpn+1) = td(H)’”r2 = ( ) ,

1—eh
so that T "
h " 1—e
td(X) = _— 2.2.15
(X) (1 — eh) ~ dh |y ( )
We compute ch,(Ty) as follows. The SES
0 - Tx — T[pm+1|X — Ny ~ dH|X — 0
and (A.3.15) yield
chy(TY) = chy(T¥hs) x chy(—dH) " x
Dualizing the SES (2.2.14), and again applying (A.3.15), we have
h, (T, = (—
chy (Tpn+2) 14y
SO ( h) +2
14+ ye ")"
ch,(Ty) = 2.2.16
) = g ye ™ 2210

All together (2.2.13), (2.2.15) and (2.2.16) yield
h M2 emdh (1 4 yeh)nt2
Xy(X) = _ ,—h ( ) —dh\ ’ [X]
l—e dh  (1+y)(1+ye )
Since dh is Poincaré dual to [X], we may rewrite this as
" 14+ ye ™ w2 (1 —edh "
Xy(X) = (B (ﬁ) ),dh , [P
l—e (1+y)(1+yedh)

It follows that x,(X) is the coefficient of 27! in the Laurent expansion of

[ 1+ye” 2 (1 —e %)
0 = (75%)  ronse®
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By the residue formula, this is

WX = — [ fe)de

211 |z|=¢

The change of variables ¢ = 1 — e~ yields e7%* = (1 — ¢)? and —dz = dlog(1l — () =
—(1-¢)d¢. And

1 A4y -9)"  (A-(1-9))
omi Joo C2(1=C) (1+y)(1+y(1—¢)9)

Xy(X) = .d¢

The integrand

o) = 1-(1-97) (d+yd-g)"*
¢ (1=¢) (I+y)A+y1 =)

has a pole of order n + 1 at ( = 0. Set

1-(1-09 dA+yd -
(=0 (@T+y)T+yl-0)7)’

h(Q) = ¢"glQ) =

so that h(")(O)
Xy(X) = T (2.2.17)

Example 2.2.18 (Planar curve). Let n = 1, so that X C P? is a planar curve of
degree d. Then (2.2.12) and (2.2.17) yield

Xy(X) = 1-9) + (9g-1y = 3dd+3)(y—1),
and we recover the degree—genus formula (§A.1.2)
g = 3(d-1)(d-2).

Exercise 2.2.19. Let n = 2, so that X C P? is a surface of degree d. Show that the
Hodge numbers are

(X)) = B%(X) =

ANX) =

(d—1)(d—2)(d—3)
d(2d* — 6d + 7).

1
6
1
3
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2.2.2 Example: Hodge numbers of a complete intersection

curve

Let C C P? be the complete intersection of two curves of degrees d; and dy. The
adjunction formula (§A.3.6) yields No = (dy H ® dy H)|¢. The SES

0 = Tc = Tpsle = (hH®d2H)le — 0
and (A.3.15) yield
14+ c(Te) = ch(Te) = ch(1ps)|c — ch(dy H)|c — ch(dy H)|e
The SES (2.2.14), with n = 2 yields ch(Tps) = 4e" — 1, so that
14 a(Te) = (4e" —1— et —e2M)|¢
Then e(C) = ¢1(T¢) = (4 — dy — d2)h|c, and
X(C) = (e(C), [C]) = ((4—di—da)hlc, [C]).
Since [C] is Poincaré dual to d;dsh?, we may rewrite this as
X(O) = ((4—dy —dy)dydyh® | [P?)) = (4 —dy — dy)dyds.

We deduce

This may be reinterpreted as a spec1al case of the genus formula (§A.2.5) for a curve

on a surface.

Remark 2.2.20. The arguments above may be generalized. Let X" C P"** be
a complete intersection of hypersurfaces of degrees di,...,d,. Then Hirzebruch’s
signature formula [Hir66] is
[e9) k
" 1+ 2 (1+2y)% — (1 — 2)%
S (X, Ox(m)) o+ = LE)” v) o paa)

1—zm+1 e (1+29)% + (1 —2)%

Taking m = 0 we have

k

N n_ ! (L+2y)h — (1= 2)*
;xy(x, 00" = = e (222

i=1
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2.2.3 Primitive cohomology

Definition 2.2.23. Let (X,w) be a compact Kéhler manifold of dimension n. The

primitive cohomology is
PPRHX) = ker{w™': H"H(X) — H" (X))},
and inherits the Hodge decomposition
PMX) = @ P™(X), where PPUX)=P""(X)nH"(X).
pta=m

Theorem 2.2.24 (Hard Lefschetz). The map w* : H" *(X) — H"™*(X) is an

1somorphism.

Corollary 2.2.25 (Lefschetz decomposition). We have
H™X) = P AP X).
0<k<m/2
Exercise 2.2.26. Show that the Betti numbers of a compact Kahler manifold satisfy
be(X) > br—o(X) for all £ < dim X.

Remark 2.2.27 (Geometric interpretation). Let w be the Fubini-Study (1, 1) form on
P™ (HW 1.2.21). It can be shown that [w] € H?(P™) is Poincaré dual to the homology
class [P™'] € Hy,, o(P™), cf. Remark 1.3.13, and Exercises 1.3.6 and 1.3.14.

Let ¢ : X — P™ be a nonsingular projective variety of dimension d. Then
wx = i*w is Poincaré dual to the homology class [H]| € Hay_2(X) of the hyperplane
section H = X NP™!. (Bertini’s theorem (§A.3.4) assures us H will be smooth for
generic choice of P™~1.) Duality gives the hard Lefschetz theorem the following dual
formulation: the operation of intersecting with P™~% C P defines an isomorphism
H,.(X,C) = H, x(X,C).

Poincaré duality identifies the primitive cohomology P"~*(X) with the subgroup
of (n—k) cycles that do not intersect H. This is the image of the map H,, ,(X\H) —
H,_1(X). Regarding P! C P™ as the “hyperplane at infinity”, we call these the

finite cycles.
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Definition 2.2.28. Suppose n = k + ¢, with k£, ¢ > 0. Define a bilinear pairing
Q: H*(X)® H*(X) — C by

Qa, ) = (—D’““VQ/ aABAw’

X

Exercise 2.2.29. Prove that Q(o, 8) = (=1)*Q(B, a).

Theorem 2.2.30 (Hodge-Riemann bilinear relations).
QUH™ H™) = 0, if(p.q) #(sr),

71Q(av,@) > 0 forall0# a € PPY(X) C P™(X).

Exercise 2.2.31 (Hodge Index Theorem for surfaces). Let X be a Kéhler manifold
of dimension 2. Show that @ has signature (1 + 2dim H*°(X), dim A“'(X) — 1).

Exercise 2.2.32 (Hodge filtration). Define a filtration F* C F*' C ... F' C F? =
P™(X) by specifying

dfn

Fk Pm’O(X) ey mel,l(X) DD Pk,mfk(X) )

(a) Prove that F¥ N Fm-k = pkm=k(X),

(b) Show that the first Hodge-Riemann bilinear relation is equivalent to Q(F*, Fm=k+1) =
0.

Definition 2.2.33. The Kihler manifold (X,w) is Hodge if w € H*(X,Z). In this

case the primitive cohomology P(X) has the structure of a vector space over Q.

Example 2.2.34. Since H*(P",Z) = Z (Example 2.2.3), the Kéhler form associated
with the Fubini-Study metric (HW 1.2.21) is proportional to an integral form. So
P" is a Hodge manifold. Since the property of being Hodge is inherited by complex
submanifolds Y C X, it follows that every projective manifold X C P is Hodge.
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2.2.4 Example: abelian varieties

Suppose (X = C9/A,w) is an abelian variety (Theorem 1.1.32). Fix a basis {\1,..., Ay} C
A~ H\(X,Z). Let (uy,...,ug,) : CI — R? be the dual R-coordinates of H*(X,Z).
Then {duj}igzl C HY(X,Z) is dual to the {)\j}iil. Define a skew-symmetric matrix

R = (rij) € GLay(Z) by w = £ 3" ry5du; A duy.

Exercise 2.2.35 (Smith normal form). (a) Show that there exists a choice of basis
{)\j}iil so that

0 -A "
R = I I :
A 0
69
with 0 < §; € Z and 640441
(b) Show that (dy,...,d,) is an invariant of w; that is, does not depend on the choice

of normalizing basis.

Assume this normalization is in effect.

The polarized Hodge structure

Note that {6;" A, ... ;0,1 Ag} is a complex basis of C9. And

N
% [a &%1
e S,

L Azg J

with P = (pa) € GL,C.

38



Let (z1,...,2,) be the complex coordinates dual to the basis {4, \,}. Using
dz, = 6, dug + > Pap dupt g, one may check that the polarization on H' (X, Z) satisfies

Q(dzaa dzb) = |5‘(pba - pab) and Q(dzm dzb) = ‘5|(2_?ab - pab) )

where [6| = 61 ---J,. The Hodge-Riemann bilinear relations (Theorem 2.2.30) then
force P to be symmetric with Im P positive definite, cf. Example 2.3.16.

Remark 2.2.36. Conversely, any symmetric P, with Im P positive definite, defines
a Hodge decomposition on Hy = H' (X, Z) with H"* = spanc{d, du, + 3 ap Aty 4}
Theta divisor

Definition 2.2.37. We call (d,)7_, the polarization type of (X,w), and say that X
is principally polarized if all 6, = 1.

Theorem 2.2.38 ([MumO8]). The polarization type (Definition 2.2.37) uniquely de-
termines the polarizing/ample line bundle L on X , up to translation, and dim H°(X, L) =
8y -6,

Definition 2.2.39. If X is principally polarized, then the theta divisor P H°(X, L)

is uniquely determined up to translation.

2.3 Hodge structures

Fix a lattice Hy ~ Z" of rank r. Given a field Q C k C C, let Hy = Hz ®z k be the
associated vector space of dimension r. Fix an integer n € Z and a non-degenerate
bilinear form

Q:HgxHgp — Q

that is (skew-)symmetric
Qlu,v) = (=1)"Q(v,u), for all w,v e Hg.
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Let Aut(H) ~ GL, be the group of invertible linear maps H — H, and let End(H) ~
gl be the Lie algebra of linear maps H — H. Let

G = Aut(H,Q) = {g € Aut(H) | Q(gu,gv) = Q(u,v), Vu,v € H}  (2.3.1)
be the Q-algebraic subgroup of automorphisms preserving (), and let
g = End(H,Q) = {£ € End(H) | Q(€u,v) + Q(u,&v) =0, Yu,v € H} (2.3.2)
be its Lie algebra.

Definition 2.3.3. A (pure, rational) Hodge structure of weight n € Z on the lattice

Hy is given by either of the following two equivalent objects: A Hodge decomposition

dfn

He H; @, C = @ HP such that HP4Y = H?P (2.3.4)

p+q=n

A (finite, decreasing) Hodge filtration
0OCF"c F"'c...c Fr~™" C "™ = H¢, (2.3.5)
with ¢ = 2m — n > 0 the level of the Hodge structure, and such that
He = F¥ @ Fri-k,
The equivalence of the two definitions is given by

Fk = @Hpv”—f) and HPY = FP N Fa,

p>k

The Hodge numbers h = (h??) and f = (f?) are
hP? = dimc H?? and f? = dimg F”.

The Hodge structure is effective if h?? # 0 implies both p,q > 0. In this case n > 0,
and the Hodge filtration is usually expressed as 0 C F* Cc F*"' c ... Cc F1 Cc FY =
He.

40



Example 2.3.6. The Tate Hodge structure the pure, weight n = —2 Hodge structure
on the lattice Z(1) A0 9oriZ < C. Likewise, Z(m) is the pure, weight n = —2m
B (27i)™Z < C.

Hodge structure on the lattice Z(m)

Example 2.3.7 (effective, weight one). An effective, weight n = 1 Hodge structure
is given by a subspace H'? = F' C H¢ such that He = H'YY @ H'9. We will denote
the Hodge numbers h = (h'Y h%!) = (g,9). The Hodge filtration is F* = H'Y. For

a geometric example, see Example 2.2.4.

Example 2.3.8 (effective, weight two). An effective, weight n = 2 Hodge structure
is given by subspaces H2>? @ H"!' ¢ H¢ so that HY! = HY' and He = H*® H'' &
H20, We will denote the Hodge numbers h = (h>°, h%! h%?) = (a,b,a). The Hodge
filtration is F? = H?Y and F' = H*" @ H!.

Example 2.3.9 (effective, weight three). An effective, weight n = 3 Hodge structure
is given by subspaces H*® @ H*! C Hg¢ so that Hc = H*® @ H>' @ H>' @ H30.
We will denote the Hodge numbers h = (>0, b2 a2 h%3) = (a,b,b,a). The Hodge
filtration is F3 = H3?, 2 = 3% @ H?*! and F!' = H3' @ H*>' @ H'2.

Remark 2.3.10. Note that (2.3.4) implies that dim H = 2g is even when n is odd.

Example 2.3.11 (compact Kéhler manifolds). The n-th cohomology group H =
H"(X,Q) of a compact Kéhler manifold admits an effective Hodge structure of
weight n (§2.2). Here HPY = HP9(X) C H"(X,C) are the de Rham cohomology

classes that can be represented by (p, ¢)—forms.

Remark 2.3.12. There are interesting and important Hodge structures that are not
effective. An important example is the induced weight zero Hodge structure on the
Lie algebra of the automorphism group (HW 2.3.24). We will see others when we
study mixed Hodge structures (Chapter 5). Regardless, every Hodge structure can

be converted to an effective Hodge structure via a Tate twist (Remark 2.3.21).
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Definition 2.3.13. The Hodge structure (Definition 2.3.3) is Q-polarized if the

Hodge—Riemann bilinear relations hold:

QHM, H™) =0 it (p,q) # (s,7), (2.3.14)
i77Q(v,v) >0 forall 0#ve HP. (2.3.15)

Example 2.3.16 (effective, weight one, polarized). The first Hodge-Riemann bi-
linear relation is Q(F*', F') = 0. Note that F' is maximal with this property:
(F1)yt = F'. The second Hodge-Riemann bilinear relation is iQ(v,v) > 0 for all
0#£ve HW.

These PHS are realized geometrically by algebraic curves and abelian varieties
(Example 2.2.4).

Example 2.3.17 (effective, weight two, polarized). The first Hodge-Riemann bi-
linear relation is Q(F?, F') = 0. In this case we have (F?)* = F'. The second
Hodge—Riemann bilinear relation asserts that —Q(u,u) > 0 for all 0 # u € H*" and
Q(v,v) >0 for all 0 £ v € HL.

Example 2.3.18 (effective, weight three, polarized). The first Hodge-Riemann bilin-
ear relation is Q(F?, F?) = 0. Again, F? is maximal with this property: (F?)+ = F2.
The second Hodge-Riemann bilinear relation is —iQ(u,u) > 0 for all 0 # u € H>Y,
and iQ(v,v) > 0 for all 0 # v € H>1.

Example 2.3.19 (smooth projective varieties). Let X C PN be a projective manifold
of dimension d with hyperplane class w € H*(X,Z). Given n < d, and keeping in mind
that X is Hodge (Definition 2.2.33), the primitive cohomology (Definition 2.2.23)

H = {a € H'(X,Q) | "™ Aa = 0}
inherits the weight n Hodge decomposition

He = @ H™(X)N He

pt+q=n
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from H"(X, Q). The Hodge-Riemann bilinear relations (Theorem 2.2.30) for X assert
that this Hodge structure is polarized by

Qlo, B) = (—1)"(”_1)/2/ aAB AW,

X

Exercise 2.3.20. Fix two lattices Hy 7z and Hyy. Set Hz = Hy7z ® Hayz. Given
Qj-polarized Hodge decompositions H;c = @ H}* of weight n;, show that

21 p— P1,91 P2,92
H = @ H" @ H)

p1+p2=p
q1 +4q2 =¢q

defines a weight n = n; + ny Hodge decomposition He = & HP? that is polarized by
Q=01 ®Q,.

Remark 2.3.21. Recall the Tate Hodge structure (Example 2.3.6). Note that Z(m) =
Z(1)®™ and Z(—m) = Z(—1)®™ for all m > 0. Moreover, given a weight n Hodge
structure on Hyz, the induced Hodge structure on H(m)z = Hz ® Z(m) has weight
n — 2m, and is given by H(m)P? = HPT™4™ For m > 0, H(—m) will be effective.

dfn

Exercise 2.3.22. Show that the real automorphism group Gg G(R) = Aut(Hg, Q)

is isomorphic to:

e Sp(2¢g,R), where 2¢g = dim H, when n is odd;
e O(b,2a), where

_ m~+2k,m—2k o m+1+2k,m—1—2k
b = g h and 2a = E h ,
k k

when n = 2m is even.

Exercise 2.3.23. Show that
H(u,v) = i"Q(u,v)
defines a nondegenerate Hermitian form on H¢ of signature
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e (g,9), where 2g = dim H, when n is odd;
e (b,2a), when n is even.

Exercise 2.3.24 (Induced Hodge structure on the endomorphism algebra). Fix a
(-polarized Hodge structure on Hy, of weight n. Let He = & H™® denote the Hodge
decomposition. Recall the Lie algebra g defined in (2.3.2). Show that

g P = {fegest. E(H™) C HP P Vr s}
defines a weight zero Hodge structure on g.

Exercise 2.3.25. Show that the induced Hodge structure on g (HW 2.3.24) is po-

larized by —k, where k is the Killing form.

2.4 Complex tori constructed from Hodge struc-

tures

Many important complex tori (Example 2.2.4) are constructed from Hodge structures.

2.4.1 Albanese variety

The dual to the Picard variety (§A.3.13) is the Albanese variety
HOX,04)"  HYO(X)Y
H\(X,Z)  H(X,Z)’

It has the universal property that any morphism from X to an abelian variety factors

Alb(X) =

uniquely through the Albanese map

a: X — Ab(X), alz)(n) = /mn.

Exercise 2.4.1. Fix a basis wy,...,w, of H*(X,Q}), and show that the Albanese
map may be identified with the map

o= [ o]
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2.4.2 Jacobian variety of a curve

In the case that X is a nonsingular algebraic curve of genus g, the Albanese variety

is known as the Jacobian Jac(X) of the curve.

Exercise 2.4.2. Show that Jac(X) is a principally polarized abelian variety (Def-
inition 2.2.37). [Hint. The Hodge-Riemann bilinear relations imply that h(u,v) =

—iQ(u,v) is a positive definite hermitian form on H°(X) ]

2.4.3 Griffiths tori

Fix a @-polarized Hodge structure ¢ on Hz, of odd weight n = 2p—1 (as in Definitions
2.3.3 and 2.3.13), and with Hodge decomposition

He = :H;%O DD ngfll D ng,p DD Hgﬁi_

-~ -~

L, Le
Exercise 2.4.3. (a) Show that the image of Hy — Hc = L, L, — L, is a lattice.

The intermediate Jacobian is the associated complex torus J(¢) = L.,/ Hz.

(b) Show that h(u,v) = —iQ(u,?) defines a non-degenerate bilinear form on L of
signature (s, ,s_) with s, = hP=1P 4 pp=3P+2 4 pp=5Sptd 4 ..
(c) Show that the imaginary part of h = g—iw satisfiesw € HY (J(0))NH?(J(p),Z).

We call w a pseudo-polarization. The intermediate Jacobian is an abelian

variety when s s_ = 0. (Eg. whenever L, = Hg*LP,)

Example 2.4.4. Suppose that X is a nonsingular projective variety of dimension d.
Then the intermediate Jacobian J?¢~1(X) = HYY4(X)/H?*~1(X,Z) is an abelian
variety (s_ = 0). Serre duality implies that J?¢~1(X) can be identified with the
Albanese variety Alb(X) = H°(X,Q%)V/H,(X,Z) of §2.4.1.
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Example 2.4.5. Suppose that X is a nonsingular projective variety of dimension d. If
d = 2p—1isodd, then J4X) = (HP"2P(X)®-- - @ H"(X))/HX,Z). The intersec-
tion form on d-cycles is unimodular (this is essentially equivalent to Poincaré duality

[GH94]). So, if s_ = 0, the Jacobian will be principally polarized.

Exercise 2.4.6. Suppose that s, s_ = 0, so that J(y) is an abelian variety. Assume
that the polarization () is unimodular on Hpz: the matrix representation of with
respect to an integral basis has determinant +1. Show that the polarization on J(¢p)

is principal.

Theorem 2.4.7 (Griffiths). Two Hodge structures ¢, ¢’ € D belong to the same Gz
orbit if and only if J(¢) ~ J(¢') as pseudo-polarized tori.

Remark 2.4.8. Replacing L, in the construction above with H2™"' @ HP >3 @ - - @
H°" we obtain the Weil torus I(y), which is always polarized. However, the Weil
tori I(¢) do not vary holomorphically with ¢ € D, while the Griffiths tori J(¢) do.

(The two tori may be interpreted as different complex structures on the real torus
Hg/Hz).

2.5 Hodge structures: a third definition™

Recommended references: [GGK12, Pat16].

We have seen that a Hodge structure may be defined by either a Hodge decom-
position (2.3.4), or by a Hodge filtration (2.3.5). There is a third definition by group
homomorphisms.? Let C* = C\{0} be the group of nonzero complex numbers. Define

a homomorphism

¢ : C* — Aut(Hg) (2.5.1)

2We will not have much use for this third definition in this class (and this section is optional
reading). However, of the three this is in many respects the optimal definition (for example, if one

wishes to discuss Hodge tensors or Mumford-Tate groups), and so worthwhile including here.
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by specifying
o(z) = 220, for all v e HPY;

that is, we specify that the Hodge decomposition (2.3.4) is an eigenspace decomposi-

tion for .

Remark 2.5.2. Observe that (2.5.1) satisfies p(z) = 2™ Id, for all nonzero real num-
bers x € R*.

Exercise 2.5.3. (a) Verify that ¢ does indeed take value in Aut(Hg).

(b) Verify that the restriction @|q: takes value in Aut(Hg, @) if and only if the
Hodge structure satisfies the first Hodge-Riemann bilinear relation (2.3.14). In

this case, the Hermitian form i"Q(u,7) is nondegenerate on HP1.

We wish to view C* as real group. At the very least you should think of it a real
Lie group. If you are familiar with algebraic groups, then you should think of C* as

o - {2 2 )
y = iy #0

of the Deligne torus, the R-algebraic group S = Resc/r Gyc. Likewise, we identify

the real points

S1 ¢ C* with the maximal compact subgroup

T — r,yeR
UR) = Y Y .
y ?+yt=1
Exercise 2.5.4. Conversely suppose that you are given a homomorphism (2.5.1),

with the property that Q|g. is defined over Q.

(a) Show that H = @®,cz H, where

H, = {veH|px)(v)=2"1d, v € R*}.

(b) Set H? = {v € Hc | ¢(2)(v) = 2Pz%v, ¥V z € C*}. Show that H,c =

Dptqg=n HP? is a Hodge decomposition of weight n.
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Definition 2.5.5. The upshot of the discussion above is that we may define a (real)
Hodge structure as a homomorphism (2.5.1) of R-algebraic groups. The Hodge struc-
ture is rational if P|p. is defined over Q; it is pure of weight n € Z if ¢(r) = r"1d for
all r € R*; and if the Hodge structure is Q—polarized, then ¢ = |, takes value in
Aut(Hg, Q). We may identify the period domain D with the Aut(Hg, Q) conjugacy
classes of ¢, and the isotropy group H is clearly seen to be the centralizer of the circle
¢ : St — Aut(Hg, Q).
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Chapter 3

Families and period maps

3.1 Monodromy

Recommended reference: [Aral2, Voi07].

