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What this is

Our goal for Math 690 (Spring 2024) is to obtain a working understanding of the

relationship between degenerations of projective manifolds (to singular projective

varieties) and mixed Hodge structures. We will cover: classical Hodge theory of

Kähler manifolds; variations of Hodge structures; Torelli theorems; mixed Hodge

structures; degenerations of algebraic varieties, the Clemens-Schmid exact sequence

and applications. It is not possible to cover all these topics in full generality or

in significant depth in one semester; rather I aim to give an overview, illuminated

by special cases and examples. The guiding reference is the survey [KK98], and is

supplemented by [Ara12, CMSP17, CEZGT14, Gri84, GH94, PS08, Voi07].

We work over C.
The appendix of these notes summarizes some standard results from complex

algebraic geometry, and is likely to be a useful resource throughout the course. As

the semester progresses I will flesh out the body of the notes with: (i) brief summary

of some of the material discussed in class, including homework exercises; and (ii) the

degenerations that we will study at the end of the course (time allowing).

Caveat emptor

These notes are subject to revision and updates. I appreciate learning of any typos

or errors.

Remark on our approach to sheaf cohomology

Good references for sheaves and sheaf cohomology, well-suited to the perspective of

this course, include [Ara12, GH94]. (The first is available electronically from Duke

Libraries.) We will implicitly use the fact that sheaf cohomology is isomorphic to

Čech cohomology Hq(X,S) ≃ Ȟq({Uα},S) when {Ui} is a Leray cover of X with

respect to S. (That is, Hq(UI ,S) = 0 for all q, k ≥ 1.) For example, if X is a

smooth manifold, it admits a good cover ; this is a locally finite cover by open balls
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with the property that all nonempty intersections are also homeomorphic to open

balls. The Poincaré lemma implies that a good cover is a Leray cover for the sheaf of

smooth k-forms, and the sheaf of smooth (p, q)-forms. If X is an algebraic variety and

S is quasi-coherent (this includes sheaves of sections of vector bundles), then Serre

vanishing (§A.4.4) implies that any open cover by affine varieties is Leray.

Notation

Let ∆ = {s ∈ C s.t. |s| < 1} denote the unit disc in the complex plane, and ∆∗ =

{s ∈ C s.t. 0 < |s| < 1} the punctured disc.

Given a vector space H over a field F, the dual vector space will be denoted

H∨ = HomF(H,F).
We will write X ⊂ P to indicate that X is a projective variety.
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Chapter 1

Complex Algebraic Geometry

1.1 Algebraic varieties and complex analytic spaces

1.1.1 Algebraic varieties

Definition 1.1.1. An algebraic set V ⊂ Cn is the zero locus of a collection {fα}α∈A ⊂
C[z] = C[z1, . . . , zn] of polynomials.

Exercise 1.1.2. Let V ⊂ Cn be an algebraic set. Show that the Hilbert basis theorem

(§A.3.1) implies that the ideal

I(V ) = {f ∈ C[z] s.t. f |V = 0}

is finitely generated.

Exercise 1.1.3. The Zariski topology on Cn is defined by declaring algebraic sets to

be the closed sets.

(a) Show that this does indeed specify a well-defined topology.

(b) Is the Zariski topology Hausdorff? (If yes, give a proof; if no, give a counter-

example.)
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(c) Is the Zariski topology separable? (If yes, give a proof; if no, give a counter-

example.)

Exercise 1.1.4. If V1 ⊂ Cn and V2 ⊂ Cm are algebraic sets, then so is V1 × V2.

Definition 1.1.5. The ring of regular functions is C[V ] = C[z]/I(V ). We say f :

V1 → V2 is a regular map (or morphism) if f = (f1, . . . , fm) with fj ∈ C[V1].

Exercise 1.1.6. (a) Show that the inclusion map i : V ↪→ Cn is regular.

(b) Show that the projection V1 × V2 ↠ V1 is regular.

Exercise 1.1.7 (∗). A regular map is equivalent to a morphism f ∗ : C[V2] →
C[V1] s.t. f ∗(zj) = fj.

Definition 1.1.8. V is irreducible if I(V ) is prime.

Exercise 1.1.9. (a) If V is irreducible and V = V1 ∪ V2, then V = Vi for some

i = 1, 2.

(b) Every V is a finite union of irreducible Vj.

(c) If V is irreducible, then C[V ] is an integral domain.