Consider a smooth surjective holomorphic mapping f : X — S of complex man-
ifolds with compact fibres. In this context “smooth” means df has maximal rank
everywhere; equivalently, f is a submersion as a map of smooth manifolds. In partic-
ular, the fibres X, = f~!(s) are compact, complex submanifolds of X’; and we regard
f: X — S as a family compact, complex manifolds {X,}ss that is parameterized
by S.

Suppose that U C S is open and contractible. Fix u, € U. Then Ehresmann’s
theorem asserts that there is a diffeomorphism ¢y : f~H(U) — U x X, so that

f1(U) 25 U x X,
lf /
U
commutes. In particular, the fibres X, are all diffeomorphic. However, in general

they will not be biholomorphic. So f : X — S may also be viewed as a family of

complex structures on a fixed smooth manifold X, .
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Consider f : X — S as a submersion of smooth manifolds. Since f is a submersion
V = kerdf defines a subbundle of the (real) tangent bundle TX. Note that V|x, =
TX,. Fix a Riemannian metric g on X and consider the decomposition TX =V & H
given by H = V*.

Given a curve 7 : [0,1] = S and xg € X () there is a unique lift y(z,,-) : [0,1] —
X determined by v(t) = f o Y(x,,t), ¥(20,0) = x¢ and 0;¥(o,t) € Hs(aor)- This
defines ¥ : X, ) x [0,1] = & with J(z,0) = « for all z € X (), and J(z,1) € X,q).
In particular, we have a map (-, 1) : X, ) — X,(1). This map is a (homeomorphism)
diffeomorphism if ~y is (piecewise) smooth; and induces a map (g, ) : Hi(Xy0), Z) —
Hy (X0, Z).

Exercise 3.1.1. (a) Show that the map u(g, ) is independent of our choice of Rie-

mannian metric g on X.

(b) Show that the map u(g,7) = p(y) depends only on the homotopy class of
(with fixed endpoints).

Definition 3.1.2. In the case that the curve is closed s, = 7(0) = (1), this yields

the monodromy representation
p:m(S,s,) — Aut(Hp(Xs,,Z)). (3.1.3)

Example 3.1.4. In the case that f : A* — A* is given by f(z) = 2%, and y(t) =

2mi/k wwhere ¥ = s,. That

e?mit 5, is a generator of m (A*) = Z, we have I'(z,1) = we
is, monodromy is analytic continuation of a branch of f~!(s) = /s, and the image

of the monodromy representation is isomorphic to Z/kZ.

Definition 3.1.5. Suppose that f : X — A is a proper surjective morphism, and that
the restriction of f to X* = f~!(A*) is smooth (again, this means f is a submersion
on X*). Let v € m(A*,s,) >~ Z be a generator represented by a counter-clockwise

2mit

loop t — e“™ s,. The induced monodromy

T:H*(X,,Q — H*X,, Q) (3.1.6)

is the Picard—Lefschetz transformation of the family f.
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Definition 3.1.7. If z, € X is a node (a.k.a. simple, isolated singularity), then there
exist local coordinates (2o, ..., z,) on X and centered at zy so that f(z) = 23+ - 22.
The fibres X close to Xy contain a cycle as € H, (X5, Z) that is represented by an n-
sphere iz : S™ < X,. If we write s = r? €%, in polar coordinates, then the embedding
i, maps ( € S™ — rel? (. We call a, a vanishing cycle because these spheres collapse

to a point as s — 0. Cf. Figure 3.1.

Figure 3.1: Vanishing cycle

the
oe

Exercise 3.1.8. The proof that a, # 0 € H,(X;,Z) is outlined below. Fill-in the
details.
Fix 0 < p < e < 1. Define

B = {zst |z +- + |z <e, g+ +22 <p}.
Fix s = p € A*. Write z = z + iy, with z,y € R*L,
(a) Show that we may identify

X, N B = {(,y) eR"xRB" st [al +[y> <<,
el = 1yl = p, x-y =0} .

2
(b) Show that ||lz]| # 0 and ||y|> < (e — p). Prove that (z,y) — (H‘”—M—y)
zl|"2—p

defines a homeomorphism

Xs N B — {(z,y) €e R" x R" s.t. ||:v||2:1, ||y||2§1, r-y=1}.
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(c¢) Show that Xy N B deformation retracts onto the sphere S = {(z,0) s.t. ||z| =
1}.

(d) Conclude that S™ generates H,(X; N B,Z) = Z, and Hi(X, N B,Z) = 0 for all
k # 0,n.

It remains to observe that Poincaré duality implies Hg,

(XsNB)~ HY(X;NB) #0.
So there exists a closed n-form 1 on X with compact support contained in X, N B,
so that [; guyn # 0. It follows that oy = [i5(S")] C H,(X, Z) is nonzero.

Theorem 3.1.9 (Picard—Lefschetz formulas). Assume that the simple singularity
x, € Xy is the the unique singular point of the family f : X — A (the unique point
where df drops rank). Then the Picard—Lefschetz transformation (3.1.6) is:

(i) the identity T = id on Hg(Xs,,Q) for all k # n; and

(ii) given by T(8) = B + ¢ (8, ) o, for all § € Hy(X,,, Q), with

1, ifn=2,3 mod4,
E =
-1, otherwise,
and
T(ay) = Qs, s ifn=1,3 mod 4,
—as, , otherwise.

Exercise 3.1.10. Fix a nonsingular projective variety X C P™ of dimension n, and
L ~Pm2cCPm

(a) Write P = P(V), with V' a complex vector space of dimension m + 1. Show
that P™ = P(VV) parameterizes the set of all hyperplanes H = P™~! c P(V).
(b) Fix a projective subspace L ~ P™ 2. Show that the set of all hyperplanes

H = P™ ! containing L is parameterized by a P!

Definition 3.1.11. A pencil of hypersurfaces on X is a family {X, = X N H}ycpr.
We say the family is Lefschetz pencil if:
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(i) The intersection X N L is nonsingular.

(i) There is a finite set {pi,...,px} C P!, so that X, = X N H, is nonsingular for
all s € S =P"\{p1,...,pr}

(iii) For each p;, the variety X, has a single simple singularity z; € L N X, .

Theorem 3.1.12. For a generic choice of L = P™ 2 the family { X, }sepr is Lefschetz

pencil.

Exercise 3.1.13. The set
X = {(z,s) € X x Sst.x € Hy}.

is a fibre bundle over S. The monodromy representation (3.1.3) is computed as fol-
lows. Each p; determines vanishing cycle a; € H,,(X;,,Q).! Fix a curve v; € m(S, s,)
traveling from s, to a point near p;, looping once around p; counter-clockwise, and
returning to s,. Without loss of generality the paths v; are pairwise disjoint away
from s,. The induced monodromy action T; = p(v;) on Hy(X,,, Q) is trivial if k& # n,
and is given by

Ti(8) = B + e(B.a))qy (3.1.14)
for all § € H,(Xs,,Q). Let Van = spanc{a,...,a} C H,(Xs,,Q) be the subspace

spanned by the vanishing cycles. It can be shown that the intersection pairing is
nondegenerate on Van. Let I' = p(7(S,s,)) be the image of the monodromy repre-

sentation (3.1.3).

(a) Show that the subspace Van is invariant under the monodromy.

(b) Show that H,(X;,,Q) = Van @ Inv with Inv = {8 € H,(X,,,Q) s.t. T'(p) =
B, ¥ T €T} = Van" the cycles invariant under the monodromy representation.

(For a generalization, see Remark 5.4.31.)

!The cycle a; is defined only up to the action of the monodromy group. However, the space

spanned by the vanishing cycles is well-defined (HW 3.1.13).
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(c¢) Show that the monodromy acts irreducibly on Van (with no nontrivial invariant

subspaces).

[Hint. The loops ~; generate (95, s,). So the T} generate I'.]

3.2 The compact dual

The first Hodge-Riemann bilinear relation (2.3.14) asserts that the Hodge filtration
(2.3.5) is Q) —isotropic

Q(FP, F?) = 0, forall p+¢g=n+1.

This is precisely the statement that the Hodge filtration is an element of the complex
flag manifold
D = Flag®(f, He) (3.2.1)

of Q-isotropic filtrations F = (F?) of He satisfying dim F? = fP. The variety D is
the compact dual of the period domain D (which will be defined next).

Example 3.2.2 (effective, weight one). The compact dual is P*, when g = 1.
For g > 1, the compact dual is the Lagrangian grassmannian LG(g, C?9) of g-
dimensional subspaces F'! C H¢e ~ C?9 that are isotropic with respect to a nondegen-

erate skew-symmetric bilinear form.

Example 3.2.3 (effective, weight two). The compact dual is the Grassmannian
Gr9(a, C***?) of a-dimensional subspaces F? C He ~ C?**? that are isotropic with

respect to the nondegenerate, symmetric bilinear form @).

Example 3.2.4 (effective, weight three). The compact dual is the isotropic flag mani-
fold Flag®(a, g; C*), consisting of pairs F* C F? with F? € LG(g, C%»), dim¢ F? = a,
and where g = a + b.

Exercise 3.2.5. Show that the complex automorphism group G¢ = G(C) = Aut(Hc, Q)

acts transitively on D.
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3.3 Period domain

Definition 3.3.1. The period domain D = Dy o C D is the set of all Q-polarized
Hodge structures on Hz with Hodge numbers h.

Slogan. The compact dual D C Flag(f, Hc) parameterizes filtrations satisfying
the first Hodge Riemann bilinear relation, and the period domain D C D parame-

terizes filtrations satisfying both Hodge—Riemann bilinear relations.

Example 3.3.2 (effective, weight one). When g = 1 the period domain is the upper-
half plane, and Aut(Hg, Q) = Sp(2,R) = SL(2,R) acts transitively.

For g > 1, the period domain D = Sp(2g,R)/U(g) is the Siegel upper-half space
of symmetric g X g matrices with complex entries and positive definite imaginary part.
Alternatively D is the set of £ € LG(g,C?) with the property that the Hermitian
form iQ)(u, u) restricts to be positive definite on E.

We recover the Hodge decomposition from E by setting H** = E and H%' = E.

Example 3.3.3 (effective, weight two). The period domain D = O(b, 2a)/U(a)x O(b)
is the subset of elements E € Gr9(a, C****) on which the Hermitian bilinear form
—Q(u,v) restricts to be positive definite.

We recover the Hodge decomposition from E by setting H*? = F and H*? = E,
and H'!' = (E® E)*.

Example 3.3.4 (effective, weight three). The period domain D = Sp(2¢,R)/U(a) x
U(b) is the subset of filtrations (F® C F?) € Flag®(a, g; C%) with the property that
the Hermitian form —iQ(u,v) restricts to be positive definite on F*, and nondegen-

erate on F? with signature (a,b).

Given a point ¢ € D, the associated Hodge decomposition will be expressed as

He = @ HDY, and the associated Hodge filtration will be expressed as F, = (FZ).

Exercise 3.3.5. Show that the real automorphism group Gg of (2.3.1) acts transi-
tively on D with compact isotropy L (stabilizer of a point ¢ € D) isomorphic to:
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e U(h™) x -+ x U(R™TL™) if n = 2m + 1 is odd;
e U(h™0) x - x U(hmTLm=1) 5 O(h™™), if n is even.

Exercise 3.3.6. Show that D C D is open (in the analytic topology). In particular,
D inherits the structure of a complex manifold from D, and is a “flag domain” in the
sense of [Wol69, FHW06].

Exercise 3.3.7. Fix a Hodge structure ¢ € D. Recall the induced Hodge structure
of HW 2.3.24.

a) Show that the Lie algebra of the stabilizer L, = Stabg has complexification
@ e\
[C = gg’o.
(b) Show that the Lie algebra of the stabilizer P, = Stabg.(p) of ¢ € D is p =

Dp>0 957"

3.4 Horizontal subbundle

The compact dual D = Flag®(f, H¢) naturally sits inside the flag manifold

0
Flag(f, Hc) = {(F",...,FO) € HGr(fp,HC) st. FPCc P71 v 1 §p§n} )

p=n

1
Exercise 3.4.1. Show that Typgsmo)r = @Hom(Fp,H@/Fp).

p=n

Let F* C F*»~! C ... C F° = Flag(f, Hc) x Hc be the tautological filtration of
1

the trivial bundle. Then Trig(e,re) = ) Hom(F?, FO/F?).

p=n
Definition 3.4.2 (Horizontal subbundle, first definition). The horizontal subbundle
of the flag manifold is

1
dfn _
Tﬁag(fﬂc) GB Hom(F?, FP~1/FP).

p=n
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The horizontal subbundle of the compact dual is

h dfn h
TD TD M TFlag(f,HC)'

A holomorphic map f : M — D is horizontal (or satisfies the infinitesimal period
relation (IPR)) if f.(T,M) C T}, t(@)- The IPR is trivial if TP =Tp.

Example 3.4.3. A holomorphic curve v(t) = (FF) : A = D is horizontal if and only
if for every curve e : A — Hg with e(t) € FP, for all t, we have é(t) € FP~'. The
horizontal subbundle TP C T}, is the set of all §(t) with  horizontal.

For this reason, the IPR is often expressed as
dFr c FP L.

Exercise 3.4.4. Suppose that D is a period domain parameterizing weight n = 1

polarized Hodge structures. Prove that the IPR is trivial.

Exercise 3.4.5. Suppose that D is a period domain parameterizing weight n = 2
polarized Hodge structures with Hodge numbers h = (1, h, 1). Prove that the IPR is

trivial.

Exercise 3.4.6. Suppose that D is a period domain parameterizing weight n = 2
polarized Hodge structures with Hodge numbers h = (2, h,2). Prove that T C Ty

has corank 1. (In fact, T} is a contact distribution.)

Definition 3.4.7 (Horizontal subbundle, second definition). Recall the notations of
HW 2.3.24, 3.2.5 and 3.3.7. A a homogeneous space the compact dual is D = G¢-¢ =
Gc/P,. In particular,

Tp, =~ 8c/Py
as vector spaces. As a homogeneous vector bundle, the holomorphic tangent bundles

is (dropping the subscript ¢)

Ty = Ge xp (gc/p)-
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The induced action of P on g¢/p preserves F~'(gc)/p; the horizontal subbundle is

the associated homogeneous subbundle

Th = Gexp (F ' (go)/p)) -

3.5 Period maps

Let S be a complex manifold with universal cover S, and I' C Gy = Aut(Hz, Q). We

say that ® : S — '\ D is a period map if there is a commutative diagram

—? . D
l (3.5.1)

—2 5 T\D

N W

with @ holomorphic and horizontal.

Example 3.5.2. The identity map D — D is a period map if and only if the IPR is

trivial.

Example 3.5.3. Fix a family f: X — S as in §3.1. Recall that each v € m(S; s, §')
induces an isomorphism vy : H"(X;,Z) ~ H"(Xy,Z). Assume that X C P™ x S, and
the map f is the restriction to X of the projection P™ x S — S. Then an integral
Kahler form w € H*(P™,Z) N H“'(P™) on P™ restricts to an integral Kéhler form
ws € H*(X,,Z) N HY(X,) on the fibres. The wy are invariant under monodromy, by
construction. And v € m1(S;s,s") maps H;, (X, Z) onto Hp, (Xe,Z). It can be
shown that the Hodge numbers h2? = dime H?! (X,) are locally constant [Gri68].?

prim

2The key point is that the dimension of the kernel (= HP*9) of an ellipic opertor (the Laplacian on
EP7) depending smoothly on a parameter s is upper-semicontinuous. So, for s’ in a small disc about
s, we have dim H"(Xy,C) = 3, _ dim H?(Xy) < > . dim H?9(X;) = dim H"(X, C).
Since H"(X,C) ~ H"(X,,C), we necessarily have dim H?9(X,/) = dim HP9(X,). Cf. [CMSP17,
p. 138-139].
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Fix s, € S. Set X = X,,, and Hy = H[;, (X,Z)/{torsion}. Set Q(a,f) =
(=1)=D72 [ a A B Awd ™, where d = dim X. Let D be the period domain param-
eterizing ()—polarized Hodge structures on Hz, with Hodge numbers h = (h?9). Each
v € m1(S; S0, s) defines a Q—polarized Hodge structure ¢(s,v) on Hz. In this way f
induces commutative diagram (3.5.1), with ' the image of the monodromy represen-
tation (S, 5,) — Aut(Hz, Q). The lift ® is holomorphic and horizontal [Gri68]. In

this way f induces a period map ® : S — I'\ D.

3.6 Derivative of the period map

Fix a family
X —P"xS§

f (3.6.1)
|/

as in Example 3.5.3. Fix s, € S and set X = f~!(s,). Our goal here is to compute
the derivative of the induced period map ® : S — T'\D at s,. Since this is a local

question we may assume that S is simply connected (for example, a polydisc), and

I'={1}.
Note that df induces an isomorphism Ny, x, — T S for all x € X. So every
¢ € T,,S defines € € H(X, Nx/x). The SES

O_>TXC_>TX|X_»NX/X_>0
induces 6 : H°(X, Ny,x) = H'(X,Tx). The Kodaira—Spencer mapping
p:Tss — HY(X,Tx)

is defined by p(&) = §(§).
Notice that the cup-product induces

HY(X,Tx) x HP(X) — HP M (X).
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So we have a map

e: H'(X,Tx) — @Hom(HP, HP ™) C Tpas,) - (3.6.2)

p

The derivative of the period map is [Gri68|

dd, (v) = cop(v).

3.7 Deformations

A deformation of X is given by a family (3.6.1), with X ~ f~!(s,) for some s, € S.
The following theorem suggests that we regard H'(X,Tx) as parameterizing the

“infinitesimal deformations” of X.

Theorem 3.7.1 (Frolicher—Nijenhuis 1957). If H'(X,Tx) = 0, then there exists a
neighborhood s, € U C S so that f~(u) is biholomorphic to X for all u € U.

We say X is rigid when H'(X,Tx) = 0.

Theorem 3.7.2 (Kodaira—Nirenberg—Spencer 1958). If H*(X,Tx) = 0, then there
exists a complete deformation f : X — S of X over some polydisc S so that the

Kodaira—Spencer map is an isomorphism.
A few remarks on the theorem:

e Complete means that any other deformation g : ) — T of X ~ g~!(¢,) is obtained
from f: X — S by local base change: there exists a neighborhood t, € U C T
and a map ¢ : U — S so that ¢(t,) = s, and the family g|y is isomorphic to
X xgU.

e The fact that the Kodaira—Spencer map is an isomorphism implies the deforma-

tion f is wersal: the differential d¢, is uniquely determined.

e As a complete, versal deformation of X, the family f : X — S in Theorem 3.7.2
is the Kuranishi family of X.
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e A complete family is universal if the germ of ¢ at t, is uniquely determined.
The family f in the theorem is universal if H°(X,Tx) = 0. In this case we say
that X satisfies the infinitesimal Torelli theorem if the differential d®, : Ty S —
Tp (s, is injective. (It is sometimes easier to check the dual statement that

® (HP? ® HI~PTLd=atl) gurjects onto H41(X, Q% @ Kx).)

Exercise 3.7.3. Suppose that Ky is trivial. Show that H*(X,Ty)" ~ HY4*(X),
where d = dim X. [Hint. §A.3.12.]
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Chapter 4

Torelli theorems

4.1 Moduli space of polarized algebraic varieties

To every polarized algebraic variety (X,w) of dimension d we associate the following
Hodge data: for each 0 < n < d, the lattice Hz = H};, (X, Z)/{torsion}; the Hodge
numbers h = (h”?), and the polarization Q(a, ) = (—1)"""V/2 [ a ABAw?™". Let
D be the associated period domain.

Let X®*™ be the underlying smooth manifold. Let 991 be the moduli space of
polarized algebraic varieties ()~( , @) with the same underlying smooth structure Xsm —
X, and the same Hodge data as (X,w). We naturally have ¢ : I — Gz\D.

Suppose that 9t admits the structure of an algebraic variety, and that f : X — S
is an algebraic deformation of (X, w). If the natural map 7 : S — 9 is a morphism,

then we say 9 is the coarse moduli space for (X,w). By construction we have

S —2 5 TI\D

oo

M —— Gz\D.

We say the global Torelli theorem holds for 9t if ¥ is an embedding of the closed

points; we say the local Torelli theorem holds for (X,w) if d¥ is an inclusion of
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tangent spaces Ton x] — Ta,\p,w(x]); We say weak global Torelli holds if there exists
a Zariski-dense 9" C 9 so that U|gy embeds the closed points.
Analogous terminology may be applied to the family f and the period map ®.

4.2 Algebraic curves

If dim X = 1, then H*(X,Tx) = 0. The Kodaira-Nirenberg-Spencer Theorem 3.7.2
applies: there exists a complete deformation of X over a polydisc so that the Kodaira—
Spencer map p: Ts,, — H'(X,Tx) is an isomorphism.

Exercise 4.2.1. (a) Show that H' (P!, Tp) = HO(P!, Opi(—4))Y = 0.

(b) Let E be an elliptic curve (a curve of genus one). Show that H?(E,Tg) = C for

a = 0,1. Note that the complete deformation is not universal.

(c) Let X be a curve of genus g > 2. Show that HY(X,Tx) = H’(X, K$?) has
dimension 3g — 3. And H°(X,Tx) = 0, so that the deformation is universal.
[Hint. §A.1.6.]

Let 9, denote the moduli space of genus g curves X.
Exercise 4.2.2. Let X be a curve of genus 0.

(a) Fix p € X. Use the Riemann-Roch theorem (§A.1.7) to show that there exists

a meromorphic function f : X — P! with a single pole of order one at p.

(b) Use the Riemann—Hurwitz theorem (§A.1.4) to conclude that f is a biholomor-
phism.

We conclude that there is only one algebraic curve of genus g = 0: the moduli space
M, = {P'} is a point. This is consistent with HW 4.2.1(a).
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4.2.1 Elliptic curves

The moduli space for curves of genus g = 1 is MMy = Al = SL(2, C)\'H the quotient
of the upper half-plane by SL(2,Z). (Cf. HW 4.2.1(b).) The key observations are
the following:

(a) A curve X of genus ¢ = 1 can be embedded in P! as zy? = 42® — gow2? — g323.
Two curves are isomorphic if and only if their j invariants coincide j(X) =
26323 /(g3 — 27 ¢2). And the map j : 9; — C is surjective. Thus Iy = Al

(b) Every elliptic curve may be expressed as E, = C?/IL,, with Il = Z + 7Z and
7 € H. Two curves are isomorphic if and only if 75 = (am + b)/(em1 + d), with

b
( ¢ p ) € SLy(Z). Thus M, = SL(2, C)\A.
&

(c) The two interpretations are related as follows. Define

g(r) = 60 > (mr+n)

(m,n)€Z2\{(0,0)}
gs(t) = 140 Z (mr +n)"°
(m,n)€Z2\{(0,0)}
203%gy(1)°
go(T)3 — 27 g3(7)%

J(7)

4.2.2 Curves of general type

If g > 2, then Mumford showed that 91, is quasi-projective of dimension 3g — 3

(cf. HW 4.2.1(c)).
Recall that the Jacobian Jac(X) is principally polarized (HW 2.4.2), and so carries
a theta divisor © (§2.2.4).