Definition 1.1.10. Let V be an irreducible algebraic set.1 The quotient field of C[V ]

is the field C(V ) of rational functions . The dimension of V is the transcendence degree

of this field over C. (The cardinality of a maximal set of algebraically independent

elements.) The local ring at a ∈ V is the ring OV,a = {f/g ∈ C(V ) s.t. g(a) ̸=
0} of rational functions that are regular at a. The maximal ideal is the subring

mV,a = {h ∈ OV,a s.t. h(a) = 0} of functions vanishing at a. The tangent space

at a is TV,a = (mV,a/m
2
V,a)

∨. The local rings are the stalks of the structure sheaf

OV (U) = {f/g ∈ C(V ) s.t. g(a) ̸= 0 ∀ a ∈ U}.

Exercise 1.1.11 (∗). Hilbert’s Nullstellensatz’s (§A.3.1) implies OV (V ) = C[V ].

1The definitions that follow can be modified, to account for the presence of zero divisors in C[V ],

when V is not irreducible.
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Exercise 1.1.12. (a) Given a regular map f : V1 → V2, show that prescribes

f∗(v)(µ) = v(f ∗µ), with v ∈ TV1,a and µ ∈ TV2,f(a), a well-defined linear map

f∗ : TV1,a → TV2,f(a).

(b) If i : V ↪→ Cn is the inclusion, show that i∗ : TV,a → TCn,a is injective.

(c) If f : V1 → V2 is injective, is f∗ necessarily injective?

Exercise 1.1.13. Assume V is irreducible. Suppose that I(V ) = (f1, . . . , fk). Let

f = (f1, . . . , fk) : Cn → Ck.

(a) Define ∂j,a =
∂

∂zj

∣∣∣∣
z=a

. Prove that TCn,a = spanC {∂j,a}
n
j=1.

(b) Given a ∈ V , prove that TV,a = ker{daf : Cn → Ck}.

(c) Define c = max
a∈V

{rank daf}. Prove that U = {a ∈ V s.t. rank daf = c} is Zariski

open, and that dimV = dimTV,a = n− c for all a ∈ U .

The points of U are the nonsingular (or smooth) points of V . The implicit

function theorem implies that U is a complex manifold.

Definition 1.1.14. An affine variety is a pair (V,OV ) consisting of an algebraic set

V and its structure sheaf OV .

Example 1.1.15. Any Zariski open subset U = {a ∈ V s.t. f1(a), . . . , fk(a) ̸= 0} is

also an affine variety. (Here fj ∈ C[V ].) We realize U as an algebraic set in Cn+k cut

out by I(V ) and the wj fj(z)− 1 ∈ C[z1, . . . , zn , w1, . . . , wk].

Exercise 1.1.16. If V is irreducible, then U is irreducible and C(U) ≃ C(V ).

Definition 1.1.17. A ringed space (X,OX) is an algebraic variety if there exists a

finite cover X = ∪Vi by open dense Vi ⊂ X so that the (Vi,OX|Vi) are isomorphic to

affine varieties and X is separable: the image of the diagonal map ∆ = (id, id) : X →
X ×X is closed. The field of rational functions on X is the set C(X) of equivalence

classes [f, U ] with U ⊂ X open affine and f ∈ C(U). We have (f1, U1) ∼ (f2, U2) if

f1 = f2 on U1 ∩ U2.
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Exercise 1.1.18. Prove that any subset Y ⊂ X that is either open or closed is an

algebraic subvariety.

Exercise 1.1.19 (∗). Show that complex projective n-space Pn = P(Cn+1) is a

nonsingular algebraic variety, and that the closed subsets are the X = {f1, . . . , fk =
0}, with fj ∈ C[z0, z1, . . . , zn] homogeneous polynomials.

Definition 1.1.20. The field of rational functions on X is the set C(X) of equivalence

classes [f, U ] with U ⊂ X open affine and f ∈ C(U). We have (f1, U1) ∼ (f2, U2) if

f1 = f2 on U1 ∩ U2.

More generally, a rational mapping Φ : X → Y is an equivalence class of pairs

(ϕ, U) where U ⊂ X is open and ϕU : U → Y is a morphism. We say (ϕ1, U1) ∼
(ϕ2, U2) if ϕ1 = ϕ2 on U1 ∩ U2. Every equivalence class Φ = [ϕ, U ] contains a unique

representative (ϕ̃, Ũ) with Ũ maximal; this is the domain of definition. If ϕ̃(Ũ) is

dense in Y , then we have ϕ∗ : C(Y ) ↪→ C(X). The map is birational if ϕ∗ is an

isomorphism.

Definition 1.1.21. Let Y ⊂ X be smooth, dimX = n and dimY = n − m. The

blow-up of X along Y is the map π : X ′ → X defined as follows:

1. Cover X by open affine U1, . . . , Uk. Set Yj = Y ∩ Uj. Let uj,1, . . . uj,m ∈ C[Uj]
be polynomials generating I(Yj). Let (t1 : . . . : tm) be homogeneous coordinates

on Pm−1, and define

U ′
j = {uj,a tb = uj,b ta | 1 ≤ a, b ≤ m} ⊂ Uj × Pm−1 .