Theorem 4.2.3 (Global Torelli 1913 [GH94]). Any nonsingular projective curve X

may be reconstructed from its polarized Jacobian (Jac(X),O).

It is remarkable that the global Torelli theorem holds for curves, because the infinites-

imal Torelli theorem fails for hyperelliptic curves of genus g > 2. This is related to
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the observation that, given a Kuranishi deformation f : X — S of an hyperelliptic
curve X, the neighborhood of [X] in M, is analytically isomorphic to the quotient
of S by an involution.

The key players in the proof are the canonical map and Albanese map. After

reviewing these, we outline the proof.

The canonical map

The complete linear system |Kx| = P H°(X, Kx) defines the canonical map
kX — PHYX,Kx)V = P91,

the point € X is mapped to the hyperplane {s € H°(X, Kx) s.t. s(z) = 0}. In
the following exercises you will show that x is either an embedding, or a double cover
of P! branched over 2g + 2 points. In particular, either Ky is very ample, or X is

hyperelliptic.
Exercise 4.2.4. Assume g > 2.

(a) Suppose that z is a local coordinate on a neighborhood =, € U C X. Fix a basis
{wi,...,wy} of HY(X, Kx). Show that x|y can be identified with the map

wi(2) . wg(2)

z = —dZ : T
(b) Show that |Kx| is base point free. [Hint. Exercises A.1.7 and A.1.12.]

Exercise 4.2.5. Assume g = 2.

(a) Use deg Ky = 2 (Example A.1.8) to conclude that  is 2-to-1 onto its image
k(X) =Pl In particular, all genus two curves are hyperelliptic (§A.1.5).

(b) Use the Riemann-Hurwitz formula (§A.1.4) to show that the canonical map is

branched at four points.
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Exercise 4.2.6. Assume g > 3. Show that qﬁKg?z is a closed embedding (cf. HW
A.1.12).

Remark 4.2.7. If k = ¢k, is not a closed embedding (equivalently, Kx is ample,
but not very ample) then x is 2:1 onto its image x(C) ~ P! (HW A.1.6).

Albanese map

Review the Albanese map a : X — Jac(X) of §§2.4.1-2.4.2. Let X denote the k-th
symmetric power of X, and define oy : X* — Jac(z) by (o1,...,21) — az1) +
-++ 4 a(zy). The points of Aj, = ap(X®) parameterize equivalence classes of degree

k divisors on X:

Theorem 4.2.8 (Abel [GH94]). The divisor Zle x; —y; s linearly equivalent to zero
if and only if oxlar, -, 2x) = 0¥, - 08).

Exercise 4.2.9. Prove the following:

(a) The differential day, is degenerate at (xy, . .., z) if and only if the points k(x1), ..., k(xk)

lie in a P*—2.
b) The differential doy, is nondegenerate at a generic point.
( g g D
Conclude that Z = a(,—1)(X ™) is a divisor in Jac(X).

Theorem 4.2.10 (Riemann). The divisors © and A,_y coincide up to a translation.

Proof of Global Torelli for curves of genus g > 2

Let Ty = Thac(x),0 be the tangent space at the identity, and let ¢ : Gr(g—1, Thac(x)) —
Gr(g — 1,Ty) = PTy be the Gauss map. Let Y C X9~Y be the Zariski open subset
where the differential da,_; is nondegenerate (HW 4.2.9), and define ¢ : Y — P T}/

by y = ¢(day1(T,Y)).

Exercise 4.2.11. Show that the map ¢ : Y — PT} is finite-to-one, and of degree
(*72). [Hint. Example A.1.8]

g—1
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Note that we may naturally view the canonical curve k(X)) as sitting in P Ty = P91,

Lemma 4.2.12 ([GH94|). Let B C PTy be the closure of the branch locus of 1.
Then B = C*.

If X is not hyperelliptic (§A.1.5), then the Global Torelli Theorem 4.2.3 follows from
Lemma 4.2.12. If X is hyperelliptic, then the proof requires the following modifica-
tions: The set B is the closure of the set of of hyperplanes H C P9~! that are either
tangent (X ) or pass through a branch point of . It follows that we can reconstruct
both x(X) and the branch points. Since x(X) = P!, this suffices to determine X. [J

4.3 Infinitesimal Torelli for Calabi—Yau manifolds

Let X be a compact complex manifold of dimension n with trivial canonical bundle
Kx = Q% = det(Q).

Exercise 4.3.1. Show that the bundles Q% ' and T are isomorphic.

HW 4.3.1 implies that H*(X,Tyx) ~ H*(X,Q%"). In particular, H*(X,Tx) =
H*(X, Q%Y = H"'2(X) = 0. The Kodaira-Nirenberg-Spencer Theorem 3.7.2
implies that the deformation space of X is unobstructed, and X has a Kuranishi
family f: X — S.

Definition 4.3.2. A Calabi—Yau manifold is a compact complex manifold of dimen-
sion n with trivial canonical bundle and H°(X, Q%) = H*(X) =0 for all 0 < k < n.

A K3 surface is a Calabi—-Yau manifold of dimension n = 2.

Exercise 4.3.3. Show that a smooth hypersurface X C P"™! of degree n + 2 is
a Calabi-Yau manifold. [Hint. The adjunction formula (§A.3.6) and the Lefschetz
hyperplane theorem (§A.3.7).]

Exercise 4.3.4. Let X be a K3 surface. Show that the Hodge numbers of H?(X)
are h = (1,20, 1). [Hint. Noether’s formula (§A.2.1).]

67



Exercise 4.3.5. Let X be a K3 surface.

(a) Let D be an effective divisor on X. Show that H°(X,D) = 2+ 1D? [Hint.
Kodaira vanishing (§A.3.10) and the Riemann—Roch formula (§A.2.4).]

(b) Let C' C X be a(n irreducible and reduced) curve. Show that the arithmetic
genus satisfies p,(C) = 1+ 2C?. [Hint. Genus formula (§A.2.5) ]

Proof of infinitesimal Torelli for C'Ys. For the remainder of §4.3 we assume that X
is a Calabi-Yau manifold. Then H°(X,Tyx) = H°(X,Q% ') = H"19(X) = 0. So
the Kuranishi family of X is a universal deformation (§3.7). Then X satisfies the
infinitesimal Torelli theorem if the map (3.6.2) is injective. That is, if H'(X,Tx) =
HY(X, Q%) = H" 51 X) injects into @ Hom(HP4(X), HP~La+1(X)).

We claim that the map H'(X,Tx) — Hom(H™%(X), H" (X)) is an isomor-
phism. To see this, fix a generator n € H™%(X) ~ C. Any £ € H'(X,Tx) may
be represented, in Dolbeault cohomology, by a closed (0,1)-form taking values in
Tx. And &(n) € H" M (X) is precisely the image of & under the isomorphism
HY(X,Tx) ~ H Y X). O

4.4 Infinitesimal Torelli for hypersurfaces

Let X C P! be a smooth hypersurface of degree d and dimension n. The Lefschetz
hyperplane theorem (§A.3.7) implies that

7z, k =0 mod 2
{ 0, k=1mod 2.
for all & < n. What about £ = n? What is the Hodge decomposition H"(X,C) =
Dprg=n HP(X)?

H(X,Z) =

4.4.1 Griffiths Jacobian ring

Let S¢ C Clzo,...,Zn41] be the homogeneous polynomials of degree d. Set S =
Clzo, .-, Tnt1]. Then S = @®g50 5% We have X = {s = 0} for some f € S¢ The
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Jacobian ideal Jy = (8f/3xj)?;“01 C S is the ideal generated by the partial derivatives

of f. The Jacobian ring is Ry = S/ J;.
Let F" C --- C F° = H?,; (X, C) be the Hodge filtration. Note that F*/FP*! ~
HP'P(X). Define

prim
dfn

t(p) dn+1—-p)—(n+2).

Then (§5.4.5)
+1 o ptl)
FP/FPT ~ R

In particular, the Hodge numbers are

: , e ptD)
dim H%¢ (X) = dim R}”

prim
for all p+ q = n.
Example 4.4.1. Let X = {zd+2¢+2¢ = 0} C P? be a planar curve of degree d.
e Then R, = S/(z& o071, 2371) implies R* = S* if k < d — 2.
e We have t(a) = d(2 — a) — 3, so that #(1) = d — 3.

e It follows that g = h*0 =
(§A.1.2).

3(d—1)(d—2), and we recover the degree-genus formula

Exercise 4.4.2. Compute the Hodge numbers for n = 2 and d = 3,4. [Hint. Remark

5.4.48)]

Exercise 4.4.3. Compute the Hodge numbers for n = 3 and d = 3,4,5. [Hint.
Remark 5.4.48.]

4.4.2 Moduli of hypersurfaces

The space of degree d hypersurfaces in P**! is parameterized by P S. Let U4 C P S? be
the locus of nonsingular hypersurfaces. Then G = PGL(n + 2) acts on &. Mumford
[Mum65] showed that the moduli space M = U/G of nonsingular hypersurfaces
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X C P! of degree d is a quasi-projective variety. (The nonsingular hypersurfaces
are GIT stable.) Suppose X = {s =0} € U. We have

Tox = Tpsax ~ (Cs)"®(5%/Cs) and Tiex)x ~ (Cs)’ ® (J¢/Cs).

Kodaira—Serre duality implies H°(X,Tx)" = H"(X, Q4 ® Kx) = H'"™"(X, Kx).
If d >3 and n > 2, then H°(X,Tx) = 0, implying the automorphism group Aut(X)
is finite. For generic X the automorphism group is trivial. Then [X]| € M is a smooth
point. It follows that

TM,[X} >~ Rd.

S

4.4.3 Infinitesimal Torelli for hypersurfaces

Fix a simply connected neighborhood [X] € S C M. Then we have a period map
® : S — D. Griffiths’ infinitesimal Torelli theorem asserts that @ is a local embedding
(d®xy is injective) if either d > 2 and n # 2, or d > 3 and n = 2, [Gri69]. The idea
of the proof is to:

1. Show that the differential

1
d®(x) : Tax) — EDHom(F?/FrH F*=!/F?)
p=n

is induced by multiplication in the Jacobian ring:

s

RY % Ri(p) N Ri(p)er.

2. Apply Macaulay’s theorem, which asserts that the pairing R* x R? — R**? is
nondegenerate for all a + b < (n + 2)(d — 2).

4.5 Summary of some other Torelli results

1. The cubic threefold X C P* has Hodge decomposition H*(X) = H*>'(X) @
HY2(X). This allows one to use ideas very similar to those in the proof of
Theorem 4.2.3 to establish a global Torelli theorem [CG72, Tju71].
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. Global Torelli holds for K3 surfaces [Pvv71]. The period mapping is also surjec-
tive in this case [Kul77b].

. The ideas of [PvvT71] led to a proof of the global Torelli theorem for elliptic
pencils [Cha84].

. For smooth hypersurfaces X C P"*! of degree d and dimension n: generic Torelli
holds, with the following possible exceptions: if n = 2 and d = 3; d divides n + 2;
d =4 and 4|/m; or d =6 and n = 1 mod 6 [Don83, DG84]. The proof builds on
the approach to the infinitesimal Torelli theorem developed by Griffiths (§4.4).
A key ingredient here is Donagi’s “symmetrizer lemma”, which is equivalent to

the vanishing of a Koszul cohomology group.

. The global Torelli theorem holds for smooth cubic fourfolds X C P° [Voi86].

(Note this case is not covered by Donagi’s result.)

. The infinitesimal Torelli theorem fails for certain surfaces of general type [Kyn77,
Cat79, Tod80]; the global Torelli theorem also fails for these surfaces [Cat80,
Chag0].

. For more results and counter-examples, see the collection [Gri84].
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Chapter 5
Mixed Hodge structures

Recommended references: [Dur83, EZT14, PS08].

5.1 Introduction

Mixed Hodge structures (Definition 5.1.2) are a generalization of (pure) Hodge struc-
tures (Definition 2.3.3). Recall that the cohomology of a compact Kéhler manifold

admits a Hodge decomposition (§2.2). Analogously, we have

Theorem 5.1.1 (Deligne). Let X be an algebraic variety defined over C. Then the
cohomology groups H"(X,Q) can be equipped with a natural mized Hodge structure,
with the following properties:

(i) If f : X — Y is a morphism of algebraic varieties, then f* : H™(Y,Q) —
H"(X,Q) is a weight zero morphism of mized Hodge structure.

(ii) The weight filtration is 0 C Wy C Wy C -+- C Wa,oy C Wo, = HM(X,Q). If X
is complete, then W,, = H"(X,Q); and if X is smooth, then W,y = 0. If X if
smooth and complete, Deligne’s mized Hodge structure coincides with the usual

(pure) Hodge structure.
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(iii) The mized Hodge structure is compatible with algebraic constructions, including

duality, Kinneth formulas, et cetera.

We will discuss Theorem 5.1.1 in two special, but important cases: X is complete,

simple normal crossing (§5.3); and X is smooth, but not necessarily complete (§5.4).

Definition 5.1.2. A mized Hodge structure on a finite-dimensional rational vector

space Hg consists of:

o an increasing, rational weight filtration

OgWaCWa+1 c---C Wb_lcwb:H@, a<b, and

o a decreasing, complex Hodge filtration

0OCF"c F"lc...c F*'' ¢ F* = He, (<m,

such that F' induces a pure Hodge structure of weight n on GrZV = W,/W,_1. Here

the induced Hodge filtration is

P W,

FP(Gr)) = ———.
Gr) = 77 Wi

Example 5.1.3. A pure Hodge structure of weight n is a mixed Hodge structure

with trivial weight filtration 0 = W,,_y C W,, = Hy.

5.1.1 Two toy examples

Example 5.1.4 (Complete, singular curve [Dur83]). Suppose that X C P is an irre-
ducible curve with (at worst) ordinary double point singularities. Let S = {s1,..., sk}
denote the singular points, and let p : Y — X denote the normalization of X (as in
Figure 5.1). Then p~'(s;) = {p;,q;} consists of two points. Let "= p~*(S). Then
Y is smooth and the restriction p : Y\T — X\S is an isomorphism. Each of H"(Y'),
H"(S) and H"(T') admit pure Hodge structures of weight n; our goal is to use these
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Figure 5.1: Normalization

oP 6

N2

to describe the mixed Hodge structure on X. Let ¢ : S — X and 5 : T — Y be the

inclusions. The maps

define a SES of sheaves

0 — Qx QS@QYM)QT—)()

which induces a LES in cohomology
0 — HOX) 2% H(S)& HO(Y) -2 HO(T) 22 HY(X) % HY(Y) — 0.
I I I
Q @k-i—l @2k
This suggests the weight filtration 0 C Wy € Wi = H'(X, Q) defined by

dfn

WoH(X) im7y, ~ cokerfy = Q¥ with Grl"HY(X) = HYY).
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Example 5.1.5 (Smooth, incomplete curve [Dur83]). Let X be a Riemann surface,
and D = {p1,...,pr} C X a finite set of points. Both H"(X,Q) and H"(D, Q) have
pure polarized Hodge structures of weight n. Our goal is to use these to describe the
mixed Hodge structure on U = X\ D. What follows is a sketch of the approach, and
mixed Hodge structures of this type will be discussed in greater generality in §5.4.

Let j : U — X and ¢ : D — X be the inclusion maps. The Gysin map 1 :
H°(D) — H*(X) and residue map Res : H'(U) — H°(D) complete to a LES

0 — HY(X) L5 HY(U) 2= HO(D) - H2(X) L5 H2(U) — 0.
I
S

Passing to the reduced cohomology, we have

0 — HY(X) 2 HY(U) 2= HO(D) =CF! — 0.

This suggests weight filtration 0 € Wy € Wy = HY(U) with W; = H'(X) and
Gr) = cokeri* ~ im Res = H'(D).

5.1.2 Induced mixed Hodge structures

Example 5.1.6. Given a mixed Hodge structure on H, the induced mixed Hodge

structure on H"V is
W,(HY) = Ann(W_, 1(H)) and FP(HY) = Ann(F'"P(H)).
Example 5.1.7. Given mixed Hodge structures on H; and H,

Wu(H) = Y Wo(H)@Wy(Hy) and FFH) = >  FP(H)® Fi(H,)

p+q<n p+q>k

defines a mixed Hodge structure on H = H; ® Hs.

Exercise 5.1.8. Together Examples 5.1.6 and 5.1.7 induce a mixed Hodge structure
on H = Hom(Hy, Hy) ~ Hy ® HY. Show that this induced mixed Hodge structure is

FP(H) = {¢c Hs.t. ¢(FF(Hy)) C F*P(Hy), YV k}
Wo(W) = {¢ € H st. p(Wi(H1)) C Wiyop(Ha), V k}.
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5.2 Morphisms

Definition 5.2.1 (Morphism of pure Hodge structure). A weight 2¢ morphism of
(pure) Hodge structures is a Q-linear map ¢ : Hy — Hy such that ¢p(HP?) ¢ HPTHT,

Example 5.2.2 (Pullback). Given map f : X — Y of compact Kéhler manifolds,
the pull-back f*: H"(Y,Q) — H™(X,Q) is a weight zero morphism of pure Hodge

structures.

Definition 5.2.3 (Gysin map). Let f : M — N be a smooth map of compact oriented
manifolds of (real) dimensions m,n. The Gysin map fi : H¥(M) — H5T""™(N) is

characterized by
| Al = [ anr).
N M

and admits the following description. Use Poincaré duality to identify the pullback
f*: HY(N) — H{(M) with a map H} “(N)* — HT*(M)*. Now take the dual map

and set Kk =m — /.

Exercise 5.2.4 (Gysin map). Let f : X — Y be a morphism of compact Ké&hler man-
ifolds of (complex) dimension m,n. Show that the Gysin map f; : HE(X) —
H§+2(n_m)(Y) (Definition 5.2.3) is weight 2(n — m) morphism of Hodge structures.

Exercise 5.2.5. Let ¢ : Hy — H, be a weight 2¢ morphism of Hodge structures (as
in Definition 5.2.1).

(a) Prove that ¢(FP) c FP*.
(b) Show that the morphism is strict: ¢(FP) = ¢(Hy) N FLT

(c) Show that the kernel, cokernel and the image of a morphism of pure Hodge

structures are pure Hodge structures.

Definition 5.2.6 (Morphism of mixed Hodge structure). A weight 2¢ morphism of
mixed Hodge structures is a Q-linear map ¢ : H; — H, that is compatible with the
weight and Hodge filtrations:

d(Wp(H1)) C Wyse(Hy) and  ¢(FP(Hy)) C FPH(Hy).
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Exercise 5.2.7. Show that a weight 2/ morphism ¢ : H; — Hs of mixed Hodge
structures naturally induces a weight 2/ morphism ¢, : Gr!” (H;) — Grng(Hg) of

pure Hodge structures.
Exercise 5.2.8. Let (H, W, F') be a mixed Hodge structure.

(a) Show that there are naturally induced mixed Hodge structures on W, (H) and
H/W,(H).

(b) Show that the maps i : W, (H) — H and j : H — W/W,(H) are weight zero

morphisms of mixed Hodge structures.

In general, mixed Hodge structures do not have direct sum decompositions like

the Hodge decomposition. The best we can say is the following

Lemma 5.2.9 (Deligne splitting [GS75]). Let (W, F') be a mized Hodge structure on
H. Define

dfn

e (FP N\ W) N <ﬁ NWorq + Y _Fo0) WWH) . (5:2.10)

i>1

Then (5.2.10) is the unique splitting with the properties

— P,q p,q — q,p 7,8
He = P, I = L mod @Iy € Wi,

r<p
”/‘ — P,q 2 r,q
¢ = @ [W,F7 B = @]W,F'

s <gq
p+q<t r>p

Moreover, the projection IP? — W, — Gr}fj maps 1P 1somorphically onto the Hodge
decomposition summand (Gr)Y )P where m = p+q. And if ¢ : Hy — Hy is any weight

20 morphism of mized Hodge structure, then ¢(I77) c 1257+,
This lemma has a number of powerful consequences

Exercise 5.2.11. Let ¢ : H; — H, be a weight 2/ morphism of mixed Hodge

structure. Show that ¢ is strict:
S(WinH1) = (WiiaHs) NG(Hy) and  ¢(FPHy) = (FPH,y) N ¢(Hy).
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Exercise 5.2.12. Let ¢ : H; — H, be a weight 2/ morphism of mixed Hodge

structure. Then there are induced mixed Hodge structures on ker ¢ and coker ¢.

Exercise 5.2.13. Let 0 - H; = H LA Hy; — 0 be an exact sequence of morphisms
of mixed Hodge structures, with a of weight 2¢ and 5 of weight 2m. Prove that the
induced sequence 0 — Gr¥,,(H,) 2% Gr)V' (H) LN Gr)¥ o (Hz) — 0 is exact.

Hodge diamonds are very useful “hieroglyphics” that encode much of the discrete
data in a mixed Hodge structure (just as Dynkin diagrams and Young tableaux encode

representation theoretic data).

Definition 5.2.14 (Hodge diamond). Given a mixed Hodge structure (W, F'), the
Hodge diamond is a configuration of points (p, q) € Z?, with each node labelled with

: P,q
dimg [ W

5.3 Complete, normal crossing varieties

The goal of this section is to describe Deligne’s mixed Hodge structure on the coho-

mology of a complete, simple normal crossing variety.

Definition 5.3.1. A variety X is normal crossing if every point x € X admits an ana-
lytic neighborhood U centered at x such that U ~ {(zp,...,24) € A%l st. 29021+ 2 =
0}. We say X is simple (or strict) normal crossing if the irreducible components of

X are smooth.

Let’s begin by considering the simplest nontrivial case. ..

5.3.1 Example: two irreducible components X = X; U X,

Let X = X; U X, be complete and simple normal crossing. The SES

Oé@xg@xl@(@ng@y%o
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induces a LES (cohomology coefficients are suppressed to save space)
0 -  HYAX) &%  HYX) @ HYX,) %  HY) ..
M ogEeyx) ML Rl X)) @ HRUX) 2 ghely) 2
T HRX) 2 HMXG) @ HYX,) B HEY) 2.
Since X;, X5 and Y = X; N X, are nonsingular, H*(X;) ® H*(X;) has a HS of weight
k, and H*1(Y) has a HS of weight &k — 1. We will use these two HS to define the
weight filtration

0= Wio C Wiy € Wi = HYX,Q).

To begin, note that fj is a weight zero morphism of Hodge structures (Definition
5.2.1). It follows that ker Sy = im o and im [ = ker 7, and coker fy, all have induced
Hodge structures of weight & (HW 5.2.5). So there is an induced Hodge structure of
weight £ — 1 on

dfn

Wi1 == im~y,_1 =~ cokerf[B;_1.

Likewise,

W, HY(X, Q) HY(X, Q) ,
G w — — ’ = ! ~ - k
Fh Whi_1 im yi—1 ker ay, Ak er B

has an induced Hodge structure of weight k.