(Equivalently, U ′
j can be characterized as the closure of the graph of (uj,1 : · · · :

uj,m) : Uj\Yj → Pm−1 in Uj×Pm−1.) Then πj : U
′
j → Uj is an isomorphism away

from Yj, and π
−1
j (x) = Pm−1 for all x ∈ Yj.

2. Prove that the definition of U ′
j does not depend on the choice of defining poly-

nomials uj,a (HW). This implies that the U ′
j ⊂ Uj×Pm−1 may be glued together

into X ′ ⊂ X × Pm−1.
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Exercise 1.1.22 (∗). Let π : X ′ → X be the blow-up of a smooth variety X along

a smooth subvariety C ⊂ X.

(a) Prove that X ′ is an algebraic variety and that π is a birational morphism.

(b) Let NC = TV |C/TC denote the normal bundle. Show that π−1(C) ⊂ X ′ may be

naturally identified with the projectivized normal bundle P(NC) → C.

Theorem 1.1.23 (Hironaka 1964). Let ϕ : X → Y be a rational mapping of nonsin-

gular algebraic varieties. There exists a composition σ : X ′ → X of (a sequence of)

blow-ups and a morphism ϕ′ : X ′ → Y so that ϕ′ = ϕ ◦ σ

X ′

X Y

ϕ′
σ

ϕ

1.1.2 Complex analytic spaces

Here we work with the (usual) analytic topology on Cn, and analytic functions. Re-

view the notations and results of §A.3.2 (especially Definition A.3.3).

Definition 1.1.24. We say V ⊂ Cn is an analytic set if every a ∈ V admits a

neighborhood a ∈ U ⊂ Cn and f1, . . . , fℓ ∈ On(U) so that V ∩ U = {f1, . . . , fℓ = 0}.
The ideals Ia(V ) = {f ∈ On,a s.t. f = 0 on a nbd a ∈ U ⊂ V } define the stalks

OV,a = On,a/Ia(V ) of the structure sheaf OV . Given an open U ⊂ V , the ring OV (U)

consists of all functions f : U → C with the property that for every a ∈ U , there exists

ε > 0 and g ∈ On(∆
n
a,ε) so that f = g on U ∩∆n

a,ε. A continuous map ϕ : V1 → V2 is

holomorphic if for all a ∈ V1 and f ∈ OV2,ϕ(a), the functions f ◦ϕ : V1 → C is analytic;

that is, we have a ring morphism f ∗ : OV2,f(a) → OV1,a.

Definition 1.1.25. We say V is irreducible if V = V1 ∩ V2 implies V = Vj for some

j = 1, 2. And V is irreducible at a if Ia(V ) is prime.
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Exercise 1.1.26. Show that V = {y2 = x2 + x3} ⊂ C2 is irreducible, but reducible

at the singular point (0, 0).

Definition 1.1.27. Assume V is irreducible. Then a ∈ V is a regular (or smooth)

point if dimTV,a = minz∈V {dimTV,z}. (As in HW 1.1.13, the regular points form a

dense open subset.) Points that are not regular are singular . And dimV = dimTV,a

with a regular.

Definition 1.1.28. If V is irreducible at a ∈ V , then the quotient field of the ring

OV,a are meromorphic fractions. In general, we say f/g is a meromorphic fraction if

g is not a zero divisor of OV,a. A meromorphic function f ∈ M(V ) is a collection

f = {(Ui, fi/gi)} s.t. {Ui} is an open cover of X, fi, gi ∈ OV (Ui), with gi not a zero

divisor, and fi gj = fj gi on Ui ∩ Uj.

Definition 1.1.29. The pair (V,OV ) is an analytic variety . A complex analytic

space is a ringed Hausdorff space (X,OX) equipped with an open cover X = ∪Vi so
that each (Vi,OX|Vi) is isomorphic to an analytic variety. The space X is a complex

manifold (or nonsingular complex analytic space) if every x ∈ X is regular.

1.1.3 Algebraic varieties versus complex analytic spaces

Every algebraic set V naturally admits the structure of an analytic set. Every regular

function f ∈ OV (U) is a holomorphic function with respect to this structure; and

every rational h ∈ C(V ) is a meromorphic function. If (V,OV ) is an affine variety, we

let (V an,OV an) denote the associated analytic variety. This association is an example

of an analytification functor .

When is a complex manifold algebraic?

In general, the analytification functor {algebraic varieties} → {complex analytic spaces}
is not surjective, and it is a very interesting question to understand when a complex
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analytic space Y may be realized as Y = Xan for some algebraic variety X. A classical

result of this type is

Theorem 1.1.30 (Riemann). Every Riemann surface Y has enough meromorphic

functions to realize it as a projective algebraic curve Y ⊂ Pn.

More generally, finite coveringsX → Y of Riemann surfaces are classified (as topologi-

cal spaces) by permutation representations of the fundamental group of Y \{ramification pts}.
It’s not difficult to see that these covers are complex analytic maps. Moreover, we

have

Theorem 1.1.31 (Riemann existence). These finite coverings are coverings of alge-

braic curves: they come from finite extensions of the function field C(Y ).

Let Λ ≃ Z2g be a lattice in Cg. Then Y = Cg/Λ is a complex torus. As a smooth

manifold Y is diffeomorphic to (S1)2g. We call Y an abelian variety when it can also

be realized as a projective algebraic variety. Every complex torus of dimension g = 1

can be realized as a projective variety (HW 1.1.33). However, most complex tori do

not admit an algebraic structure. The test for algebraicity (which may be interpreted

as a special case of Kodaira’s embedding theorem (§A.3.11)) is

Theorem 1.1.32 (Lefschetz [Mum08]). The complex torus Y = Cg/Λ is an abelian

variety if and only if Cg admits a positive definite hermitian form h = g − iω whose

imaginary part −ω takes integral values on Λ.

Exercise 1.1.33. How that every one dimensional complex torus Y = C/Λ is an

abelian variety.

The most famous comparison result in algebraic geometry is

Theorem 1.1.34 (Chow 1949). Every analytic subvariety Y ⊂ Pn is algebraic.

A necessary condition for Y to be algebraic is that it have “enough” meromorphic

functions. . .
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Theorem 1.1.35 (Siegel 1955). Let Y be a compact complex manifold. Then the

field M(Y ) of meromorphic functions is finitely generated over C and trdegCM(Y ) ≤
dimY .

If trdegCM(Y ) < dimY , then Y can not be realized as an algebraic variety. For

complex surfaces, this necessary condition is also sufficient. . .

Theorem 1.1.36 (Kodaira 1954). If Y is a compact complex manifold of dimen-

sion two, admitting two algebraically independent meromorphic functions, then Y is

projective algebraic variety.

In general, the necessary condition is not sufficient, but it is close. . .

Theorem 1.1.37 (Moishezon 1966). If Y is a compact complex manifold and dimY =

trdegCM(Y ), then there exists a projective algebraic variety Y ′ and a bi-meromorphic,

holomorphic map π : Y ′ → Y constructed as a composition of (a sequence of) blow-

ups.

Serre’s GAGA

As discussed above, every algebraic variety (X,OX) may be naturally realized as n

complex analytic space (Xan,OXan). More precisely, the identity map id : Xan → X

is a ringed space morphism: the map is continuous (the inverse is not), and we have

id∗ : OX → OXan . We have OX,x ⊂ OXan,x. And in general containment is strict; for

example, ex ∈ OCan\OC.

Exercise 1.1.38. If f : X → Y is a regular map, then f an = id−1◦f ◦ id : Xan → Y an

is holomorphic.

Theorem 1.1.39 (Serre 1956). Let (X,OX) be an algebraic variety.

(i) X is connected if and only if Xan is connected.

(ii) X is irreducible if and only if Xan is irreducible.
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(iii) dimX = dimXan.

(iv) Xan is compact if and only if X is complete (or proper): for every variety Y

the map X × Y → Y sends closed sets to closed sets.

Informally, Serre’s GAGA says that the category of coherent algebraic sheaves

on a complex projective variety X is equivalent to the category of coherent analytic

sheaves on Xan. As we will see, the formal statement (Theorem 1.1.45) allows us to

construct algebraic objects using analytic tools (which is pretty awesome).

Definition 1.1.40. A sheaf S of OY –modules on a ringed space (Y,OY ) is coherent

if

(i) The sheaf is of finite type: for all y ∈ Y there exists a neighborhood U and a

surjective morphism On
Y (U) → S(U). (Locally the sheaf is finite generated.)

(ii) For all open U ⊂ Y and morphisms φ : OY (U)
n → S(U) of OY (U)-modules, the

kernel kerφ is of finite type. (This says there are essentially only finitely many

relations among the generators.)

Theorem 1.1.41 ([GR84]). (i) The sheaf OXan is coherent (Oka 1950).

(ii) The sheaf OX is coherent (Serre 1955).

Example 1.1.42. Let Y be either a complex manifold or a non-singular algebraic

variety, and E → Y a (holomorphic or algebraic) vector bundle. The theorems of

Oka and Serre implies that the sheaf of sections E0
X(E) is coherent.