5.3.2 Example: curve X = U X

Suppose that each X = UX; is complete, simple normal crossing, with each X; a

nonsingular curve of genus g;. Let X;; = X; N X; The SES
0 - Qx % &Qx, > ®i<;Qx,; — 0
induces a LES (cohomology coefficients are suppressed to save space)

0 — HUX) %% @, HX,) 2 @ H(X,) 2%

2 HY(X) Y e HA(X) 0
0L HAX) % e HAX) v 0.
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As in §5.3.1, the weight filtration on H'(X, Q) is
Wy = imy, ~ cokerfly, and W, = H'(X,Q),

with 1
H (X
Wy - ﬂ ~ ima; = @ H'(X;,Q).

arl = 1
1 WO kera1

5.3.3 Deligne’s MHS

Assume X is a complete, simple normal crossing variety. The mixed Hodge structure
(W, F) on H"(X,Q) is obtained as follows. Write X = U X, with X; the irreducible
components of X. Set

X, = (X

i€l
Then codim X; = |I| — 1. The X; are nonsingular, and H"(X;,Q) admits a pure
Hodge structure of weight n. Set

X® =] X (5.3.2)

|T|=k
Let i, : X®) — X be the map defined by the inclusions X; — X. Given 1 < a <k,
let j, : X® — X*=D be the map defined by the inclusions X; < X;_(;,}. Define a
double complex CP4 = (i;11).EY

X
and D, the signed restriction ZZ; (—=1)Pte5% Deligne’s mixed Hodge structure on

(o+1) With differentials D; = d the exterior derivative,

H"(X,Q) (Theorem 5.1.1) is exhibited by constructing a spectral sequence from the
associated simple/total complex (C™ = @Bptq=m, D = D1 + D5) that collapses at the

second page with

Gr/H"(X.Q) = EY = B} = HY(E}".dy)

= H'(H'(X®™.Q), dy) (5.3.3)
ker {d, : HI(X®*D) — HI(X@P+2)}

-~ Tim {dy : H1(X®) — He(X@+D)} 7 pt+q=n,
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where EP? = H9(X®H) Q) is equipped with the natural pure Hodge structure of
weight ¢, and the differential d; : H7(X®*) Q) — HI(X®+2) Q), which is induced by
a signed restriction map, is a morphism of Hodge structures. A number of corollaries

follow.

Corollary 5.3.4. (i) The weight filtration satisfies W,, = H"(X, Q).
(i) If X®+) =0, then W, = 0.
Corollary 5.3.5. If X and Y are normal crossing varieties and f : X — Y is a

morphism, then f* : H"(Y,Q) — H"™(X,Q) is a weight zero morphism of mized

Hodge structures.

It follows from this corollary and strictness of morphisms (HW 5.2.11) that we

have. ..

Corollary 5.3.6. If X is a normal crossing variety, Y is smooth and complete, and
f: X =Y is amorphism, then W,,_1H"(X,Q) NIm f = 0 is a weight zero morphism

of mixzed Hodge structures.
The Lefschetz hyperplane theorem and Corollary 5.3.6 yield

Corollary 5.3.7. Let Z be a nonsingular projective variety of dimension d + 1, and
let X C Z be an ample divisor (a hyperplane section of Z) with normal crossings.
Then W,,_1H™"(X,Q) = 0 when n < d.

Definition 5.3.8. The dual complex T'(X) of X = UXj; is the polyhedron whose

vertices correspond to the irreducible components X; of X. The vertices X;,, ..., X;,

form a k-simplex if X # ().

Corollary 5.3.9. If ' is the dual complex of a complete, normal crossing X, then
Wo(HM(X)) = H*(|T).

Proof. The key observation is that it follows from (5.3.3) and Corollary 5.3.4 that
WoHM(X) = HFYH(X"), dy),
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keeping in mind that d; is induced by a signed restriction map, and the definition of

the dual complex.

]

5.3.4 Example: surface X = U X

Let C;; = X; N X, © < j, denote the double curves; and Pz, ¢ < j < k, the triple
points. Then Corollary 5.3.9 implies WyH"(X) = H"(I'). The observations that

follow are all consequences of (5.3.3) and the F; page of the spectral sequence:

P H'(X) ——0

P #(X)) —— 0

dy

P H* (X)) — P H(Cyy) —— 0

1<j

P H'(X) — P H'(Cy) ———0

1<j

P H(X,) —2 @B HCy) —2 @ HCip) —2 0.

i<j

i<j<k

In degree one Corollary 5.3.4 yields H'(X) = W; D Wy D 0, and (5.3.3) yields

GrlV HY(X) = ker{dlz@Hl(Xi) — @Hl(qj)}.

1<j

In degree two we have H%(X) = Wy D Wi D Wy D 0. The weight-graded quotient in

degree two is

CGry H*(X) = ker{dlz@Hz(Xi) — GBHZ(OU)} .

1<j
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Moreover, if Gry H*(X,C) = Hy" @ Hy' @ Hy” is the Hodge decomposition, then
H2° = @; H*°(X;). The weight-graded quotient in degree one is

CGrlV H*(X) = coker{dlz@Hl(Xi) — @Hl(c@)}.

5.4 Smooth quasi-projective varieties

Recommended reference: [PS08, §4].
Let U be a nonsingular algebraic variety. It follows from [Hir64, Nag62| that U
may be realized as U = X\ D, for some nonsingular, complete algebraic variety X

and a simple normal crossing divisor D C X. Let j : U — X denote the inclusion.

Definition 5.4.1. Let Q% (kD) D Q% be the sheaf of meromorphic p-forms on X
that are holomorphic on U, and have a pole of order < k on D. The sheaf of log

p-forms is
Q% (log D) = {we Q% (D) s.t. dw e (D)} ¢ Q5 (D).
The logarithmic de Rham complez is (2% (log D),d) C (7.9¢,,d).

As a complex manifold, every point x € X admits a local coordinate chart z :

V = A" centered at 2 so that DNV = {z--- 2, = 0}.

Exercise 5.4.2. (a) Show that Q% (log D)(V) is the Ox(V)-module generated by
dlog zy, ...,dlog 2z, dzki1, ..., dzpy,.

(b) Show that Q% (log D)(V) = APQ% (log D)(V).

Define a filtration

W, Q% (log D) == 2~ A Q% (log D).
Let
n 0 bl < k 9
F* Q% (log D) X b
O (logD), p>k

be the trivial filtration on the complex.
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Theorem 5.4.3. Deligne’s mized Hodge structure on H*(U,C) is given as follows.

(1)
(i)

(iii)

We have H*(U,C) = HF(X, Q% (log D)).

The weight filtration is
W, H*(U,C) = im{H*(X, W, Q%(og D)) — H"(U,C)}.

We have W, HX(U) = 0 for all ¢ < k, and W), H*(U) = im{H*(X) — H*(U)}.

The Hodge filtration s
FPH*U,C) = im{H*(X, F* Q%(log D)) — H*(U,C)}.

And Gr, HP™1(U,C) = HY(X, % (log D)). (This is a consequence of the fact
that a spectral sequence associated with the filtration F*QX (log D) collapses at
the Fy term, and E}? = HY(X, Q% (log D)).)

The Hodge numbers h?? of H*(U) are monzero only when p,q < k < p +
q. This is a consequence of the fact that Gr}ZLZHk(U, Q) is a subquotient of
H*4(D® Q)(—¢). (The latter cohomology coincides with the E; term of the
spectral sequence associated with the filtration W~ = W, that collapses at the

E, term.)

The proof of Theorem 5.4.3 is much more complicated than the construction of the

mixed Hodge structure on H*(Y,Q) when Y is a simple normal crossing variety

(summarized in §5.3.3). This is perhaps not surprising since the choice of completion

X D U is neither unique nor canonical. We will discuss (in §§5.4.1-5.4.3) the proof

in the very special case that D is smooth hypersurface.

5.4.1 Residue map

Let D C X be a smooth hypersurface. Define a map

Resp : Q% (log D) — Qb (5.4.4)
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as follows. Given z € D, fix a local coordinate chart z : V= A™ centered at z so that
DNV ={z =0}. Any w € Q% (log D)(V) may be written as w =n A (dlog z1) + 1/,
with 7 € Q% (V) and 7/ € Q% (V) not involving dz.

Exercise 5.4.5. Show that n|p € Q%' (DN V) is independent of our choice of local
coordinates z. Conclude that (5.4.4) is well-defined by Resp(w) = n|p.

Exercise 5.4.6. Show that the residue map commutes with d.

Exercise 5.4.7. Show that

0 — Q% — Q% (logD) == OBl — 0

is an SES of sheaves.

Remark 5.4.8. The residue map admits the following coordinate-free interpretation:
Fix a Riemannian metric on X. For sufficiently small ¢ > 0, the tubular neighborhood
T5.(D) = {z € X s.t. dist(x, D) < 2¢} is diffeomorphic to a neighborhood of the zero
section in the real normal bundle ND = T D+ C TX|p. Then S.(D) = 9T.(D) =
{z € X s.t. dist(z, D) = ¢} maybe viewed as an S'-bundle over D. Let i : S.(D) —
Ty.(D) be the inclusion. Let pp : H*(S.(D)) — H* (D) be the map given by

fibre-wise integration. Then

Resp(n) = pp (551n) -

This interpretation is dual to the following. Let j : D — T5.(D) denote the inclusion,
and 7 : S.(D) — D the projection. The Gysin LES is

! Res},

o Hy(S.(D)) 5 H.(To.(D)) L Hy_o(D) —2 Hy 1(S-(D)) — -

Informally the map j' is given by intersecting the cycle ¢ € Hy(Th.(D)) with D.
Formally, the map is defined by

(rAT*0,¢) = (p,]j(c)), VYeoeH D)
where 7p is the Thom class of the normal bundle N D.
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Exercise 5.4.9. The SES of HW 5.4.7 induces a LES in cohomology

HO(X, Q%) — HO(X,Q%(log D)) == HO(D, Q") —» HY(X, Q%) — -
I I
HP~10(D) HP'(X)
Let i : D < X denote the inclusion. Show that the connecting map § : H?~1%(D) —
HP'(X) is the (restriction of the) Gysin map 4, : H?~}(D,C) — HP™(X,C). [Hint.
Remark 5.4.8 and Stokes” Theorem.|

Exercise 5.4.10. Show that

Res

0 — HYV,Q) — H'(V,Q(logDNV)) == HY DNV, Q0 ) — 0

is exact. [Hint. HW 5.4.7 and Cartan’s Theorem B (§A.4.4).]

5.4.2 Hypercohomology

Hypercohomology is a generalization of sheaf cohomology that takes as its input
not a single sheaf, but a complex of sheaves. For this discussion, we take X to be an
arbitrary complex manifold. (While some of the discussion holds in greater generality,
this suffices for our purposes.) Suppose that (K°®,d) is a complex of sheaves (bounded
below).

Definition 5.4.11. The cohomology sheaf (not to be confused with sheaf cohomol-
ogy) is the sheafification of the presheaf

ker{d : K4(U) — K (U)} |
im {d : Ka-1(U) — Ka(U)}’

U —

that is,

HIK®, d)(U) = {% € KU(U,) ‘ {U,} is an open cover of U, do, =0 }/ N

and o,v,, — 0slu,, € AKT (Uap))

where {0, € K9(Uqs)} ~ {0, € C1(U})} if for all x € U, NU), there exists an open
€V CU,NU] so that o,y — o], |v € d(KI1(V))}.
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Definition 5.4.12. A morphism K} — K3 of complexes is a quasi-isomorphism if
the induced maps H*(K$) — H¥(K$) are isomorphisms. This is a local property that
can be checked at the level of stalks (HW A.4.4).

Remark 5.4.13. If the complex (K*, d) satisfies a Poincaré Lemma, then H?(K*, d) =
0 for all ¢ > 0, essentially by definition.

Example 5.4.14. Any resolution F — S§°® is a quasi-isomorphism of §°® with the
trivial complex F -0 —0 — ---.

Example 5.4.15 ([Voi07]). Suppose that (K, d) is a complex, (C**,d1,02) is a double
complex (0?2 = 0, §;05 + d20; = 0), and there exists a morphism of complexes i
(K*,d) — (C*°,8;) so that i, : K? < CPO is an injection, and KP <& (CP*,5,)
is a resolution. Let (C*,d) be the associated simple complex C* = @®,,,-£CP*? and
d = 01 + 02. Then the induced map i : (K*,d) — (C*,0) is a quasi-isomorphism.

One such example is given by (K7, d) = (2%,0) and (CP4,6,,6,) = (ER,0,0), for
which we have (C*,0) = (£%,d). Another example is given by the Cech resolution . . .

Definition 5.4.16. Let (C?({U;},K9),§) denote the Cech resolution of X9 (Example
A4.14). Let d: CP({U;},K?) — CP({U;},K7™) be the induced map. Then (CP4 =
CP({U;},K9);0,d) is a double complex (Example 5.4.15). Let (C*, D) be the associated

simple complex. The hypercohomology of the complex is

HM(X,K*) == lim H*(I(X,C*), D). (5.4.17)
{U:}

(See §A.4.6 for a more general discussion.)

Remark 5.4.18. There are two spectral sequences abutting to the hypercohomology
(HF ~ &, = E2%) [GHY4, p. 442]. The second pages are

B = HP(XCHY) and EPY = HY(HUX,KY)  (5.4.19)

where H? = HI(K*,d) are the cohomology sheaves (§A.4.6). The first spectral se-

quence may be used to show: if ¢ : (K3},d1) — (K3,dy) is a quasi-isomorphism
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(induces an isomorphism of cohomology sheaves), then HF (X, K) = H*(X, K3). The
second spectral sequence implies that in the computation (5.4.17) it suffices to work

with a cover {U;} that is acyclic with respect to all the K9,

Example 5.4.20 (Hypercohomology of a trivial complex). Fix a sheaf S, and let
(K*,d) be the trivial complex § — 0 — 0 — ---. Then H° = § and H? = 0 for all
q > 0. Both "EY? and "EY? are zero for ¢ > 0. Since these spectral sequences are
supported in the positive quadrant, the differentials d}, and dj vanish. So H¥(X, K*) =
H*(X,8) is the usual sheaf cohomology.

Example 5.4.21 (Dolbeault isomorphism). The 0-Poincaré Lemma implies that
the trivial complex Q% — 0 — 0 — - - is quasi-isomorphic to the Dolbeault complex
(EX*. D). So HI(X,QF) = HI(X,EX*) (Example 5.4.20).

The 0 Poincaré Lemma also implies that the cohomology sheaves of (£5°, )
are H° = Q% and H9 = 0 for all ¢ > 0. So 'EP’ = HP(X,Q%), and 'EP? = 0 for
all ¢ > 0. Likewise, the sheaves Sf(" are fine, so that F[q(X, ER*) =0 for all ¢ > 0
(Example A.4.13), so that "EY® = HY(HO(X,EY")) = HoP(X) and "ES? = 0 for
all ¢ > 0. Since these spectral sequences are supported in the positive quadrant,

the differentials d;, and dj vanish. Whence we obtain the Dolbeault isomorphism

HP(X,QF) = HE?(X).

Example 5.4.22. The holomorphic de Rham complex (2%, d) is a resolution of the
constant sheaf Cx, but not an acyclic resolution. The complex satisfies a Poincaré Lemma,
so that the inclusion of the trivial complex Cx — 0 — 0 — 0--- into (Q%,d) is a

quasi-isomorphism. It follows (Example 5.4.20) that
H*(X,C) = HFX,Q%).

(Keeping Example 5.4.15 in mind, we have HF(X, Q%) = HY¥(H°(X,EY%)), which is
consistent.) We have "E}? = HY(HY(X,Q%)).

(a) If X is compact Kéhler, then the differential d is trivial on H?(X, Q) = H?9(X).
So "ENT = HI(X,QP) = "EPY and HF (X, Q%) =~ @peprq HI(X, OP).
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(b) If X is Stein, then Cartan’s Theorem B (§A.4.4) implies H?(X, Q%) = 0 for all
q > 0. It follows that H*(X,C) = HY(H°(X,Q%)).

Remark. This argument also implies HP (X, Q% ') = HY ' (H°(X, Q%)) = H?~(X, C).
Exercise 5.4.23. Prove Theorem 5.4.24. [Hint. Remark 5.4.18.]

Theorem 5.4.24 (de Rham). Let X be a topological space and (K°,d) and ezact

complex of sheaves on X.

(i) Define S =ker{d: K° — K'}. We have a canonical identification H{(X,S) =
HI(X, K*).

dfn

(i) If HY(X,K?) =0 for allp and all ¢ > 0, then we have HY (X, KC*) ~ HY, (X, K*)
HP(T'(X,K*),d).

5.4.3 The logarithmic de Rham complex

Assume that X is a compact complex manifold and D C X is a simple normal crossing
divisor.

The local picture

The following lemma will play the role of a Poincaré lemma
Lemma 5.4.25. The inclusion Q°*(log D) < j.E} is a quasi-isomorphism.
Corollary 5.4.26. We have H*(X, Q% (log D)) = H¥(X, j.E8) = H*(U, C).

Proof. Recall that the property of being quasi-isomorphic can be checked at the level
of stalks. If x € U, then the stalks are Q% = Q(log D), and €2 = (j.&}).. The smooth
and holomorphic Poincaré lemmas imply that these stalks are zero.

It remains to consider the case that x € D. For simplicity we assume that D s

smooth. (For the general argument, see [GH94, p. 451].) Then the local coordinate
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chart z : V = A™ satisfies U NV ~ A* x A™ 1 The latter deformation retracts

onto a circle S!, so that
Hix(UNV,C) = Hiz(S",C) = A'Hg(S',C)

with Hlz(S',C) = Cdlog 2. This yields HI(j.E5). = NTHiz (ST, C).
It is clear that the stalk H(Q% (log D)), maps onto H(j.E).. We need to show
that these maps are injective. Exercises 5.4.6 and 5.4.7 imply that we have a SES

0 — QF = Q(logDNV) 2% sl — 0

of complexes. This induces a LES in hypercohomology, that Example 5.4.22 and HW

5.4.27 allow us to write as
0 —— HY(V,C) —— H'(Q%(log D)), —— 0
0 — H'Y(Q%(og D)), — HO(DOV,(C) — 0

0 — HP(Q%(log D)), — 0, Vp>2.

Exercise 5.4.27. Show that
HP(V, 0% (log DN V) = HY(H(V,Q%(logDNV))) = H(Q%(log D)), -

[Hint. The second equality is essentially by definition of the cohomology sheaves.
For the first equality, consider the second page ”ES? in the second spectral sequence

computing the hypercohomology (5.4.19), keeping Example 5.4.22(b) in mind.]

The global picture

Assume that D C X is a smooth hypersurface. As noted above HW 5.4.6 and 5.4.7
imply that we have a SES

0 = Q% — Q%logD) 2% Q%L — 0

90



of complexes. This induces a LES in hypercohomology, that Example 5.4.22 and

Corollary 5.4.26 allow us to write as

0 — H(X,C) — H°(U,C) — 0

0 —— HY(X,C) L H'(U,C) 2=, g°(D,C) -2 H2(X,C)
" m2u,c) = H'(D,C) 2% H3(X,C) L H¥U,C)  (5428)
“Res o f2(p,C) —2 HY(X,C) —L s H(U,C) — R ..
Example 2.3.6 and HW 5.2.4 and 5.4.9 imply that the maps H?~'(D)(-1) — HP"(X)

are weight zero morphisms of Hodge structure. HW 5.2.5(c) implies

dfn

Wi H*(U) im {H*(X) — H*(U)} = coker {H*(D)(—1) — H*(X)}

carries a pure Hodge structure of weight k. Likewise, setting Wy 1 H*(U) = H*(U),
the weight graded quotient

Gr)Y HYU) = coker{H*(X) — H*(U)} = ker {H* 1(D)(-1) - H**}(X)}

carries a pure Hodge structure of weight k£ + 1.

This completes our discussion of Theorem 5.4.3. We now turn to some important

corollaries.

5.4.4 Global Invariant Cycle Theorem

Let f: X C P" xS — S be as in Example 3.5.3. The stalks of the higher direct
image are R"f.(Qx)s = H"(Xs, Q), cf. Example A.4.10 and HW A.4.11. Fix s, € S
and let p : (S, s,) = Aut(H"(X,,,Q), Q) be the monodromy representation (3.1.3).

As a local system, we have

Rnf*(QX) = S‘ Xp Hn(Xso7Q)
1
S
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Let
H"(X,,,Q)™ = {ne€ H"(X,,,Q)s.t. p(y) -n=nVYy€m(S,s)}

denote the subspace upon which the monodromy acts trivially. We have a natural

identification

H"(X,,,Q)™ ~ H°S, R"f.(Qx)) (5.4.29)

of the invariant subspace with the global sections. Let i, : Xy < X be the inclusion

map, and note that restriction to fibres defines a map
H"(X,Q) — H°S,R"f.(Qx)), & (sr>i%). (5.4.30)

Remark 5.4.31. Corollary A.4.16 implies that (5.4.30) is surjective. Then the iden-
tification (5.4.29) yields the following generalization of HW 3.1.13(b)

H,(X;,,Q) = ker{H,(X;,,Q) - H,(X,Q)} & H,(X,,,Q)™.

Theorem 5.4.32 (Global Invariant Cycle Thm, aka Thm of the Fixed Part [Del71]).

(i) The invariant subspace H"(X,,, Q)™ inherits a weight n Hodge structure from
H"(X,,,Q).

(ii) The induced Hodge structure on I'(S, R" f.(Qx)) does not depend on the choice
of s € S.

(iii) If j : X < X is a smooth compactification (with X\X simple normal crossing),

then the composition
H'(X,Q) & H'(X,Q) - H(S,R"f(Qv)) = H"(X,, Q)"
18 surjective.
Proof. The pullback ¢ decomposes as
iy, H'(X,Q) — H°(S,R"f.(Qx)) ~ H"(X,,, Q™ — H"(X,,Q).
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Since i* is a morphism of Hodge structures (Theorem 5.1.1), the first claim of Theorem
5.4.32 follows from Remark 5.4.31. As a quotient of H"(X,Q), the Hodge structure
on H°(S, R"f.(Qx)) is clearly independent of s,. It remains to establish the third
claim. This follows from HW 5.4.33 below. [

Exercise 5.4.33. Set j, = joi, : X, — &. Both H"(X,Q) and H"(X,,Q) carry
weight n Hodge structures. By Theorem 5.4.3(ii) we have a mixed Hodge structure
on H"(X,Q) with

W,H"(X,Q) = im{j*: H"(X,Q) — H"(X,Q)}.
Use Theorem 5.1.1(i) and strictness of morphisms of MHS (HW 5.2.11) to show that
im{i*: H"(X,Q) — H"(X,,Q)} = im{j*: H"(X,Q) — H"(X,,Q)}.

Theorem 5.4.34 (Complete reducibility [Del71]). The monodromy representation
on H"(Xs,) is completely reducible.

Remark 5.4.35. The elements of ker {H,(X,,,Z) — H,(X,Z)} are the vanishing

cycles.
Remark 5.4.36. Let

" = § x, H'(X,,,Q™ C R"[.(Qu)

!