Remark 1.1.43. Intuitively, coherent sheaves may be seen as a generalization of

vector bundles: they are the smallest abelian category containing vector bundles. For

further discussion of coherent sheaves from a perspective well-suited to this course,

see [Ara12].

Theorem 1.1.44 (Oka–Cartan [GR84]). The ideal sheaf of an analytic set in a com-

plex space is coherent (H. Cartan 1950).
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Given an sheaf S of OX-modules over X, there is a natural sheaf

San = id−1S ⊗id−1(OX) OXan

of OXan-modules over Xan (given by the analytification functor).

Theorem 1.1.45 (Serre’s GAGA 1956). Let (X,OX) be an algebraic variety.2 Let

(Xan,OXan) be the associated complex analytic space.

(i) The identity id : Xan → X is a morphism of ringed spaces.

(ii) Given a morphism f : (X,OX) → (Y,OY ), there exists a morphism f an :

(Xan,OXan) → (Y an,OY an) satisfying f ◦ idX = idY ◦ f an. If f is an open

immersion, then so is f an.

(iii) For every sheaf S over (X,OX), there is a sheaf San = id−1S ⊗id−1OX
OXan

over (Xan,OXan) and a map of sheaves id∗ : S → id∗San over (X,OX). The

correspondence S 7→ San is an exact functor Sh(X,OX) → Sh(Xan,OXan)

(iv) Given a morphism f : (X,OX) → (Y,OY ) and a coherent sheaf S over (X,OX),

the map (f∗S)an → f an
∗ San is injective.

If f is proper, the map is an isomorphism and we have isomorphisms (Rif∗S)an ≃
Rif an

∗ San of all higher direct image sheaves.

Now assume that (X,OX) is projective algebraic. (In particular, X is proper/complete

and Xan is compact.) Let S,G be coherent sheaves over (X,OX).

(a) The natural morphism Hq(X,S) → Hq(Xan,San) is an isomorphism.

(b) The natural morphism HomOX
(S,G) → HomOXan (id

∗S, id∗G) is an isomorphism.

(c) Every coherent sheaf over (Xan,OXan) is isomorphic to id∗S for a unique coher-

ent sheaf over (X,OX).

2GAGA holds more generally for schemes of finite type over C. In this setting the identity map

is replaced by an inclusion Xan ↪→ X, where Xan is the set of closed points.
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1.2 Complex manifolds

1.2.1 Hermitian vector bundles

Let X be a complex manifold, and π : E → X a holomorphic vector bundle of rank

r. Let E0
X(E) denote the sheaf of smooth sections of E; let EkX(E) = EkX ⊗ E0

X(E)

denote the sheaf of smooth k-forms taking value in E; and let Ep,qX (E) = Ep,qX ⊗E0
X(E)

denote the sheaf of smooth (p, q)-forms taking value in E.

Definition 1.2.1. A (smooth) framing of E over U ⊂ X is a collection of sections

e1, . . . , er ∈ E0
X(E)(U) of E over U so that {e1(x), . . . , er(x)} is a basis of Ex for all

x ∈ U . The framing is holomorphic if each section ea is holomorphic.

Exercise 1.2.2. Prove that E is trivial over U if and only if E admits a holomorphic

framing over U .

Exercise 1.2.3. Show that ∂ : Ep,qX → Ep,q+1
X induces a well-defined operator ∂ :

Ep,qX (E) → Ep,q+1
X (E). (Your proof should use the fact that E is holomorphic. It is

not true, in general, that the exterior derivative d induces an operator d : EkX(E) →
Ek+1
X (E).)

Definition 1.2.4. We say E is hermitian if each fibre Ex = π−1(x) is equipped with

a hermitian scalar product hx which depends smoothly (not necessarily holomorphi-

cally) on E. We call this structure a hermitian metric on E. The local framing is

unitary if h(ea, eb) = δab.

Exercise 1.2.5. Show that E admits a hermitian metric. [Hint. Partition of unity.]

Remark 1.2.6. Given a holomorphic framing we may apply the Gram-Schmidt or-

thogonalization process to obtain a unitary frame (possibly after shrinking U).

Definition 1.2.7. A connection on E is a mapping

D : E0
X(E) → E1

X(E)
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satisfying the Leibniz rule

D(f α) = df ⊗ α + f Dα (1.2.8)

for all smooth functions f ∈ E0
X and smooth sections α ∈ E0

X(E).

Definition 1.2.9. Fix a (smooth) framing {e1, . . . , er} of E over U . The local

connection 1-forms θab ∈ E1
X(U) (with respect to the local framing) are defined by

Dea = θba ⊗ eb. Together the Leibniz rule (1.2.8) and the local connection 1-forms

determine the connection D on U .