S

be the local subsystem defined by H"(X,,, Q)™ C H"(X,,,Q). This local subsystem
is a constant sheaf. If 1 is a section of Z", and is of Hodge type (p,q) at some point
s € S, then Theorem 5.4.32 implies 7 is of Hodge type (p, ¢) at every point of S. With

more work, one may use the Global Invariant Cycle Theorem obtain results Hodge
classes [CS14].
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5.4.5 Hodge structure on a smooth projective hypersurface

Let X = {f =0} C P"™! = P be a smooth projective hypersurface of degree d. Our
goal is to compute the Hodge decomposition of H¥, (X, Q).

The Lefschetz hyperplane theorem (§A.3.7) implies H*(X,Z) = H*(P,Z) for
all k < n. We have seen (Example 2.2.3) that H*(P"*!,Z) = @} Zw*, where
w € H*PZ) N HYY(P™!) is (a multiple of) the Fubini-Study Kihler form.
Then Poincaré duality implies H*(X,7Z) ~ H?*"“*(X, 7). So we need only compute
H (X, Z).

Set U = P\ X. In this setting the LES (5.4.28) reads

0 —— H*(U,C) = g2(x,C) 25

H?*(P,C)
— L HM(U,C) —Re= gP1(X,C) —— 0.
Lemma 5.4.37. The pullback j* : H*(P,Z) — H*(U,Z) is the zero map if k > 0.

Proof. By duality it suffices to show that j, : Hop (U, Z) — Ho (P, Z) is the zero map.
Given o € Hyy(U,Z), define m € Z by j.(a) = m[P*] € Hyp (P, Z). We have a disjoint
union P = U U X, with [X] = d[P"] C Hy,(P,Z). So 0 = j.(a)-[X] = dm[P+k=(n+1)]
forces m = 0 so long as & > 1. O

The lemma updates the LES to
0 —— H#*L(U,C) = H*%(X,C) — H™([P,C) — 0,

0 —— H?(U,C) 2= 21X ,C) ——— 0.

Exercise 5.4.38. Use the Gysin map (Definition 5.2.3) to show that the ker { H"(X, Q) —

H"™2(P)} = Hin (X, Q).

Exercises 5.2.4 and 5.4.38 imply

Hyin(X,Q) =~ H™HU,Q)(1). (5.4.39)
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So to describe the Hodge decomposition of H}; (X, Q), it suffices to describe the
mixed Hodge structure on H"™'(U,Q). Theorem 5.4.3(ii) and Lemma 5.4.37 im-
ply that W, H"™(U,Q) = 0. Then Theorem 5.4.3(iv) implies W,, o H"™(U,Q) =
H™(U,Q); this is, H"™ (U, Q) is pure Hodge structure of weight n + 2. Moreover,

Theorem 5.4.3(iii) asserts
Grh, HP*(U) = HY(P, Q5 (log X)) . (5.4.40)

Exercise 5.4.41. Show that the sequence

Ortlox 0P (3X
0 — MlogX) — M(X) D —IF;H( ) 4 —;ﬂ”+2(3 ) 4
QPHH(X) QP2 (2X)
P P
is exact.

Set
Q2 ((k +1)X)

QT (kX)
Exercise 5.4.41 implies that (K°®,d) is a resolution of Q5 (log X'). Keeping §5.4.2 in

KF =

mind, this implies
HY(P, Q% (log X)) = HYP,K*).
ker {d : H(P,K?) — H°(P, K1)}
im{d : HO(P, Ke1) — HO(P,K9)}
Proof. Bott vanishing (§A.3.10) asserts H4(P,Q2(k)) = 0 for all ¢,k > 0 and p > 0.
This implies that the LES associated to the SES

Lemma 5.4.42. We have HY (P, K*) =

B((k+1)X)

0 — QpkX) — RB((k+1)X) — QL (EX)

is

0? 1)X
0 — H(P,O%(kX)) — H(P,0%((k+1)X)) — H° P,M — 0
QL (kX)
for k > 0. In particular,

o (o Q2L DX) | HOPQL(k + 1)X))
" (P’ QL(kX) )‘ HO, Q5(kX)
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and QP ((k + 1)X)
+
He(p B 7/ = .
(’ QL(kX) ) 0. Ya=0

The lemma now follows from (5.4.19). O

In the case p + ¢ = n + 1, the lemma yields

HO(P, " (g + 1) X))
HO(P, Qp* (qX)) + dHO(P, Qg(qX))

HI(P, Q2 (log X)) = (5.4.43)

Exercise 5.4.44. Let (zo,...,2,11) be coordinates on C"™2. Define £ = Y 2,0,

and set

0 = ’LE(dZO/\/\dn_H) = Z(—l)zzzdzo/\&;z/\dnﬂ € Q%ﬁjg

A
Let A, B € Clz,...,2n11] be two homogeneous polynomials. Show that ¢ = s
descends to a well-defined (n + 1)-form on P if and only if deg A + (n + 2) = deg B.

Remark 5.4.45. Exercise 5.4.44 implies
HO ]P) Qn+1 ]{JX _ A t A S k:d—n—Q(Cn+2
(P, Q™ (kX)) = Fro st A€ Sym :

explicitly realizing the Bott—Borel-Weil assertion H(P, Q2 (kX)) =~ Sym*4"2C"+2,

Exercise 5.4.46. Keeping the notation of Exercise 5.4.44, show that

1 » N N
¢ = EZ(_1>1+]AideO/\~../\-.edZi~--/\-..de.../\dn+1 c Q€n+2

i<j
descends to a well-defined n—form on P if and only if deg A;; +n = deg B and A;; =
2;A; — zjA; (the latter is equivalent to ig(1)) = 0).

Set B = f4, and compute

B q of 1 0A;
W= (G A - 15 ¢
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From this we see that ¢ = For o € H°(P,Q2 " ((¢ + 1)X) lies in the denomina-
tor of the right-hand side of (5.4.43) if and only if A lies in the Jacobian ideal J; C
Clzo, . .., zn41] generated by the partial derivatives 0f /0z;. Let Ry = Clzo, ..., zn41]/Js

be the Jacobian ring. Setting t'(p) =d(g+1) — (n+2) =d(n+2—p) — (n +2), we

have
RYP L2 P 0(log X)) 2L G H™(U,C)
(5.4.39) 1y
— GIJ})? alrim(X7 (C) .

Set t(p) =t'(p+1) =d(n+1—p)— (n+2) for

dime R{" = W22 (X). (5.4.47)

prim
Remark 5.4.48. The Hodge numbers are independent of our choice of smooth hy-
persurface X = {f = 0} of degree d (Example 3.5.3). So we might as well take the
Fermat hypersurface

Fo et

which has the computational advantage that the Jacobian ring J; = (20!, ..., 24 1)

is quite simply presented. Using this one may show that

W (X) = £ eZ ™ st.qd< SN < (g+1)d, 1<\ <d—1}.

prim

Remark 5.4.49. Steenbrink extended the arguments here (§5.4.5) to quasi-smooth
hypersurfaces of weighted projective space P(ag,...,a,41). Here 1 < g < -+ <
any1 € Z and ged(ag, anyq1) = 1. In general, the weighted projective space will be
singular. Every weighted projective space is isomorphic to a well-formed weighted
projective space.! The latter are characterized by ged(ag, . .., dj,. .., any1) = 1 for all
0 <j <n+1, and have singular locus

Sing P(ag, ..., an11) = U {x € P(ag,...,an41) s.b. x; #0 = pla;} 2

p prime

For example, P(a, b) ~ P*.
2In general, P(ag, ..., an+1) is a normal irreducible projective algebraic variety; the singularities

are all cyclic quotient singularities; and a nonsingular P(ay, . . ., a,1) is isomorphic to P+, [Dol82].
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For example,
SingP(1,1,2,5) = {(0:0:1:0), (0:0:0:1)}.

A hypersurface X C P(ag,...,a,41) cut out by a homogeneous polynomial f €
Clxo, - - -, Tny1]a of weighted degree d is quasi-smooth if the only singularity of {f =
0} C C"? is the vertex 0 € C"*2. Set |a| = Y a; and w(p) = d(n + 1 — p) — |al.
Then [Dol82, Theorem 4.3.2]

Wed (X)) = dime Ry (5.4.50)

prim

5.4.6 Hodge structure of a blow-up
Let Y C X be smooth projective varieties of dimensions n —m < n. Let
7: X' =Bly(X) - X

denote the blow-up of X along Y (Definition 1.1.21). Our goal here is to sketch how
one computes the Hodge numbers of X’ using Mayer—Vietoris exact sequences.

Let U = X\Y, and let Y C V C X be a tubular neighborhood of Y. Then
V' deformation retracts onto Y, and U NV deformation retracts to S?™! x Y. Set
U'=rY(U)~Uand V' =7 (V). Note that 'NV’' ~UNV, and V' deformation

retracts to P(Vx,y). The Mayer—Vietoris sequences are

I | I

= Hpy (X)) — H(U'NV') — H (U@ H (V) — Hip(X') — -+

Since V' deformation retracts on to Y, we have
Hi(V) = Hi(Y).
Likewise, the Kiinneth formula yields
H (U NV = H(UNV) = H(S*™ ' xY) = H(Y) D Hpy1-0m(Y) .
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And the Leray—Hirsh Theorem yields

Hy(V') = Hy(P(Nxjv)) = €D Ha(Y)® Hy(P™1).

a+2b=k

This allows us to refine the Mayer—Vietoris sequences to

c— Hp1(X) —— Hpyom(Y) ———— Hpy(U) ——— Hp(X) — -+

Hy(Y) @ H,(U) &

o — Hp (X)) — — — Hpy(X') — -
{ Hi1-2m(Y) } { Hi(P(Nx/v)) }

The maps are all morphisms of mixed Hodge structures. And this allows us to deduce

PPI(X") = WPYX), VY|p—gq|l>dimY.
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Chapter 6

Degenerations of algebraic varieties

6.1 Schmid’s nilpotent orbit theorem

Recommended reference: [Sch73].

Let
X* — P x A*

fl / (6.1.1a)
A

be a commutative diagram with the property that f : X* — A* is a smooth proper
surjective morphism of complex manifolds. Then each X; = f~1(¢), t € A* is nonsin-

gular projective variety. Fix a point ¢, € A*. Set
HQ = ngim<Xto7Q) .

Let
p:m (A% t,) =Z — I' C Aut(Hg, Q)

be the monodromy representation (§3.1). And let

ZGHL)D

I l l (6.1.1b)

e =t € A* —5 T\D
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be the period map induced by the smooth family f : X* — A* (Example 3.5.3). Here
H = {z € C s.t. Im(z) > 0} is the upper-half plane, and D is the period domain
parameterizing @-polarized Hodge structures of weight n on Hz = HJ, (X;,,7Z).
Note that ¢ — 0 if and only if Im z — 4-00.

Let v(s) = t, 2™ 0 < s < 1, be a counter-clockwise generator of m (A*, t,) = 7Z;
and let 7' = p(y) € I be the associated Picard-Lefschetz transformation (Definition

3.1.5). The generator v acts on the universal cover H by v -z = z + 1, and

D(z41) = B(y-2) = T-0(2). (6.1.2)
Lemma 6.1.3 (Borel [Sch73]). The eigenvalues of T' are roots of unity.

Idea of the proof. Curvature properties of horizontal maps into D imply that ® is
distance non-increasing relative to the Poincaré metric on H and a suitably normalized
Gr—invariant hermitian metric on D. The points ik and 1 + ik, k£ € N have distance
1/k in H. Then (6.1.2) implies the conjugacy class of T in Gr has an accumulation
point in the compact subgroup Stabg, (®(i)). This forces the eigenvalues of T to
have norm one. On the other hand T € Aut(Hz, Q) implies that the eigenvalues are
algebraic integers (roots of a monic polynomial in integer coefficients). The lemma

now follows from a result of Kronecker. O

The lemma implies 7" is quasi-unipotent. Let 0 < m € Z be the smallest positive

integer so that 7™ is unipotent. Let
1 m
N = —logT
m
be the nilpotent logarithm of monodromy.

Theorem 6.1.4 (Local monodromy, Landman). The action of N on Hz = H,

prim(Xto> Z)
satisfies N"™1 = 0.

Exercise 6.1.5. Show that ¥(2) A exp(—mzN) - ®(mz) descends to a well-defined
map U : A* — D satisfying W(z) = W(e2™).
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Definition 6.1.6. Fix F € D and a nilpotent N € go with the property N(F?) C
FP='. Define amap 6 : C — D by 6(2) A exp(zN) - F. We say 0 is a nilpotent orbit

if 6(z) € D for Im z > 0. In this case we say that (F, N) defines a nilpotent orbit.

Theorem 6.1.7 (Nilpotent Orbit Theorem [Sch73]). The map ¥ extends holomor-
phically over the origin 0 € A. The pair (V(0), N) is a defines a nilpotent orbit 0(z)
that asymptotically approximates ® in the sense that there exists B > 0 so that

dist(8(2), ®(z)) < (Im 2)Be=2mm Imz
for Imz > 0.

It turns out that a nilpotent orbit is equivalent to a polarized mixed Hodge
structure (Theorem 6.1.10).

Exercise 6.1.8. Let N : Hy — Hg be a nilpotent linear operator.

(a) Define 0 < k € Z by N*¥ # 0 and N**' = 0. Show that there is a unique
filtration

W(N)_, € W(N)i—p C---C W(N)g1 C W(N)r = Hg

so that N(W(N),) € W(N),_s, for all £, and the induced map N¢ : GtV ™) —
GrIiVa(N) is an isomorphism, for all @ > 0. [Hint. To get you started, note that

W_, = Nk(H@) and W;,_; = ker N*. From here one may pass to a quotient space

and argue inductively. (It may be instructive to work out the cases k = 1,2.)]
(b) Suppose that N € gg = End(Hg, Q); that is, 0 = Q(Nu,v) + Q(u, Nv) for all

u,v € Hg. Show that W(N), is Q-isotropic: Q(W (N)_q, W(N)s—1) = 0 and

W(N)

the induced bilinear form Q, : Gr'' ) x Gr'W ™) — Q is nondegenerate.

(c) Show that ker {N : Hy — Hg} C W(N)o.

Definition 6.1.9. Let (W, F) be a mixed Hodge structure with F' € D. We say a
nilpotent element N € gqo polarizes (W, F') if:
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(i) We have N™*! = 0.

(ii) The nilpotent operator and weight filtration are related by W (), = W,,.,. We
express this as W = W(N)[—n]. Note that Gr),, = GrZV(N).

(iii) The nilpotent operator and Hodge filtration are related by N(F?) C FP~1; equiv-
alently N € go N F~(gc).

(iv) The induced weight n + a Hodge structure on

P(N)pta A ker{ N“*!: G1}\\,, — G}V ,}

is polarized by Q(-, N*:).

We call (W, F,N) a polarized mized Hodge structure. And, since N determines the
weight filtration W, we say the pair (F, N) defines a polarized mixed Hodge structure.

Theorem 6.1.10 ([Sch73, CKS86]). The pair (F, N) defines a nilpotent orbit if and

only if the pair defines a polarized mized Hodge structure.

Remark 6.1.11. We may interpret Theorems 6.1.7 and 6.1.10 as saying that the
family ®(t) of (I'-equivalence classes of) Hodge structures on Ho = H[ ;. (X:,, Q)
degenerates to a polarized mixed Hodge structure (¥(0),N) on Hg as t — 0. Be
aware that the Hodge filtration Fj;, = ¥(0) depends our choice of coordinates; only
N and the nilpotent orbit #(z) are independent of this choice.

Exercise 6.1.12. Let (W, F, N) be a polarized mixed Hodge structure (Definition
6.1.9). Show that N is a weight 0 morphism of mixed Hodge structure (Definition
5.2.6).

Definition 6.1.13. Suppose that the family f : X* — A* of (6.1.1a) extends over

the origin as
X' —=> X —=PxA

fl fl / (6.1.14)

A* < A
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with f : X — A is a proper, flat! holomorphic map of complex manifolds. Then we

say f: X — Ais a degeneration (of nonsingular projective varieties).

Example 6.1.15. For many naturally arising families the total space X will fail to
be smooth. Suppose that F,G,H € Clxo,...,x,:1] are homogeneous polynomials
with deg F' = (deg G)(deg H). Consider the family (6.1.14) defined by

X = {tF+GH=0} C P""' x A,

For generic choice of F, G, H, the restriction of f to X* = f~}(A*) — A* is smooth
morphism of smooth manifolds; and the central fibre X, = f~!(0) is a simple normal
crossing hypersurface in P"™'. However, Sing (X) = {t,F,G,H = 0}. In order
to obtain a degeneration in the sense of Definition 6.1.13, we need to resolve these

singularities.

Question. What is the relationship between Deligne’s mixed Hodge structure (§5)
on H"(Xo,Q), and Schmid’s limiting mixed Hodge structure (Remark 6.1.11) on
H"(X:,,Q)? When the family (6.1.14) is a semistable degeneration the answer is
given by the Clemens—Schmid exact sequence. (For results in more general settings,
see [KLS21, KL24].)

6.2 Clemens—Schmid exact sequence

Recommended reference: [Mor84].

Definition 6.2.1. The degeneration f : X — A of (6.1.14) is semistable if the
central fibre X = f~!(0) is simple normal crossing (Definition 5.3.1). This implies

'Suppose that f : X — Y is a morphism of smooth algebraic varieties with equidimensional fibres.
Then miracle flatness states that f is flat. This means that the induced map on stalks f, : Oy, f() —
Ox o, makes Ox ; a flat Oy, f(,)-module: taking the tensor product OX,x®Oy,f<m> preserves exact
sequences. The fibres of a flat morphism have constant Hilbert polynomial, cf. [Har77, Proposition

I11.9.9] or [Vak24]. And so, for example, a (nontrivial) blow-up is not flat.
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that every point z, € Xy admits local coordinates (z;) on X with respect to which

the projection f is given by xq---x, = t.

Theorem 6.2.2 (Semistable reduction [KKMSD73]). Given a degeneration f : X —
A, there exists a base change b : A — A, mapping t — t™, a semistable degeneration

g:Y — A and a diagram

so that Y --+ X, is a bimeromorphic (birational) map obtained by blowing up and

blowing down subvarieties of the central fibre.

Theorem 6.2.3 ([Cle77]). If f : X — A is a semistable degeneration, then there
is a retraction X — Xo. In particular, H"(X,Q) ~ H"(Xy, Q) has a mized Hodge

structure.
Theorem 6.2.4 ([Lan73]). Let f: X — A be a degeneration.

(i) The Picard—Lefschetz transformation is quasi-unipotent, with index of unipotency
at most n. That is, there exists 0 < m € Z so that T™ is unipotent (we assume

m is minimal with this property), and (T™ — Id)"*! = 0.
(ii) If f : X — A is semistable, then T is unipotent (m = 1).

Let ¢ : X;, — X denote the inclusion, and * : H"(X) — H"(X,,) the pullback.
Note that i* is a weight 0 morphism of mixed Hodge structures, and N : H"(X,,,Q) —
H™"(X:,,Q) is a weight —2 morphism of mixed Hodge structures (Definition 5.2.6).

Theorem 6.2.5 (Clemens—Schmid exact sequence [Cle77]). Assume that (6.1.14) is
a semistable degeneration, and the fibres X; have dimension d. Then there is an exact

sequence
= Hygian(X,Q) % H*(X,Q) - H™(X,,,Q) % H*(X,,,Q)

Iy Hoy n(X,Q) —%5 H™2(X,Q) — - --
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of morphisms of mixed Hodge structure. The morphisms i* and N are of weight 0 and
—2, respectively. The maps o and B are compositions of inclusions and Poincaré du-

ality maps, and are of weight d 4+ 1 and —d, respectively.

Exercise 6.2.6. Use the Clemens-Schmid exact sequence to show that H°(Xj, Q) ~
H(X,Q) 5 HO(X,,,Q) is an isomorphism.

The statement of Theorem 6.2.5 contains the Local Invariant Cycle Theorem:

Corollary 6.2.7 (Local Invariant Cycle Theorem). The sequence

H'(X,Q) % HY(X,,,Q &% H'(X,, Q)

is exact. That is, all cocycles in H"(X,,,Q) that are invariant under the Picard—-

Lefschetz transformation come from cocycles on X .

Exercise 6.2.8. Recall (§5.3.3) that the weight filtration on H"(X,Q) = H"(X,, Q)

satisfies
0 C WoH™(Xo) € WiH"(Xy) C---C W,H"(Xo) = H"(X)).
(a) Show that the Deligne’s weight filtration on H,, 94 o(X, Q) ~ H,_24_2(Xo, Q) is

0 C WhosaoHy 24-2(X) C Wyog1Hy94-2(X) C--- C W_iHp 9q-2(X)
C WoHp—24—2(X) = Hp_24—2(X).

(b) Show that

im {Oé : H2d+2—n(X>@) — Hn(X, Q)} = a(Wn—2d—2H2d+2—n(X7 Q)) .

[Hint. Strictness (Exercise 5.2.11) may be useful here.]
(c¢) Conclude that the restriction of i* : H"(X,Q) — H™(X;,,Q) to W,,_1H"(X,Q)

is injective.
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Corollary 6.2.9. Given k > 0, N* : H"(X;,, Q) — H™(X,,,Q) is the zero map if
and only if W,,_(H"(Xy,Q)) = 0. In particular, N1 is always zero, and N™ = 0 if
and only if H*(|I'(Xy)|) = 0. (Here I'(Xy) is the dual complex, cf. Definition 5.3.8.)

Exercise 6.2.10. Prove Corollary 6.2.9. [Hint. Corollary 5.3.9, Exercise 6.1.8, Defi-
nition 6.1.9, and Exercise 6.2.8.]

6.2.1 Degree one cohomology groups
Deligne’s mixed Hodge structure

Recall (§5.3.3) that Deligne’s weight filtration Wy C W; on H*(Xy, Q) is

WoH'(Xo,Q) =~ H'(IT(X)]),
GV H (X0, Q) ~ ker{d,: H'(X",Q) = H' (X,Q)}.

Here Xél) = UX} is the disjoint union of the irreducible components X7 of Xy = U X3,
and X(gg) = U XgNXE: and T'(X,) is the dual complex of the simple normal crossing
variety X (Definition 5.3.8 and Corollary 5.3.9). The Hodge diamond (Definition
5.2.14) of this mixed Hodge structure is given in Figure 6.1.

Figure 6.1: Hodge diamonds for H*

Dehgue MHS N (XD Schiwdd MHS H'UXg, )

A A

/)
[
®

\/J
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Schmid’s mixed Hodge structure

In degree one, the nilpotent logarithm of monodromy N : H(X; Q) — H'(X;,, Q)
satisfies N2 = 0 (Theorem 6.2.4), and the Schmid’s weight filtration W = W (N)[—1]

1S
WoH (X;,,Q) = imN

WiHY (X,,,Q) = kerN
WoH'(X,,,Q) = H'(X,, Q).

Implications of the Clemens—Schmid exact sequence

The Clemens—-Schmid sequence yields
0 —"= H'(X,.Q) —— H'(X,,Q) —— H'(X,,Q).

So
H'(Xy,Q) ~ ker{N:H'(X,,Q) = H'(X,,,Q)} = W\H'(X,,,Q),

and
WoH'(Xo,Q) ~ WoH'(X,,,Q).

In the notation of Figure 6.1, this implies a = r = h*(|T'(X()|) and b= g — r.

Degenerations of curves

If we further assume that d = 1, so that X" is a family of curves, then XéQ) is the set
of double points Py, = X} N X, and we have (§5.3.2)

GtV H'(X,,,Q) ~ GtV H'(X,,Q) ~ H' (X", Q).

Let g = h'Y(X,,) denote the genus of the smooth fibres. Fix generators {as, b1, ..., ay, By}
of Hy(X,Z) satistying o; - o = 0 = f3; - §; and «; - f; = 1. Suppose that as t — 0

some of the cycles a; collapse to nodes (as in Figure 6.2). Passing to the semistable
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Figure 6.2: Degeneration of curves
Xy

lo\lgunwﬂs oo

wwe wi 2 wides

l Sawi-chool
Yedut ™ v

reduction replaces those nodes with P"s. Then r + Y g; = g, where g; = h'0(X7) is

the genus of Xg and r is the number of nodes (the number of vanishing cycles «;).

Note that N = 0 if and only if the dual graph has no cycles.

6.2.2 Degenerations of surfaces

Deligne’s mixed Hodge structure

If d = 2 (the fibres X; are surfaces), then XSQ) is the disjoint union of the double
curves Cjj, = XiN X7, and XS is the union of the triple points Py = XN X3 NXE.
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Deligne’s weight filtration Wy, C Wy C Wy = H?(Xy, Q) has graded quotients (§5.3.4)

WoH?(X0,Q) = H*(JT(Xo)|)
. 1 .
CrlVH*(Xy,Z) = - By H(Cin) (6.2.11)
im{d; : &; H{(X}) — ®j<r H'(Cj)}

Cry H*(Xo,Z) = ker{d, : ®; H*(X}) = ®j<rH*(Cji)} -

In the notation of Figure 6.3

a = M(T(Xo)]),
d—a < > WM(X]).

Figure 6.3: Hodge diamonds for H?

Deligne MHS W (XD Schudd MHS H™Xy,)

A MR
1t C ‘ /“l ! ‘\0/N re
| 1.\-9 e d-Q0 | \b"b/ﬂ.d N b
4 @ & > @ C/ @ >
IN b C * b ¢

Schmid’s mixed Hodge structure

In degree two, the nilpotent logarithm of monodromy N : H*(X;,, Q) — H*(X;,,Q)
satisfies N® = 0 (Theorem 6.2.4), and the Schmid’s weight filtration W = W (N)[—1]
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is

WoH?*(X,,,Q) = imN?
WiH?*(X,,,Q) = (imN) N (ker N)
WoH?*(X,,,Q) = (imN) + (ker N)
WsH?*(X;,,Q) = ker N?

W, H?(X,,,Q) = H*(X;,,Q).

Implications of the Clemens—Schmid exact sequence

The Clemens—Schmid exact sequence yields

0-% H2(X) 5 HA(X,) Y H2(X,) D Hy(X) 0,

so that
H*(Xy,Q) ~ ker {N:H*X,,,Q) = H*(X,,,Q)}.

In the notation of Figure 6.3

a+b+c = h*(Xy,),
2b+d = hb(X,,),

and

D ORMCR) = D ORMXE) < b < D T RY(Cu).

j<k j<k
6.3 Degeneration of K3 surfaces

Smooth K3 surfaces S are characterized by Kg = Og and ¢(S) = 0 (§A.2.8). By
Exercise A.2.3, the Hodge numbers of H?(S) are h = (1,20, 1). This allows for only
three possible types of Schmid MHS (W, F, N) on H3(X;,,Q); these types are indexed
by their Hodge diamonds in Figure 6.4. Each of these three types can be realized

geometrically by a semistable degeneration.
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Figure 6.4: Hodge diamond of Schmid’s MHS on H?(K3) by Kulikov type

° 29 \ 13 10
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6.3.1 Eg. geometric realization of Type I degeneration

Any smooth hypersurface X C P? of degree four is K3 surface. A popular example is

give the Fermat quartic, which is cut out by
F = ay+a]+a5+ 13,

For a generic choice of degree four homogeneous polynomials Py, P; € Clzo, x1, T2, T3],
the hypersurfaces { P; = 0} will be smooth, and dP; and d P, will be point-wise linearly
independent along { Py, P, = 0}. Then the family

X = {Py+tP,=0} C PPxA

is a semistable degeneration that geometrically realizes Schmid’s Type I MHS (via

the Clemens—Schmid exact sequence).

6.3.2 Eg. geometric realization of Type II degeneration

For a generic choice of homogeneous polynomials @1, Qs, P € Clzg, x1, 22, 23] of de-
grees deg(@); = 2 and deg P = 4, the hypersurfaces {Q); = 0} and {P = 0} are
smooth, and the differentials d P, dQ),,d(Q), are point-wise linearly independent along
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{Q1,Q2, P = 0}. The family
X = {tP+Qi@Q:=0} C P’xA

has the properties that X] is smooth for all ¢ # 0, and X = {Q1Q2 = 0} = X{; U
X(y is simple normal crossing. The double curve C1, = X N X{, is an elliptic
curve (Example A.3.14). However this is not a semistable degeneration because X’
is not smooth; there are 16 isolated singularities along the central fibre Sing X’ =
{t, P,Q1,Q> =0} C X,

Let 7 : Y — IP3 x A be the blow-up of P? x A at each of the 16 points in Sing X”.

Lemma 6.3.1. The strict transform

dfn

X T (AN\Sng A7) C Y

dfn

Ty + X = X
over a singular point s € Sing X’ is a smooth quadric surface X,. The central fibre

of X — A is a simple normal crossing Xo = p~1(X]) = Xo1 U Xoa U (U, Xy), with

X' is smooth, and a semistable degeneration. The fibre of p

Xoj = p~1(X(,;\Sing &”) smooth quadric surfaces. The double curves are the elliptic
Ci2 = Xo1 N Xo2, and Xo; N X, ~ P!'. We have
Wol?*(Xo,Q) = H*(IT(Xo)]) = 0
GrlH*(Xo,Z) = H'(C)
Gry H*(Xo,Z) = ker {di: @; H*(X}) — H*(Ci)} .
Remark 6.3.2. The Hodge numbers of the smooth quadric hypersurfaces X,; C P?
are h?(X3) = (0,2,0), by either the Kiinneth formula (every smooth quadric surface

in P? is isomorphic to the Segre embedding P* x P! — P3), or Griffiths’ Jacobian ring
computation (Remark 5.4.48).

Proof. Fix a point s € Sing X”, and choose U, = {z, # 0} C P3 so that s € U, x A.
Define p,q; : U, — C by

g Ta! Ta’ Ta

. . . _dfn_ To T1 T2 Z3
q]'(l’(] Y 1 TR 1, T .133) Qj (E, E’ Z’ E .

dfn
p(o:xy @ a9 T3) P(”“—Oﬂ“”—?ﬂ)
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The condition that the differentials d P, dQ), dQ), are point-wise linearly independent
along {Q1,Q2, P = 0} imply that (p, 1, q2,t) : U — C* are local coordinates on some
neighborhood s € U C P? x A. In this coordinate neighborhood the blow-up 7=*(U)
is the closure of the graph of U\{0} el 3 iy U7 x PP, The blow-up 7~ }(U) is

covered by four coordinate charts:

o (t,21,29,23) v ((tz1,t20,t23,1); (21: 20 : 23: 1)) € 1 (U). The exceptional di-
visor is cut out by ¢ = 0, and X is cut out by z; + 25 z3 = 0 (which is clearly

smooth).

The map f : X — Ais locally given by f = t, so that X is locally cut out by
{t, z1 4+ 22 23 = 0}. The equation z; + z5 23 = 0 defines a (a Zariski open subset
of) a Segre embedding X, = {P! x P! — P3}.

o (q2,21, 22, 23) = ((q221, @229, @2, q223) ; (21 : 29 : 1 : 23)) € m1(U). The exceptional
divisor is cut out by ¢ = 0, and X is cut out by 23 + z3 23 = 0 (which is clearly

smooth).

The map f : X — Ais locally given by f = g223, so that X is locally cut out
by {q223, 22 + 2321 = 0}. If go = 0, then we get (a Zariski open subset of) the
Segre embedding X, = {P! x P! — P3}. If 23 = 0, then 25 = 0 gives us (a Zariski
open subset of) X¢ ~ X, = {@1 = 0}. These two surfaces intersect along (a
Zariski open subset of) X, N X, = P! C P3.

o (q1,21,22,23) = ((q121,q1, 122, 123) ; (21 : 1: 291 2z3)) € 71 (U). The exceptional
divisor is cut out by ¢; = 0, and X is cut out by 23 + 23 21 = 0 (which is clearly

smooth).

The map f: X — A is locally given by f = ¢;23, so that X is locally cut out
by {q123, 20 + 2321 = 0}. If ¢ = 0, then we get (a Zariski open subset of) the
Segre embedding X, = {P! x P! < P3}. If 23 = 0, then 25 = 0 gives us (a Zariski
open subset of) Xop2 ~ X, = {Q2 = 0}. These two surfaces intersect along (a
Zariski open subset of) X, N X, = P! C P2,

114



o (p,21,22,23) = ((p,pz1,p29,p23); (1:21:29:23)) € m 1(U). The exceptional
divisor is cut out by p = 0, and X is cut out by 23 + 21 22 = 0 (which is clearly
smooth).

The map f: X — A is locally given by f = pz3, so that X is locally cut out
by {pzs, z3 + z122 = 0}. If p = 0, then we get (a Zariski open subset of) the
Segre embedding P! x P! < P3. If 23 = 0, then z; zp = 0 gives us (a Zariski open
subset of) Xo;1 U Xo2 ~ X, U X{, = {Q1 Q2 = 0}. These two surfaces intersect
(in a Zariski open subset of) X, N (Xo; U Xgg) =~ P' UP!

6.3.3 Eg. geometric realization of Type III degeneration
The family
X' = {momimazs + t(zg+ 2] +a3+13) =0} C PP x A

has the properties that X/ is smooth for all ¢ # 0, and X = U3_, X is the “tetrahe-
dron” formed by the coordinate planes Xj; = {x; = 0} (and simple normal crossing).
However this is not a semistable degeneration because X’ is not smooth; the singular

locus

SingX' = {(1:@:0:0), (1:0:a:0), (1:0:0: )
(0:1::0), (0:1:0:a), (0:0:1:0a) st.a*=-1} C X

consists of 24 points on the central fibre (Figure 6.5).
Let 7 : Y — IP3 x A be the blow-up of P? x A at each of the 24 points in Sing X”.

Lemma 6.3.3. The strict transform

X dfn

71 (X"\Sing X’) C Y

of X' is smooth, and a semistable degeneration. The fibre of p i Ta: X = X

over a singular point s is a smooth quadric surface X,. The central fibre of X —
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Figure 6.5: Sing X’

A is a simple normal crossing Xo = p~H(X}) = (UoXoj) U (U, X,). The X{ =
p—l(X(’)j\Sing X'") are rational surfaces. The double curves are the Cjr, = Xo; N Xop
P! and Cjs = Xo; N X, ~ Pt We have

WoH*(X0,Q) = H*(N(Xo)|) = Q,
GrlVH*(X,,Z) = 0
GtV H(Xo,Z) = ker {dl:HQ(Xél))zQ52—>H2(X[§2)):QM} ~ QY.

Proof. Fix a singular point s = (1 : a:0:0) € X{. Let Uy = {zg # 0} C P3 be
an affine coordinate chart, and define (vi,ve,v3) : Uy — C? by v = x—%(mg + ] +
T3+ x3), vy = Ty/x0 and vz = x3/xy. Then the differentials dv, dvs, dvs are linearly
independent at s. It follows that (vy,vq,vs3,t) are local coordinates (centered at s)
on some neighborhood s € U C P3 x A. Let &(vy,vq,v3) be the local coordinate
expression for the function z1/x¢. Then X' is locally cut out by {tv; + vevs = 0}.
Note that £(0,0,0) = « at s, so we may assume that £ is nowhere zero on U.

Over the coordinate neighborhood the blow-up 7! (U) is the closure of the graph
of U\[0} (v1:v2:v3:t

charts:

L P% in U x P3. The blow-up 7~ Y(U) is covered by four coordinate

o (t,21,22,23) = ((tz1,tz0,t23,t); (21 : 29 : 23 : 1)) € m1(U). The exceptional divi-
sor is cut out by ¢t = 0, and & is cut out by 2y + £(tz1, t22,t23) 22 23 = 0 (which is

clearly smooth).
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The map f: X — A is locally given by f = t, so that Xj is locally cut out
by {t, z1 + a2 z3 = 0}. The equation z; + « 23 z3 = 0 defines a (a Zariski open
subset of) a Segre embedding X, = {P* x P! — P3}.

(vs, 21, 22, 23) — ((v321,v322,03,v323); (21 :22:1:23)) € 7 Y(U). The excep-
tional divisor is cut out by v3 = 0, and X is cut out by 23 21+&(v321, U322, v3) 20 = 0

(which is smooth since £ is nowhere zero).

The map f : X — A is locally given by f = w323, so that X is locally
cut out by {wvszs, 2321 + £(v321,v320,v3) 20 = 0}. If v3 = 0, then the equation
2321 + azy = 0 defines (a Zariski open subset of) the Segre embedding X, =
{P! x P! — P3}. If 23 = 0, then 2, = 0 gives us (a Zariski open subset of)
Xo2 ~ X}y = {z2 = 0} C P2. These two surfaces intersect in (a Zariski open
subset of) Cy, = P! C P3.

(va, 21, 22, 23) > ((vo21, V2, Va29,923); (21 : 1: 291 23)) € m 1(U). The excep-
tional divisor is cut out by v = 0, and X is cut out by 23 21 +&(vez1, V2, v222) 20 = 0

(which is smooth since £ is nowhere zero).

The map f : X — A is locally given by f = w23, so that Xy is locally
cut out by {wvazs, 2321 + £(vaz1,ve,v222) 20 = 0}. If vg = 0, then the equation
2321 + azg = 0 defines (a Zariski open subset of) the Segre embedding X, =
{P* x P! — P3}. If z3 = 0, then 25 = 0 gives us (a Zariski open subset of)
Xos >~ X{3 = {x3 = 0}. These two surfaces intersect in (a Zariski open subset of)
Css =P C P3
(v1, 21, 22, 23) — ((v1,v121,v129,0123) 5 (1221 : 291 23)) € w 1(U). The excep-
tional divisor is cut out by v; = 0, and X is cut out by z3+&(vy, v121, v122) 21 20 = 0
(which is clearly smooth).

The map f : X — A is locally given by f = wvy23, so that X is locally
cut out by {wvyzs3, z3 + &(v1,v121,v129) 21 20 = 0}. If v; = 0, then the equation
23+ az1 2z = 0 cuts out (a Zariski open subset of) the Segre embedding X =
{P! x P! — P3}. If 23 = 0, then 2129 = 0 gives us (a Zariski open subset of)
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Xo2 U Xos ~ Xy U X(3 = {xox3 = 0}. These two surfaces intersect in (a Zariski
open subset of) Cy, U O3, = PLUPL

A similar analysis applies to the other singular points. O

6.3.4 Kulikov degenerations

Each of the three types of Schmid MHS may be geometrically realized by a semistable

degeneration of a particularly nice form:

Theorem 6.3.4 (Kulikov [Kul77a|, Persson-Pinkham [PP81]). A semistable degen-
eration of K3 surfaces is birational to one for which the central fibre Xy is one of the
three types.

Type I: Xy is a smooth K3 surface.

Type II: Xo = XU X3 U--- U XEY Each X¢ meets only X', Each double
curve C, = X¢ N Xt ds an elliptic curve. The “tails” X and X5 are rational
surfaces. The X§, with1 < a <k, are ruled; and both Xgil are sections of the ruling.

Type III: all components Xg of Xo are rational surfaces; X{N (Ujz Xg) is a cycle

of rational curves, and |T'(X,)| = S%.

Remark 6.3.5. The Type II example in §6.3.2 is not in Kulikov form: the central
fibre X, does not have the property that X§ meets only X¢*'. And some of the
double curves are rational (not elliptic).

Similarly the Type III example in §6.3.3 is not in Kulikov form: the central fibre
does not have the property that Xj N (U; X3) is a cycle; nor is |T'(X,)| = S2.
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Chapter 7
Horikawa surfaces of general type

Recommended references: [BHPVAV04, Hor78, Hor79]. This chapter is adapted from
the notes [GGLR17].

7.1 I-surfaces

Definition 7.1.1. An I-surface is a smooth, regular minimal surface X of general
type such that K% = 1 and p,(X) = 2. Cf. [BHPVdAV04, Chapter VII].

Exercise 7.1.2. (a) Use Noether’s formula (§A.2.1) to show that hl!'(X) = 29.

(b) Since 2 = py(X) = h*%(X) = dim H°(X, Kx), we see that |Kx| = P H°(X, Kx) ~
P! is a pencil. Use the genus formula (§A.2.5) to show that p,(X) = 2 for every
Ce |KX|

7.1.1 Projective realization

Fix projective coordinates (xq : x1 : z3 : z3) € P3. Let

QO = {.1701'2:1‘%} - ]P)g

119



be quadric with singular point
p=(0:0:0:1) € Qo.

Proposition 7.1.3 ([GGLR17]). A general I-surface is realized via the bi-canonical
map gorc, : X — PHY(X,2Kx)" =P3 as a 2:1 covering of Qo branched over p and
VN Qo where V € |Ops(5)| is a general quintic surface not passing through p.

Proof. Given C' # C" € |[Kx| we have C'-C" = K% = 1. So any two distinct canonical
divisors intersect at a unique point with multiplicity one. This point is the base locus
of the linear system. Bertini’s theorem (§A.3.4) asserts that a general C' € |Kx]| is
smooth away from the base locus. Since X is general, we may assume that C' is
smooth. The genus formula (§A.2.5) implies g(C) = 2.

Fix a basis {to,t;} € H°(X, Kx) with C = {t; = 0}. Since P, = 4 (Exercise
A.2.5), we see that there exists u € H°(X,2Ky) that completes {t2,tt1,t3} to a
basis. The adjunction formula (§A.3.6) implies K¢ = 2K x|c. The SES

0—>KXt—O>2KX%Kc%O
induces a LES
0 — HO(X,KX) — HO(X,2KX) — HO(C,KC) — Hl(X,KX) = Hz’l(X) =0,

where the vanishing of the last term is due to h*!(X) = ¢(X) = 0. It follows that the
restrictions of 2, u to C give a basis of H°(C, K¢). This in turn implies that [2K x|
is base-point free. Using the basis {t2,tot1,t3,u} C H°(X,2Kx) as homogeneous

coordinates on P H%(X,2K )", the bi-canonical map is
VoK« X = QQ C]P)g.

Since to(p) = ti(p) = 0, it follows that u(p) # 0. So ¢k, : C — P! is given by
t?/u near p. Tt follows that ¢r. = @ax,|c is a 2:1 covering of one of the rulings
P! C Qo that is branched at p. The Riemann-Hurwitz formula (§A.1.4) implies that
¢k, is branched over an additional 5 points in the ruling PL. It follows that Ky 18

branched over p + V', where V' € |Qo(5)| does not pass through p (Figure 7.1). O]
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Figure 7.1: Bi-canonical realization of general /-surface

Proposition 7.1.4 ([GGLR17]). A general I-surface is realized via the 5-canonical

map psiy 1 X — PN as a hypersurface
22 = F(to,t,u) v + Fig(to, t1, u)

in P(1,1,2,5) with homogeneous coordinates (ty : t1 : u : v) and Fy a weighted

homogeneous polynomial of degree k.

Proof. We have seen that H°(X,2Kx) has dimension 4, and that a basis is given
by the weighted degree 2 monomials in tg, t, u, where %, t; have weight 1 and u has
weight 2.

By Exercise A.2.5, Py = dim H°(X,3Ky) = 6. We see that a basis is given by
the weighted degree 3 monomials in %y, ¢, u.

Likewise Py = dim H°(X,4Kx) = 9. A basis is given by the weighted degree 4
monomials in tg, 1, u.

Next P = dim H°(X,5Kx) = 13. The weighted degree 5 monomials in tg, ¢, u
span a codimension 1 subspace. So there exists a weighted degree five v € H(X,5Ky)

completing the monomials to a basis.

Exercise 7.1.5. Let Rx = ®,,50H°(X, mKx) denote the pluri-canonical ring. We
have Cltg, t1,u] @ vClto,t1,u] C Rx. Show that equality holds. [Hint. Both rings

are graded. Show that the dimension agree (and are finite) in each graded degree.|
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It follows that for Rx there is a generating relation v? = Fj(to, t1,u) v + Fio(to, t1,u).

Exercise 7.1.6. Show that @5k, contracts an irreducible curve £ C X to a point if
and only if E is a (—2)-curve (§A.2.6). [Hint. §A.2.5.]

A priori the five-canonical map @5k, could contract some (—2) curves. Nonetheless,
Y = o5k, (X) C P(1,1,2,5) is an I-surface: Remark 5.4.49 yields Hodge numbers
h2,.(Y) = (2,28,2). And the Lefschetz hyperplane theorem implies that Y is regular.

[

Corollary 7.1.7. Since X = Proj Rx it follows that ¢sr, (X) C P(1,1,2,3) is a

smooth surface isomorphic to X.

Remark 7.1.8. The two realizations of X given in Propositions 7.1.3 and 7.1.4 are

related as follows: Begin with the second
X ~ {'U2 = ’UF5(t0,t1,U) + Flo(to,tl,’d)} C P(l, 1, 2, 5) .

Define a rational map P(1,1,2,5) --» P(1,1,2) by (to : t1 : u:v) — (to : t1 : u). Let
p: X — P(1,1,2) denote the restriction of this map to X. The quadratic formula
implies that p is branched over {Fj(to,t1,u)*> — 4Fo(to,t1,u) = 0} C P(1,1,2), a
curve of genus 16 (Remark 5.4.49). The second veronese map vy : P(1,1,2) — P3,
sending (to : t1 : u) — (82 : toty : 2 : w), identifies P(1,1,2) with the singular
quadric Qp = {xors = 22} C P3. And there exists a unique homogeneous polynomial
G € Clxg, x1, T2, 3] of degree five so that F? — 4Fyg = p*(G); that is, F5(to,t1,u)* —
4Fyo(to, t1,u) = G(t3, tot1, 13, ).

7.1.2 Moduli

The automorphism group G = AutP(1,1,2,5) naturally acts on the locus U C
P Clto, t1,u, v]19 of quasi-smooth hypersurfaces of weighted degree 10. The stabilizer
of X € U in G is finite:
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Theorem 7.1.9 ([Bun2l1|). The automorphism group of weight projective space P(ay, . .

acts on a quasi-smooth hypersurface of weighted degree > max{aq, ..., an41} + 2 with

finite stabilizer.

It follows from [KMO97] that the algebraic stack [//G] admits a coarse moduli space

M as an algebraic space.

Proposition 7.1.10 ([GGLR17]). The coarse moduli space M of I-surfaces is of

dimension 28.

Proof. The space of weighted degree 10 polynomials in C[tg, ¢, u,v] is spanned by
{02, vulPy(to, 1), vuPs(to, t1), vPs(to,t1), u®, uPa(to,t1), udPy(to,t1), u?Ps(to,t1),
uPs(to, t1), Pio(to,t1)}, where the P, € Clto,t;] are homogeneous polynomials of
degree k. In particular, dim C[tg, 1, u, v]10 = 49.