Definition 1.2.10. The Chern connection is the unique connection on E → X

satisfying the following conditions:

(i) The natural map E0
X(E)

D→ E1
X(E) → E0,1

X (E) is given by ∂.

(ii) The hermitian metric is parallel: d(α, β) = (Dα, β) + (α,Dβ) for all sections

α, β.

Exercise 1.2.11. Show that the hermitian metric is parallel if and only if the local

connection 1-forms with respect to a local unitary frame satisfy 0 = θab + θba.

Lemma 1.2.12. The Chern connection 1-forms with respect to a local holomorphic

framing {e1, . . . , er} over U ⊂ X are given by θca = (∂hab)(h
−1)bc ∈ E1,0

X (U), where

hab = h(ea, eb).

Definition 1.2.13. The connection induces a mapping D : EkX(E) → Ek+1
X (E) by

setting D(ϕ⊗α) = dϕ⊗α+(−1)kϕ⊗Dα for all smooth k-forms ϕ ∈ EkX and sections

α ∈ E0
X . The curvature of the connection is the induced map D2 : E0

X(E) → E2
X(E).

Exercise 1.2.14. Show that the curvature D2 : E0
X(E) → E2

X(E) is a E0
X-linear

operator. That is, the map is induced by a bundle mapping E →
∧2(TX)∨ ⊗ E.3

3Here (TX)∨ is the real cotangent bundle, the cotangent bundle with respect to underlying

smooth manifold structure, not the holomorphic co-tangent bundle T∨
X of §1.1.2.
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Exercise 1.2.15. Given a local framing {ej} ∈ E0
X(E)(U), define Θi

j ∈ E2
X(U) by

D2ej = Θi
j ⊗ ei. These forms are the coefficients curvature matrix Θ = (Θi

j) of D

with respect to {ej}.

(a) If {e′j}E0
X(E)(U) is a second framing, then e′j = gij ei for some gij ∈ E0

X(U). Show

that Θ′ = gΘg−1.

(b) Show that Cartan’s structure equation Θ = dθ − θ ∧ θ holds.

1.2.2 Kähler manifolds

Let X be a complex manifold with complex structure J : TX → TX. Here TX is

the real tangent bundle, to be distinguished from the holomorphic tangent bundle TX

of §1.1.2. The two are related by the decomposition of the complexification TX ⊗
C = TX ⊗ TX into J–eigenbundles; the holomorphic tangent bundle TX is the +i–

eigenbundle. In a mild abuse of notation, we will regard T∨
X as a subspace of T∨X⊗C.

Definition 1.2.16. We say X is hermitian if the holomorphic tangent bundle TX is

equipped with a hermitian metric h. This metric is naturally regarded as a tensor

h ∈ T∨
X ⊗ T∨

X ⊂ T∨X ⊗ C; locally we write h = habdz
a ⊗ dzb.

Remark 1.2.17. The take-away from HW 1.2.18 and 1.2.19 is that a hermitian

manifold (X, h) is equivalent to the data of a Riemannian manifold (X, g) equipped

with an (integrable) complex structure J that is an isometry of the metric g; and

together the Riemannian metric and complex structure define a positive (1, 1)-form

ω(u, v) = −g(u, Jv).

Exercise 1.2.18. Let h be a hermitian metric on X. Define g = Reh = 1
2
(h + h)

and ω = −Imh = i
2
(h− h).

(a) Show that g is a Riemannian metric on X.

(b) Show that J is an isometry of g; that is, g(u, v) = g(Ju, Jv).

(c) Show that ω(u, v) = −g(u, Jv).

20



Exercise 1.2.19. Fix a Riemannian metric g on X, and assume that J is an isometry

of the metric; that is, g(u, v) = g(Ju, Jv). Define ω(u, v) = −g(u, Jv).

(a) Show that ω is a real (1, 1)-form.

(b) Show that ω is positive. That is, ω is a real (1, 1)-form satisfying ω(v, Jv) > 0

for all nonzero v ∈ TX; equivalently, −iω(u, u) > 0 for all nonzero u ∈ TX .

(c) Show that h = g − iω is a hermitian metric.

Definition 1.2.20. The hermitian manifold (X, h) is Kähler if dω = 0. In this case

we say that ω is the Kähler form ω.

Exercise 1.2.21 (Fubini–Study metric). Let (u0 : · · · : un) be homogeneous coordi-

nates on Pn. Let Uj = {uj ̸= 0} ⊂ Pn.

(a) Show that the ωj = i∂∂ log
∑n

k=0 |uk/uj|2 ∈ E1,1
Pn (Uj) agree on intersections, and

so define a closed (1, 1)–form ω on Pn.

(b) Show that ω is a Kähler form. (The associated metric is the Fubini-Study metric

on Pn.)