Any automorphism ¢ € G of P(1,1,2,5) = ProjClty, t1,u,v] is determined by
the induced ¢* : Clto, t1,u,v] — Cl[to, t1,u,v]. The automorphisms of P(1,1,2,5) are

given by
to — Pl(t(],tl)
ti = Qilto, 1)
U — au-+ Ug(to,tl)
v = bv+u2V1(t0,t1)+uV3(t0,t1) +V:5(t0,t1>

with Py, Qq,Uq, Vg € Clto, t1]a, dPL AdQ; # 0 and 0 # a,b € C. In particular,
dim Aut P(1, 1,2, 5) = 21. O

Remark 7.1.11. According to [Bun2l], M will be quasi-projective if P(1,1,2,5)

satisfies “condition (€)”. Unfortunately, condition (&) appears to fail for P(1,1,2,5).
_ ZSS,LG

In the notation of that paper, Z;, > % is point (0:---:0:1) corresponding to
the hypersurface z? = 0 (Lemma 5.5 loc.cit). The stabilizer of Z, in the unipotent
radical Ug of G is not trivial: We have G = Lg X Ug, with Ug = {P; = tg,Q1 =

t1,a,b = 1} the unipotent radical of G, and Lg = {Us,Vy; = 0} a reductive Levi
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factor. The stabilizer of Z;, in Ug is the nontrivial {V; = 0} C Ug. (See Remark

5.19 for discussion of possible approach when condition (€) fails.)

7.1.3 Local Torelli

The primitive Hodge numbers are h2; (X) = (2,28,2). The associated period do-
main D has dimension 57, and the infinitesimal period relation is a contact system

on D.

Proposition 7.1.12 ([GGLR17]). The period map ® : M — T'\D satisfies the local
Torelli property. In particular, the period map is a maximal integral manifold of the
IPR.

Proof. Very similar to the arguments of §4.4.

Let P = P(ayg,...,a,+1) be a weighted projective space as in Remark 5.4.49.
One must show that R? X R}”(Q) — R;ifw@) is non-degenerate. For a quasi-smooth
hypersurface {f = 0} of weighted degree d = 10, we have w(2) = 1 and it is a
calculation to verify that R} x Ry — R} is nondegenerate. O

Remark 7.1.13. There is also a generic global Torelli result for these surfaces [PZ19].

7.1.4 Degenerations of I-surfaces

There are six types of Schmid PMHS associated to the period domain (Figure 7.2.
Each of those types may be realized (via the Clemens—Schmid exact sequence) by
a degeneration of I-surfaces [CFPR22]. Moreover, the various polarized relations
[KPR19] between the PMHS may also be realized geometrically (loc. cit.). These
geometric realizations may all be given by double covers of )g branched over Q NV,
where V' € |Ops(5)| is a union of hyperplanes [CFPR22].

Here we will consider degenerations not coming from hyperplane arrangements.
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Figure 7.2: Hodge diamonds of Schmid’s PMHS

(V) o(V) (V)
2 1 1 1 1
o o
28 1 1 28
2 1 1 It 1
oV) o(V)
2 2
L J
2 2 1 o3
2 1 1 2
° °
Example

Given s € A, let
Fi(to, t1,u,v) = 02 +s(u’ +1° +t°) + (u+ 7 +t3) (u* + 15 +15) € Clto, t1,u,v]10,
and consider the family

X' = {F,=0} C P(1,1,2,5) x A.

Notice that the central fibre

Xo = {Fo=0}
does not pass through either of the singular points of P(1,1,2,5). Shrining A if
necessary, we may assume that none of the fibres X’ pass through the two singular
points of P(1,1,2,5).

[To be continued. . . |
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7.2 H-surfaces
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Appendix A

Some results from complex

algebraic geometry

A.1 Curves

There is an overwhelming volume of literature on algebraic curves. Expository ac-

counts, from a variety of perspectives, include: [Cle03, Gri89, Mir95].

Terminology

All “curves” are algebraic curves over C. In particular, they have dim¢ = 1 and
dimg = 2. A smooth curve is a Riemann surface; and a morphism of smooth curves

is a holomorphic map of Riemann surfaces.

A.1.1 Genus

The geometric genus p,(C) of a curve C' is the topological genus of C' viewed as a
surface of of real dimension two: the number of handles or donut holes. The arithmetic

genus is po(C) = 1—x(O¢). When the curve is smooth, the geometric and arithmetic
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genus agree and are denoted ¢g(C'). In this case
g(C) = W(C) = dim H(C, K¢).

Here K¢ = Tp is the canonical line bundle.

If C' is not smooth, the geometric genus p,(C) is the genus g(C’) of the nor-
malization C! — C. If the curve is singular, with only ordinary singularities, then
Pg(C) < pa(C). More precisely, an ordinary singularity of multiplicity r decreases the
genus by 2r(r — 1).

A.1.2 Degree—genus formula

If C' C P?is a curve of degree d, then the arithmetic genus of C'is p, = 3(d—1)(d—2).
See Example 2.2.18.

A.1.3 Bezout’s Theorem

Suppose that C1,Cy C P? are curves with no common component. Then C; - Cy =
pp

(deg C1) - (deg Cs).

Remark A.1.1. Bezout’s theorem holds for curves defined over any algebraically

closed field, and generalizes to hypersurfaces Xi,..., X, C P™.

Exercise A.1.2. Let f : C — (' be a morphism of smooth curves. Fix p € C,
and show that there exist local coordinates on C' and C’, centered at p and f(p),

respectively, so that f(z) = 2".

Definition A.1.3. The integer n in HW A.1.2 is the ramification index r, of f at p.
The map f is ramified at p if r, > 2.
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A.1.4 Riemann—Hurwitz formula

Let f: C — C' be a morphism of smooth curves. Then

X(C) = (deg f)x(C") = Y (rp—1).

peC

A.1.5 Hyperelliptic curves

Hyperelliptic curves are characterized by the existence of a degree two morphism
C — P'. (The field of functions is a quadratic extension of the field of rational
functions.) They may be realized as hypersurfaces C = {z = f(x,y)} C P(1,1,d) in
weighted projective space. Here f(z,y) is a homogenous polynomial of degree d with

the property that {f(z,y) = 0} C P? consists of d distinct solutions.

Exercise A.1.4. Show that d = 2¢(C) + 2. [Hint. Riemann-Hurwitz formula
(§A.1.4.)

Exercise A.1.5. Show that a curve C of genus g > 1 is hyperelliptic if and only if
C admits a base point free (§A.3.4) line bundle L with h°(C, L) = 2.

Exercise A.1.6. Let L be the line bundle of HW A.1.5, and recall the notations of
§A34 NOte that ¢L®(g71) = ¢OIP’1 (gfl) O ¢L

¢O]pl (971)> ]PJQ—l .

c % ,p

(a) Show that L®U~Y) has degree 2g — 2.

(b) Show that the pullback H°(P9~!, O(1)) — H°(C, L#¥~1) is injective. Conclude
that hO(C, L®W=D) > g.

(¢) Show that h°(C, L®¥~Y) = g. Deduce that L®U~Y) = K. [Hint. Riemann-—
Roch (§A.1.6).]

(d) Conclude that  : ¢, : C — P91 is 2:1 onto the image x(C') ~ P
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A.1.6 Riemann—Roch for line bundles

Let C be a smooth curve equipped with a line bundle L.

Exercise A.1.7. Suppose that C' # P!. Suppose that degL = 1. Show that
RY(C,L) < 2. [Hint. If h°(C,L) > 2, then C' admits a degree one meromorphic

function.]

The Riemann—Roch formula is
RO(C, L) — h(C,L'® K¢g) = degL + 1 — ¢(C).
The Riemann—Roch inequality is h°(C, L) > deg L + 1 — g.
Example A.1.8. (a) Taking L = O yields h°(C, K¢) = g(C).
(b) Taking L = K¢ yields deg K¢ = 2¢g(C) — 2.
Exercise A.1.9. Show that any line bundle of degree zero is trivial.

Exercise A.1.10. Compute the plurigenera P, = dimc H°(C, Kg").

Exercise A.1.11. Suppose that deg L > 2¢(C) — 2. Prove that h°(C, L) = deg L +
1—g(C).

A.1.7 Riemann—Roch for divisors

Given a divisor D on a smooth curves C, let £(D) = dim H°(C, [D]) be the dimension
of the vector space of meromorphic functions f on C so that (f) + D > 0 (cf. HW
1.3.16(c)). Then

(D) — U(Kec—D) = degD + 1 — g.

The Riemann—Roch inequality is ¢(D) > deg D + 1 — g.

Exercise A.1.12 (Kodaira embedding for curves). Let D be an effective divisor
(§1.3) on C. With the terminology and notations of §A.3.4:
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(a) Show that ¢(D) — ¢(D — p) € {0,1}. [Hint. Let L = [D] and consider the SES
0— L(—p) = L — L, — 0]

(b) Show that the complete linear system |D| is base point free if (D —p) = ¢(D)—1
for all p € C.

(¢) Show that the map ¢yp| : C — P HY(C, [D])" is a closed embedding if £(D — p —
q) = (D) —2 for all p,q € C (including p = ¢). Equivalently, the line bundle
[D] is very ample.

A.2 Surfaces

Recommended reference: [BHPVdAV04, Bea96].

Terminology

All “surfaces” are algebraic surfaces over C. In particular, they have dim¢c = 2 and

dimR =4,

A.2.1 Noether’s formula

The holomorphic Fuler characteristic of a smooth projective surface S is
XS(OS) =1- ho’l(S) -+ h0’2(S).
The topological Fuler characteristic is

e(S) = (S) = 2 — 20,(S) + bs(S)
= 2 — ARMO(S) + 2h20(S) + KVI(S).

The canonical bundle of S is Kg = A*TY. The first Chern class satisfies ¢;(5)? =
Kg - Kg. These quantities are related by Noether’s formula

c1(S)? + ca(S) Ks - Ks+ ¢e(9) ‘

xs(Os) = B = B
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A.2.2 Irregularity

The irregularity q(S) = h'9(S) of S is the dimension of the Albanese variety (§2.4.1).
The surface is regular if ¢(S) = 0.

A.2.3 Genus

The geometric genus is p,(S) = h*°. The arithmetic genus is p,(S) = py(S) —q(S) =
h2’0 _ hl,O'

A.2.4 Riemann—Roch for surfaces
The holomorphic FEuler characteristic of a divisor D on S is
xs(D) = dim H(S,O(D)) — dim H'(S,0(D)) + dim H*(S,O(D))
= h%°(S,D) — ' (S,D) + n°*(S,D).
If D is a divisor on a smooth projective surface S, then

xs(D) = xs(Os) + 3D (D — Kg).

A.2.5 Genus formula

Assume S is smooth, and C' C S is reduced and irreducible. Then 2p,(C) — 2 =
C-C+ Kg-C. In the smooth case, this can be deduced from the adjunction formula
(§A.3.6) and the Riemann—Roch formula (§A.1.6). Alternatively, see §2.2.2.

A.2.6 Exceptional curves

Given a nonsingular surface X, we say a compact, reduced, connected curve C' C X
is exceptional if there is a birational map m : X — Y that contracts C' to a points
y € Y and there exist neighborhoods C C U C X and y C V C Y so that 7 restricts
to an isomorphism U\C' — V\{y}.
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Grauert’s criterion

A reduced, compact connected curve C' with irreducible components C; on a smooth

surface is exceptional if and only if the intersection matrix (C;-C}) is negative definite.

Exercise A.2.1. A (—1)-curve is a nonsingular rational curve with self-intersection
—1. Show that an irreducible curve C' C X is a (—1) curve if and only if C* < 0 and
Kx - C <0.

A (=2)-curve is a nonsingular rational curve with self-intersection C? = —2.

A.2.7 Minimal models and Castelnuovo’s Theorem

Every irreducible projective curve C'is birational to a unique smooth projective curve
C’, the minimal model. In this sense, the theory of minimal models is trivial for curves.

A smooth surface S is minimal if every birational morphism S — S” of smooth
surfaces is necessarily an isomorphism. For example, a blowup Bl,S is never minimal.

Castelnuovo’s theorem describes the process of constructing a minimal model of .S.
A (-1)-curve on S is a smooth rational curve C with C'-C' = —1. (Eg. the exceptional
curve of a blowup S = BL,(S5").) Castelnuovo’s theorem asserts that every nontrivial
birational morphism S — S’ must contract a (—1)-curve; and conversely every such
curve can be smooth contracted: there exists a smooth surface S’ and a birational

morphism S — S’ that contracts C' to a point and is an isomorphism away from C'.

A.2.8 Enriques classification

The plurigenera P, = dim H°(S, K%) are birational invariants. The Kodaira dimen-

sion k(S) is —oo if P, = 0 for all n; otherwise, x(5) is the smallest number so that
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P,/n" is bounded for all n. Enriques showed that

K=—00 <= P;,=0,
k=0 <= Pyp=1,
k=1 <= Po>1 and K -K=0,
k=2 <= Po>1 and K-K >0.

Up to birational equivalence, every smooth algebraic surface over a field of charac-
teristic zero is of one of the following types: ruled surface (which includes rational

surfaces), abelian variety, K3 surface, elliptic surface, surface of general type.

Rational surfaces

A rational surface S is any surface birationally equivalent to P?. Examples include
P! x P! and Hirzebruch surfaces ¥, = P(Op1 @ Op1(—7)).

Exercise A.2.2. (a) Show that ¥y ~ P! x PL.

b) Show that ¥ is isomorphic to the blow-up of P? at point.
(

The plurigenera P, (S) all vanish, and the fundamental group is trivial. Castelu-
ovo’s Rationality Criterion classifies rational surfaces as those with second plurigenera
Py(S) = 0 and irregularity ¢(S) = 0.

Every smooth rational surface may be realized by successively blowing-up a mini-
mal rational surface. The minimal rational surfaces are P? and the Hirzebruch surfaces
Y, with r = 0,2,3,4,.... The nonzero Hodge numbers of a smooth rational surface
are h*0(S) = h*? = 1, and h"'(S) = 1 4+ m. We have R (P?) = 1, hM(Z,) = 2,
and hb1(S) > 2 for all other smooth rational surfaces. The Picard group is the odd
unimodular lattice I, ,,; expect in the case of the Hirzebruch surfaces Xs,,, where it is

the even unimodular lattice II; ;.
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Ruled surface

A ruled surface of genus ¢ is any smooth surface that is birationally equivalent to
P! x C, with C' a smooth curve of genus g > 0. A geometrically ruled surface of genus
g is morphism 7 : S — C with fibres 77!(z). Every geometrically ruled surface is of
the form S = P¢(F) with £ — C a rank two vector bundle. (The geometrically ruled
surfaces of genus g = 0 are the Hirzebruch surfaces.) Moreover, S ~ S’ if and only if
E' = E®L for some line bundle L. Every geometrically ruled surface admits a section
(Noether-Enriques Theorem). These surfaces have Pic(S) = n*(C) & Z°, where o
is the class of some section; irregularity ¢(S) = ¢g(C'); Hodge numbers h*? = 0 and
h'! = 2: and plurigenera Py, = 0.

Any smooth minimal ruled surface is geometrically ruled. If S’ is a minimal ruled

surface, then:

(i) There exists a curve E such that £ - K¢ < 0.

(ii) For any divisor D on S’, there exists n, so that the linear system |D+nKg/| =0
for all n > n,.

Abelian variety

The surface S may be realized as a complex torus C?/A. These surfaces are charac-

terized pi1p = 1, p; = 1 and p, = —1.

K3 surface

These surfaces are characterized by Kg = Og and ¢(S) = 0.

Exercise A.2.3. (a) Use Riemann-Roch (§A.2.4) to show that p,(S) = 1 and
x(Os) = 2.

(b) Use Noether’s formula (§A.2.1) to show that the second Betti number is by(S) =
22, and Euler characteristic e(S) = 24.
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(c) Use the genus formula (§A.2.5) to show that the arithmetic genus of an irre-
ducible curve C' C S is p,(C) = 1+ 3C2.

Elliptic surface

The surface admits a morphism 7 : S — C', onto a smooth curve C', with the property
that the generic fibre of 7 is a smooth elliptic curve. The surfaces are characterized
by K% =0 and p12 > 2; or pi2 = 1 and p,(S) = 0.

The Euler characteristic satisfies e(S) = Y, .- e(n~!(2)). Elliptic surfaces admit
unique minimal models, characterized by the property that the fibre of 7 does not

contain any exceptional curve of arithmetic genus 1.

Surface of general type

These surfaces are characterized by K2 > 0 and pia > 2.

Theorem A.2.4 ([BHPVAV04]). Fiz 0,1 # m € Z. A surface of general type is
minimal if and only if H*(S,mKg) = 0.

Exercise A.2.5. Let S be a surface of general type.

(a) Use Kodaira-Serre duality (§A.3.12) to show that H?(S,mKx) = 0 for all m > 2.

(b) Assume S is a minimal surface of general type. Use Riemann—Roch (§A.2.4) and

Theorem A.2.4 to show that the plurigenera are P,, = x(5) + sm(m — 1)K2.

Suppose S is a minimal surface of general type. We have ¢(S) < p,(S). Moreover,
py(S) =2+ LKZ if K2 is even, and py(S) = 3(K2 + 3) if K3 is odd. The Bombieri-
Kodaira theorem asserts that the pluricanonical map @5 : S — PP =1 is a birational
morphism onto its image for all m > 5. We have Kg- D > 0 for every effective
divisor D. If C' C § is an irreducible curve, then Kg-C = 0 if and only if C' is a
(—2) curve. The number of (—2) curves on S is bounded above by p(S) — 1, where
p(S) = dim H"'(S)NH?(S,Z) is the Picard number. The intersection form is negative
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definite on the subspace of H?(S,Z) spanned by the (—2) curves. The pluricanonical
map @,k is injective and of maximal rank away from the (—2) curves as long as

m > 5. It follows from [Gra62] that the image is a normal variety.

A.3 Complex geometry

Recommended reference: [Aral2, GH94, Huy05, Voi07].
The purpose of this section is to collect some of the standard results in complex
geometry that we will utilize. In general, M will denote a complex manifold, and X

an algebraic variety. We will write X C P to indicate that X is projective algebraic.

A.3.1 Commutative algebra

Recommended reference: [GH94].

Unique factorization domain
An integral domain R is a unique factorization domain if every may be expressed as

a product of a unit with a finite number of irreducible elements.

Gauss’s Lemma

If Ris a UFD, then so is R[z].

Example A.3.1. The polynomial ring C[z, ..., z,] is a UFD.

Euclidean algorithm

If R is a unique factorization domain and u,v € R[t] are relatively prime, then there

exist relatively prime «, 5 € R[t] and v # 0 € R so that au + fv = 7.

137



Hilbert basis theorem

If R is a commutative noetherian ring, then so is R[z].
A commutative ring R is noetherian if every sequence Iy C Iy C I3 C --- stabi-

lizes: there exists m > 1 so that I,,, = I,, for all n > m.

Example A.3.2. Every field is noetherian ring. As a corollary of the Hilbert basis

theorem, we see that Clzy, ..., 2,] is noetherian.

Hilbert’s Nullstellensatz

If V=V(I), then {f e C| fly =0} = /1. Abbr. I(V(I)) = V1.

A.3.2 Weierstrass theorems

Recommended reference: [GH94, §0.1].

Definition A.3.3. Let O, denote the sheaf of analytic functions on C™, with respect
to the (usual) analytic topology. This topology has neighborhood basis given by
polydiscs

Ay, = {ze€Cst. |z —aj| <e}
of radius € > 0 centered at a € C". Let O,,, be the ring of germs of analytic functions

at a € C". That is, O, , consists of equivalence classes [f, U] of analytic functions

f : U — C defined on a neighborhood a € U C C", with f; ~ f5if fi = f5 on U;NUs.

Exercise A.3.4. The ideal m, , = {f € O,, | f(a) = 0} of germs vanishing at a is

the unique maximal ideal of O, ,.
Definition A.3.5. Let (z,w) € C" ' xC. A Weierstrass polynomial is a holomorphic
function of the form

d—1

p(z,w) = wh + ay(2) w4+ ag(2)

with a;(z) holomorphic functions defined in a neighborhood 0 € U c C" ! and

a;(0) = 0. We regard p(z,w) as an element of O,,_1 o[w].
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Weierstrass preparation theorem

Suppose that f(z,w) is holomorphic in a neighborhood of (0,0) € C*! x C, that
f(0,0) = 0, and that f(0,w) is not identically zero. Then in some neighborhood
of the origin, f can be uniquely factored as f(z,w) = g(z, w)p(z,w) with p(z,w) a
Weierstrass polynomial, and g(z,w) holomorphic and no-where vanishing in a neigh-
borhood of (0,0) € C*~! x C.

Exercise A.3.6. Use Gauss’s Lemma (§A.3.1) and the Weierstrass preparation the-

orem to show that O, is a unique factorization domain.

Exercise A.3.7. (a) Show that O is noetherian.

(b) Use the Hilbert basis and Weierstrass preparation theorems to deduce that O,,

is noetherian.

Exercise A.3.8. Use the Euclidean algorithm (§A.3.1) to show that if f, g are rela-
tively prime in O,,, then they are relatively prime in O, , for |z| < .
Weierstrass divison theorem

Given any Weierstrass polynomial p(z,w) of degree d and a holomorphic function
f € 0,0, we can write f(z,w) = g(z,w)p(z,w) + r(z,w) with r(z,w) € O,_19[w] a
polynomial of degree < d — 1.

Exercise A.3.9. Use the Euclidean algorithm and the Weierstrass theorems to prove
the Weak Nullstellensatz: if f € m,, is irreducible, and h € O,, ¢ vanishes on the set
{f =0}, then f divides h.

A.3.3 Positivity of transverse intersections

The intersection number of two analytic varieties meeting transversely is always pos-

itive (> 1), cf. [GH94, §0.4]. In fact something stronger is true: if M is a compact,
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complex manifold, and A, B C M are analytic subvarieties such that dim A4+dim B =
dim M, and AN B # () is a finite set of points, then A- B > #(AN B) > 1.

(More generally, we recall that given two cycles, a € H,(M,Z) and b € Ha,— (M, Z),
dimg M = 2n, intersection number may be computed by integrating the fundamental
classes m, € Hﬁ”_k(M) and m, € H¥(M): a-b = fbwa = fM 7w, N\ m. Here the first
equality is essentially the definition of 7, via Poincaré duality; the second equal-
ity is the assertion that the intersection pairing is dual to the cup product of the

fundamental classes.)

A.3.4 Bertini’s theorem

A complete linear system is the collection |D| = P H°(X, [D]) of effective divisors
that are linearly equivalent to a fixed divisor D. A linear system is a projective linear
subspace 0 = P\, with A\ C H°(X,[D]) a linear subspace. The base locus of 0 is
the set of points x € X with the property that every section s € A vanishes at x;
equivalently, it is the set of points x € X that are supported on every effective divisor

(s) € 0. The linear system is base point free if the base locus is empty.

Bertini’s theorem asserts: if X C P is smooth and quasi-projective, then a very

general member of 0 is smooth away from the base locus.

The linear system defines a rational map ¢, : X — 0¥ = P\Y, mapping x € X to
the hyperplane P{s € A | s(x) = 0}. The map is regular away from the base locus.