Exercise 1.2.22. Show that every complex submanifold Y ⊂ X of a Kähler manifold

is also Kähler.

Exercise 1.2.23. Show that (X, h) is hermitian if and only if J is parallel with

respect to the Levi-Civita connection of g. That is, Kähler manifolds are Riemannian

manifolds (M, g) with dimRM = 2n and holonomy group contained in U(n).

1.3 Line bundles and divisors

Let X be a complex manifold, O×
X the sheaf of no-where vanishing holomorphic

functions (the units in OX), and M×
X the sheaf of meromorphic functions that are

not identically zero (the units in MX).

Given an open cover {Uα} of X we set Uαβ = Uα ∩ Uβ.
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Definition 1.3.1. A (holomorphic) line bundle is a submersion π : L→ X of complex

manifolds s.t. each fibre Lx = π−1 is canonically a one-dimensional vector space

over C, and there exists an open cover {Uα} of X and local trivializations given by

biholomorphisms

π−1(Uα) Uα × C

Uα

φα

π

so that φα : Lx → {x} ×C is an isomorphism of C vector spaces for all x ∈ Uα. This

definition implies that we have transition functions gαβ ∈ O×
X(Uαβ) so that

φβ ◦ φ−1
α (x, v) = (x, gαβ(x)v)

for all x ∈ Uαβ = Uα ∩ Uβ. Note that {gαβ} ∈ H1(X,O×
X).

Exercise 1.3.2. (a) Given a collection {gαβ ∈ O×
X(Uαβ)} such that gαα = 1 and

gαβ gβγ gγα = 1, show that there exists a line bundle with these transition func-

tions.

(b) Show that the line bundle is trivial if there exists hα ∈ O×
X(Uα) so that gαβ =

hβ/hα.

Remark 1.3.3. It follows that the Picard group of line bundles on X is Pic(X) =

H1(X,O×
X).

Exercise 1.3.4. Show that every line bundle admits a (smooth) hermitian metric h.

[Hint. partition of unity.]

Definition 1.3.5. The Chern form

c1(L, h) = − i

2π
∂∂ log h ∈ E1,1(X)

is determined as follows. Over Uα we have a holomorphic framing sα(x) = φ−1
α (x, 1)

of L, and hα(x) = h(sα(x)) > 0 is smooth. Define ∂∂ log hα = ∂∂ log hβ on Uαβ if

suffices to observe that sα(x) = φ−1
β (x, gαβ(x)1) = gαβ(x) sβ(x), so that hα = |gαβ|2hβ.
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Exercise 1.3.6. The tautological line bundle over Pn is

OPn(−1) = {(ℓ, v) ∈ Pn × Cn+1 s.t. v ∈ ℓ} .

If u = (u0 : · · · : un) are homogeneous coordinates, then sj =
1
uj
u is a holomorphic

framing of OPn(−1) over Uj = {uj ̸= 0} ⊂ Pn.

(a) Show that |sj|2 = | 1
uj
u|2 is a globally well-defined hermitian metric on OPn(−1).

(b) What is the relationship between the Chern form c1(OPn(−1), h) and the Kähler form

of the Fubini-Study metric (HW 1.2.21)?

Exercise 1.3.7. Show that the de Rham cohomology class [c1(L, h)] ∈ H2
d(X,R) is

independent of h. Let c1(L) ∈ H2
d(X,R) denote this Chern class.

Exercise 1.3.8. Suppose that ω is a real closed (1, 1)–form representing the first

Chern class c1(L). Use the ∂∂-lemma (HW 2.2.10) to show that there exists a metric

h on L so that ω = c1(L, h).

Remark 1.3.9. It is a consequence consequence of the Hodge decomposition (§2.2)
on a compact Kähler manifold is that the set of Chern classes coincides withH2(X,Z).

Definition 1.3.10. A hypersurface is an irreducible complex analytic space V ⊂ X

with dimV = dimX − 1.

Exercise 1.3.11. (a) Prove that Ix(V ) = (f) for some f ∈ OX,x. [Hint. §A.3.2.]

(b) Prove that Ix′(V ) = (f) for every x′ sufficiently close to x.

(c) Conclude that there exists an open cover {Uα} of X and f ∈ OX(Uα) so that

V ∩ Uα = {fα = 0}. These are the local defining equations of V .

(d) Suppose that x ∈ Uαβ and g ∈ OX,x is not identically zero. Define 0 ≤ kα, kβ ∈ Z
and hα, hβ ∈ O×

X,x by specifying g = hα, f
kα
α = hβ f

kβ
β . Prove that kα = kβ.

Conclude that ordV (g) = kα, the order of vanishing of g along V , is well-defined.