Exercise A.3.10. (a) Show that the image ¢,(X) is linearly nondegenerate; that

is, ¢»(X) is not contained in a proper linear subspace of 9.

(b) Fix a basis {sg,...,sq} of A\. Given s € A\, and let U = {z € X s.t. s(z) #

0}. Show that ¢,|y may be identified with the map U — P¢ sending = +

s(z) - " os(@)

Bertini’s theorem is equivalent to the statement that ¢, '(H) is smooth away from

the base locus (where ¢, is not defined) for all hyperplanes in some dense open subset
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of 0.

Remark A.3.11. If a line bundle L over X admits a meromorphic section s (Remark

1.3.17), then we may take D = (s). In this case the complete linear system is denoted
|L| =P H°(X, L), and the rational map ¢p, is denoted ¢, : X — P H(X, L).

A.3.5 Canonical line bundle

Let M be a complex manifold of dimension n. The canonical line bundle is K, =
ATV M. We have
Kﬂbn - O[Pm(—n - 1) .

Theorem A.3.12 (Finite generation of the canonical ring). Let Ry = @0 H° (X, mKx)

be the canonical ring.

(i) If X is a surface of general type, then the Rx is a finitely generated noetherian
ring [BHPVAV04].

(ii) If X is a smooth projective variety over field of characteristic zero, then Rx is
finitely generated [BCHM10, Siu08|.

A.3.6 Adjunction formula

Let i : D — M be a smooth divisor in a complex manifold M. The normal bundle
Npm = i*(Tar)/Tp extends to a line bundle O(D) on M. The ideal sheaf of D is the
dual O(—D). In particular, the conormal bundle is Ny, 5, = i*O(—D). We have

Kp = i"(Ky @ O(D)).
As canonical classes we have
Kp = (Ky —|—D)]D )

Example A.3.13. If i : X < P*""! is a smooth hypersurface of degree d, then
KX = i*Kpn+1 ® OX(d) ~ OX(d —n — 1)
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Example A.3.14. Suppose that C' is the complete intersection of hypersurfaces in
P+ of degrees dy, . . ., d,,. The adjunction formula implies Ko = Oc(—n—2+5>_d;).
The degree of this line bundle is deg(K¢) = (—n —2+ > d;) [[ d;. Keeping in mind
that deg K¢ = 29(C) — 2, we find g(C) =1 - L(n+2->"d;) []d;.

A.3.7 Lefschetz hyperplane theorem
Let Y be a hyperplane section of a smooth X" C P so that X\Y is smooth. Then

H¥X,Z) = H*Y,Z), Vk<n,
HY(X,Z) — H"“(Y,Z).

A.3.8 Chern curvature

Let L — M be a holomorphic line bundle on a compact Kéahler manifold, equipped
with a hermitian metric h. The Chern connection form is the (1,0)-form 0log h; the

Chern curvature is the (1,1)-form
wr, = 00logh.
The Chern class is

a(l) = [fw] € H*(M,R) n H"'(M).

21
The line bundle is positive (or ample) if ¢;(L) > 0; that is, wg(v,v) > 0 for all
0 7é NS TM
The short exact sequence
0= Z 25 0y 2B 05 - 0
induces a long exact sequence in cohomology with boundary map

o HY(M,0%) -2 H*(M,Z) - H*(M,Op) — -

The cohomology group H'(M, Oy,) parameterizes isomorphism classes of line bundles

on M; and the boundary map is the sends L to the Chern class ¢;(L).
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A.3.9 Lefschetz theorem on (1,1)-classes

Let M be a compact Kéhler manifold. The boundary map ¢; : H'(M,O;,) —
H?*(M,Z) N HY (M) is surjective.

Why. Hodge theory implies H?(M,Oy;) = H*?(M). The map ¢ : H*(M,Z) —
H?(M,Oy) is the restriction of the projection H?(M,C) —» H*(M). O

A.3.10 Positivity implies vanishing

Kodaira vanishing

Let L — M be a positive holomorphic line bundle on a compact Kéahler manifold.
Then HI(M, Ky ® L) = 0 for all ¢ > 0.

Bott vanishing

Let L — X be an ample line bundle on a projective toric variety. Then H?(X, Q% ®
L) =0 for all ¢ > 0 and p > 0 [BCY4].

A.3.11 Kodaira embedding

Let L — M be a positive holomorphic line bundle on a compact Kéahler manifold.
There exists a holomorphic embedding ¢ : M — P so that L™ = ¢*Op(1) for some
m > 0.

Slogan. Positivity implies algebraicity.

A.3.12 Kodaira—Serre duality

Given a holomorphic vector bundle £ — M over a compact, complex manifold of

dimension d, we have

HPY(M,E) ~ H¥™P9(M EY)Y.
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An useful corollary is the following: Given any algebraic vector bundle £ — X over

a smooth, proper (a.k.a. complete) algebraic variety of dimension d, we have
HY(X,E) ~ H" (X, Kx ® EV)V.
More precisely, the natural trace map on H%(X, Ky) is a perfect pairing

HY(X,E) x H (X, Kx ® EY) — HYX,Kx) — C.

A.3.13 Picard variety

The Picard group of any ringed space (Y, Oy) is the group Pic(Y) = HY (Y, O%) of
isomorphism classes of line bundles (or invertible sheaves) on Y. The Picard vari-
ety of a smooth, proper algebraic variety (X, Ox) is the connected identity compo-
nent Pic’(X), and has the structure of an abelian variety. The Neron-Severi group
NS(X) = Pic(X)/Pic’(X) is a finitely generated abelian group. The rank of NS(X)
is the Picard number p(X).

A.3.14 Bogomolov—Miyaoka—Yau inequality

If X is an n-dimensional minimal model of general type, then (—1)"(2n+2) ¢;(X)" 2 co(X) >
(—1)"n ey (X)™

A.3.15 Riemann—Roch—Hirzebruch

The holomorphic Euler characteristic of a holomorphic vector bundle £ — M on a

compact Kahler manifold is

X(M,E) = > (~1)dim¢ H*(M, E).

q>0

The Riemann—Roch—Hirzebruch formula is

XM B) = (td(M)eh(E). M) = [ ed(Meh(E),
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where td(M) = td(T)) is the Todd class of M and
ch(E) = [tr(exp 5=Q)]

is the Chern character of E. The Chern character is an additive and multiplicative
invariant: ch(E; @ Ey) = ch(E) + ch(E,) and ch(E; ® Ey) = ch(E;) ch(Es). It is
related to the Chern classes ¢, (E) € H?**(M) by

> B = [det (L0 +1d)] = JJQ+ey(E)),

k J

and

ch(E) = rank(E) + ci1(E) + 3 (c1(E)* — 2¢3(E))
+ 1 (a1(E)® = 3c1(E)ea(E) + 3¢3(E)) + -+ - .
The Todd class is

= 1+ 50(E) + 15 (a(E)? + (E)) + 3;61(E) o E)
+ ok (a1 (E)! 4+ 4y (B)?es(B) + c1(B)es(B) + 3co(E)? — ey(E)) + -+ .

The Todd class is an exponential invariant in the sense that td(E,®Es) = td(E))td(E»).
Given a SES 0 -+ A — B — C' — 0 of vector bundles we have

td(B) = td(A)td(C) and ch(B) = ch(A) + ch(C). (A.3.15)

A.4 Very little sheaf theory

Recommended references: [GH94, Voi07].
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A.4.1 A few definitions

The defining property of a presheaf is that the restriction maps satisfy resyy = id,
and resyyyoresyy = resy,p for all W C V' C U. The defining properties of a sheaf are
that given any open cover {U,} of U we have: (i) if 0,7 € S(U) and o|y, = 7|y, for
all o, then o = 7; and (ii) if 0, € S(Us) satisty o4|v.; = 0lv,,, then o4 = oy, for
some o € S(U). Examples of presheaves that are not sheaves include: the presheaf of
constant functions (whose sheafification is the sheaf of (locally) constant functions);
and the sheaf of exact forms (whose sheafification is the sheaf of closed forms).

The sheafification of a presheaf P is the sheaf P#(U) = {(p, € Pr)ecv s-t. V. €
U,3openzeV CU, oceP(V)witho,=p,VyeV}

Exercise A.4.1. Suppose that P is a subpresheaf of a sheaf S. Show that P#(U) =
{oc € S(U) | 3 open cover {U,} of U s.t. a|y, € P(Uy,) V a}.

Exercise A.4.2. Let ¢ : § — T be a morphism of sheaves of abelian groups.

(a) Show that U + ker {¢y : S(U) — T(U)} is a sheaf, the kernel sheaf ker ¢ C S.
We have (ker ¢), = ker (¢,).

(b) Show that U — im{¢y : S(U) — T(U)} is a presheaf, but need not be a
sheaf. [Hint. Consider the exponential map Oa« — OX..] The sheafification is
a subsheaf im ¢ C T whose sections may be described as in HW A.4.1. We have

(c) Show that U +— coker {¢y : S(U) — T(U)} is a presheaf, but need not be a
sheaf. The sheafification is

(coker ¢)(U) = {UQ € T(U,)

{U,} is an open cover of U and }/
Uap € PU45(S(Uap)) 7

where {0, € T(Ua)} ~ {0, € T(U})} if for all z € U, NU], there exists an
open z € V C U, NUj, so that Talv — UL’V € oy (S(V))}. We have (coker ¢), =
coker ().

0-04 |Uo¢5 - O—B
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Exercise A.4.3. Show that the following are equivalent:

(a) ¢ is injective;

(b) ¢y : S(U) — T(U) is injective for all open U.
Exercise A.4.4. Show that the following are equivalent:

(a) ¢ is injective (resp. surjective, an isomorphism)

(b) ¢, : Sp — T, is injective (resp. surjective, an isomorphism) for all z.

A.4.2 Functors

Exact functors

A functor is exact if it preserves short exact sequences. A covariant functor F' is
left-exact if 0 — A % B Y O exact implies 0 — F(A) T, F(B) ), F(C) is
exact. A contravariant functor F' is right-ezact if 0 — A % B Y% O exact implies
F(C) ), F(B) o), F(A) — 0 is exact

Example A.4.5. If V is a vector space over a field k, then VY = Homg(V, k) is an

exact (contravariant) functor on the category of k vector spaces.

Example A.4.6. If M is an abelian group, the (covariant) functor A — Hom(M, A)

of the category of abelian groups to itself is left-exact.

Example A.4.7. If Sh(M,Z,,) is the category of sheaves of abelian groups over a
topological space M, then the (covariant) global sections functor T'(S) = S(M) is

left-exact.

Let (X, Ox) be either an algebraic variety or a complex analytic space. Let Sh(X)
denote the category of sheaves on X; let Sh(X,Zy) denote the category of sheaves of
abelian groups on X, and let Sh(X, Ox) denote the category of Ox—modules on X.

Let f: (X,0x) — (Y, Oy) be a morphism.
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Direct image functor

The direct image functor f. : Sh(X,Ox) — Sh(Y,Oy) maps S € Sh(X, Ox) to the
direct image (or pushforward) sheaf defined by (f.S)(V) = S(f~1(V)) for all open
VY.

(i) If Y is a point, then f, is the global sections functor.

(ii) The direct image functor is left-exact.

(iii) If f : X — Y is the inclusion of a closed subspace, then f, is exact (pre-
serves SES), and an equivalence of categories between Sh(X) and the category

of sheaves on Y supported on X.

Direct image functor with compact support

The direct image with compact support functor fy: Sh(X) — Sh(Y') maps S € Sh(X)
to the sheaf defined by (£,S)(V) = {s € S(f~'(V)) s.t. f : supp(s) — V is proper}
for all open V C Y.

(iv) If f is proper, then f; = f..

(v) If f is an open embedding, then f; is the extension by zero functor.

Inverse image functor

The inverse image functor f~*: Sh(Y') — Sh(X) maps T € Sh(Y)) to the inverse im-

age (or pullback) sheaf f~1T, the sheaf associated to the presheaf U Vli]IcI(lU) T(V).
D

(vi) The stalks are (f~'7), = T
(vii) The functor f~! is exact (preserves SES).

(viii) The direct image functor is right adjoint to the inverse image functor: Homgyx)(f~'7,S) =
Homgy(x) (7, f.S).
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If 7 € Sh(Y,Oy), then in general f~'T ¢ Sh(X,Ox). In this case it is better to

work with the sheaf f*T 2= 1T @10, Ox.

Example A.4.8. If f is the inclusion of a point y € Y, then f~!(7) is the stalk 7,.
If 7 e Sh(}/, Oy), then fﬁl(Oy) = Oy7y, and f*(0y> =C.

(ix) In general f* is right exact. If f* is exact, we say f is flat.

A.4.3 Sheaf cohomology

Enough injectives

Fact. Let Sh(X,Ox) denote the category of sheaves of Ox—modules. This category

has enough injectives.

Why. Because the category of R—modules has enough injectives (because the
category of R—modules has injective hulls). One then uses Godement’s construction
to show that Sh(X, Ox) has enough injectives: S — [[ S, — [] L.

Remark. Since abelian groups are Z—-modules, we see that the category Sh(X, Zx)
of sheaves of abelian groups also has enough injectives.

Consequence: ezistence of injective resolutions. Every sheaf & € Sh(X,Rx)

admits an injective resolution: there exist injective objects Z¥ € Sh(X,Ry), and
maps j : S < I° and d* : ITF — ZF+! so that im j = ker d° and im d* = ker d**!.

Right derived functors

Given a left-exact functor F, the right derived functors R¥F are

ker {Fd* : FIF — FIF '}

im{Fdk-1: FIZF-1' — FIF}~

Remark. 1f 0 — A — B — C — 0 is a SES of sheaves, then 0 — F(A) — F(B) —
F(C) is exact. The “job” of the right derived functors are to complete this to a LES
0 — F(A) - F(B) - F(C) » R'F(A) - R'F(B) = R'F(C) — ---. Injective
sheaves have the property RF¥F(Z) = 0 for all k > 0.

dfn

RFF(S) H*(F(1*) =
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Example A.4.9 (Sheaf cohomology). Sheaf cohomology is the right derived functor

RFT associated to the global sections functor I':
H*(X,S) = R'I(S).

Example A.4.10 (Higher direct images). Given a morphism f : (X, Ox) — (Y, Oy),
the higher direct images are the right derived functors R f,. Given S € Sh(X, Oy),
RF£,(S) is the sheaf associated to the presheaf V +— H*(f~1(V),S).

Exercise A.4.11. Let f : X — S be a smooth surjective morphism of complex
manifolds with compact fibres (as in §3.1). Show that the stalks are R*f.(Qx), =
H*(X,,Q), where X, = f~1(s).

Acyclic resolutions

A sheaf A is F-acyclic if R1F(A) = 0 for all ¢ > 0. In particular, a sheaf is I-acyclic
if H4(X,A) = 0 for all ¢ > 0. A resolution § — A® is F-acyclic if each A* is F-
acyclic. Injective objects are acyclic (for any functor). Any acyclic resolution is chain
homotopic to an injective resolution & — Z°. This means that acyclic resolutions can

be used to compute right-derived functors.

Example A.4.12. A sheaf S is flasque if the restriction map S(V) — S(U) is
surjective for all open U C V. (Godement’s construction is flasque.) Flasque sheaves

are [™-acyclic.

Example A.4.13. Let M be a paracompact Hausdorff space. A fine sheaf on M is
a sheaf of Rj;—modules, where R); is a sheaf of rings with the property that every
open cover of M admits a subordinate partition of unity. For example, if M is a
smooth manifold, then any sheaf of Cjj-modules is fine. Fine sheaves are I'-acyclic.
This yields the de Rham and Dolbeault theorems

ker{d: E"(M) — E"TH(M)}

HOM.C) = L@ e 00 = D)
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and _
ker {0 : EPY(X) — EPITL(X)}

im {9 : Era1(X) — Era(X)}

HI(X, Q%) =

Given a smooth manifold M, let Sh(M,C57) denote the category of sheaves of

Cy;—modules.

Example A.4.14 (Cech resolution). Fix an open cover {U;}ien. Given I = {iy <
ip < -+ <} CN,let Ur = Nier U; denote the finite intersections, and j; : Uy — X
the inclusion. Define sheaves

Ck({UZ}vs) = @ jI*(S’U1>>

|I|=k+1

and sheaf morphisms ¢ : C¥({U;},S) — C**1({U;},S) by

U; 1o < v <lpyr-

(60-)7:0"'7:k+1 - Z<_1)agi0""za"~ik+1

Then 6% = 0, and themap j : S — C°({U;}, S) sending o +— o
as a resolution of S. The global sections of C*({U;},S) are

Ou.ik+1 7

v, realizes (C*({U;},S),9)

I'(X,C*"{U},8)) = @ S(Ur).

\I|=k+1

The resolution S < C*({U;},8) is ['-acyclic if {U;} is a Leray cover H*(U;,S) = 0
for all £ > 0.

A.4.4 Vanishing theorems
Cartan’s Theorems A & B

Suppose that S is a coherent sheaf (Definition 1.1.40) on a Stein manifold X (a
submanifold of C™). The sheaf is spanned by its global sections H°(X,S), and
HY(X,S) =0 for all ¢ > 0 [Carb3].
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Serre vanishing

Analogous results were established by Serre for a quasi-coherent sheaf over an affine
scheme (X, Ox): if S is quasi-coherent, then H9(X,S) = 0 for all ¢ > 0 [Har77].

A.4.5 Leray spectral sequence
Via de Rham cohomology

Suppose that 7 : M — N is a smooth fibre bundle with compact fibres (in particular,
7 is a submersion). Let V' = kerm, C T'M denote the vertical subbundle. (Note that
V, the tangent space to the fibre 7=!(7(x)) through z.) Let V+ C T*M denote the
annihilator V.t = {n € T:M s.t. n(v) =0V v € V,.}. If we fix local coordinates (u,v)
on M so that 7(u,v) = u, then {8%]_} is a local framing of V| and {du,} is a local
framing of V.

Define a filtration of \"T*M by

FP(AN'T* M) == (APVE) A (A"PTM) .

Note that {du; Adv; s.t. |I| >p, |I|+|J| =n} is a local framing of FP(A\"T*M).
Let

EMM) = F&*(M) C F'&€ (M) C---C F*"(M) C F'" & (M) =0

be the induced filtration on the space of smooth n-forms on M. We have d :
FPEM(M) — FP(E"TY(M)). So we have a filtration of the de Rham complex. This
yields a spectral sequence [GH94, p. 464].

The Ey page is
FP(gP+Q(]\/[))
Frtl(grta(M)) ’

Locally an element of Ey? may be represented by n = >_;_, nr A duy, with nr =

P _
EO —

nr(u,v,dv) a g-form involving only the dv;. And do : E?? — EP* maps don =
> _i11=p(dunir) A dur. Then elements of E7* = ker dy/im dy are represented by p-forms
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on N that take value in the bundle Hjy(m—fibre) with fibre over z € N give by
H9(r~(x)). Given one such form, dy : EP? — EP*Y% acts by din > i11=p(dunr) A dur.
So

EYY = HF (N, Hi;(m—fibre)) = HP(N, R'w.C).

In general E5? £ EP4. However, . ..

Leray for a family of compact Kahler manifolds

Theorem A.4.15 ([Del68]). Let f : X — S be a smooth surjective holomorphic
mapping f : X — S of Kdhler manifolds with compact fibres (as in §3.1). Then
H"'(X,Q) ~ @ HP(S,R1f.Qx). And if S is simply connected, then H"(X,Q) ~

ptg=n

P H(5,Q ® HI(X,,, Q).

ptg=n

Idea of the proof. Use the Hard Lefschetz Theorem 2.2.24 to show that the Leray
Spectral Sequence (§A.4.5) collapses at the second page, cf. [GH94, p. 466]. O

Corollary A.4.16. The cohomology H™(X, Q) surjects onto Gr° H"(X,Q) = H°(S, R"f,Qx).

As a special case of the Grothendieck spectral sequence

If A S B L ¢ are left-exact covariant functors of abelian categories with enough
injectives, it is natural to ask if there is a relationship between the right derived
functors of F'G and those of F' and G. If G([) is F-acyclic for every injective object I €
A, then for every A € A, there exists a spectral sequence E5? = (RPF)(RIG)(A) =
RPTI(FG)(A).

Example A.4.17 (Leray spectral sequence). Let f: (X,Ox) — (Y, Oy) be a mor-
phism, and fix S € Sh(X OX) We obtain the Leray spectral sequence by taking
Sh(X, Ox) LR Sh(Y, Oy) Ab and noting that I'(Y,-) o f. = I'(X,-). One uses
the fact that f, is right adjoint to the exact f~! to show that f, maps injectives to

injectives.
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One may show that
0 - HYY,f£.S) - HY(X,S) — H(Y,R'f.S) — H*(Y,f.S) — H*X,S)
is exact.

Grothendieck’s spectral sequence is constructed as follows. Fix an injective res-
olution A — I*. As a complex in a category with enough injectives G(I*) admits a
fully injective resolution G(I°) < J**. This means that G(I%) — J** is an injective

resolution and each of

ker {G([Q) — G([“‘H)} SN ker{Ja,o N Ja+1,.}
im {G(Iail) - G} — im{Jafl,o — Jo*)
HY(G(I*) — H(J*) — HY(J%) — -+

is an injective resolution. Then one considers the spectral sequences associated to the
double complex F'(J**).

Via Cech cohomology

Let f: (X,0x) — (Y,Oy) be a morphism, and fix S € Sh(X, Ox).

Fix a cover {V;} of Y, and a cover {U;,} of f~1(V;) so that {U,} is a Leray
cover of X with respect to §; that is, qu(UI,S) = 0 for all ¢ > 0 and I. Let
C*({Ui},S) € Sh(X, Ox) be the acyclic Cech resolution of S (Example A.4.14). Then
K* = f.C*({Uiu},S) € Sh(Y,Oy) is a complex. The associated cohomology sheaves
are H1(K*) = Rf,S. Following Definition 5.4.16 we consider the double complex
cr({Vvi}, K9 = CP({Vi}, f.C7({Uia}, S)). Then HM(Y, K*) = H'(Y, £.C*({Ui}, S)) =
H*(X,8). We conclude that

'BY* = HP(Y,R'f,S) — HP™(X,S).
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A.4.6 Hypercohomology

Hypercohomology is a generalization of sheaf cohomology that takes as its input not

a single sheaf, but a complex of sheaves. In particular, a SES
0= A = B* = C* = 0
of complexes of sheaves will induce a LES
0 — H'A*) — HB*) — HC*) — H'(A®) — HY(B*) — ---

in hypercohomology. Suppose that (K°,d) is a complex of sheaves. Given K°®, there
exists a quasi-isomorphism K* — Z° with each ZF an injective object, and each

Kk — TF an injective map [Voi07]. Given a left-exact functor F, we define

dfn

REE(K®) H*(F(T%)).

A quasi-isomorphism K} — K3 induces a canonical isomorphism RFF(K$) ~ RFF(K3).
For a quasi-isomorphism K* — A®, with each AF F-acyclic, we have RFF(K®) =
HE(F(A®)).

We obtain hypercohomology by taking the global sections functor

HY(X,K®) = R'T(K®) = HNT(A%)).

See §5.4.2 for further discussion.
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