If f ∈ M×
X,x is not identically zero, then f = g/h, with neither of g, h ∈ OX,x

identically zero, and we define ordV (f) = ordV (g)− ordV (h).
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Definition 1.3.12. A divisor is any (locally finite) formal linear combination D =∑
niVi with ni ∈ Z. The group of all divisors is

Div(X) = H0(X,M×
X/O

×
X) .

The divisor is effective (written D ≥ 0) if ni ≥ 0. Every (nonzero) meromorphic

function f on X determines a divisor

(f) =
∑
V

ordV (f)V .

These are the principal divisors Div0(X) = {(f) s.t. f ∈ M×
X(X)}. The divisor (f)

is effective if and only if f is holomorphic. We say two divisors are linearly equivalent

(written D1 ∼ D2) if D1 −D2 ∈ Div0(X). The divisor class group is the associated

group of equivalence classes

Cl(X) = Div(X)/Div0(X) .

Remark 1.3.13. Fix a hypersurface V ⊂ X. The linear functional ϕ 7→
∫
V
ϕ on

H2n−2(X,Z) determines a homology class (V ) ∈ H2n−2(X,Z). The Poincaré dual

πV ∈ H2(X,C) is the fundamental class of V . It may be shown that πV = c1([V ]),

cf. [GH94].

Exercise 1.3.14. Show that the line bundle associated to the divisor Pn−1 ⊂ Pn is

[Pn−1] = OPn(1)
dfn
=== OPn(−1)∨.

Exercise 1.3.15. (a) Show that the line bundle [D] is trivial if and only if D ∈
Div0(X).

(b) Show that [D1 +D2] = [D1]⊗ [D2].

Conclude that [·] : Cl(X) → Pic(X) is a well-defined morphism.

Exercise 1.3.16. (a) Let s be a meromorphic section of L. Prove that [(s)] = L.

(b) Show that [D] has a meromorphic section s with divisor (s) = D.
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(c) Show that the space H0(X, [D]) of holomorphic sections of [D] may be identified

with the space of meromorphic functions f on X such that (f) +D ≥ 0.

Remark 1.3.17. If X is projective, then every line bundle L→ X admits a nonzero

meromorphic section. In this case, every line bundle can be realized as the line bundle

L = [D] = [(s)] associated to a divisor. So, whenX is projective, [·] : Cl(X) → Pic(X)

is an isomorphism. However, Kleiman has exhibited a complete, non-projective 3-

dimensional, irreducible scheme that is equipped with a line bundle having no nonzero

rational section [Har70, Example 1.3].

Exercise 1.3.18. Fix two effective divisors D1 and D2, and set D = D1 −D2.
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Chapter 2

Hodge theory

2.1 Hodge theory on complex manifolds

Recommended reference: [Ara12, GH94, Huy05]; also [Gre94, Lectures 1 & 2] for a

nice overview.

Assume X is a compact, complex manifold.

2.1.1 de Rham cohomology

Harmonic representatives of de Rham cohomology

Definition 2.1.1. A choice of hermitian metric on X determines

(a) a hermitian product (α, β) 7→
∫
X
(α, β) dvol on the space H0(X, EX) of global

sections of differential forms EX = ⊕EkX ;

(b) a Hodge ∗ operator Ep,qX → En−p,n−qX by (α, β)dvol = α ∧ ∗β, and satisfying

∗2 = (−1)p+q Id; and

(c) an adjoint

d∗ = − ∗ d∗ : H0(X, Ek+1
X ) → H0(X, EkX)

to the exterior derivative d : H0(X, EkX) → Ek+1
X , also satisfying (d∗)2 = 0.
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The Laplacian is the self-adjoint ∆d = (d + d∗)2 = dd∗ + d∗d. The kernel

H = ker{∆d : H0(X, EX) → H0(X, EX)}

is the space of harmonic forms. (Note that the definition of the harmonic forms

depends on the choice of Hermitian metric.)

Theorem 2.1.2 (Hodge1). We have a decomposition of the k-forms

H0(X, EkX) = Hk ⊕ dH0(X, Ek−1
X ) ⊕ d∗H0(X, Ek+1

X ) ,

and the closed forms are ker d = Hk ⊕ dH0(X, Ek−1
X ). In particular, each de Rham

cohomology class admits a unique harmonic representative, and Hk
d(X,C) is canon-

ically isomorphic to Hk. This implies that Hk
d(X,C) is finite dimensional, as Hk is

the solution space of an elliptic differential operator.

de Rham’s theorem

Let EkX be the sheaf of smooth, C-valued, differential k-forms. The space of globally

defined forms is naturally identified with the 0-th sheaf cohomology group EkX(X) =

H0(X, EkX). These sheaves are fine, because X admits partitions of unity. Conse-

quently the sheaf cohomology groups in positive degree vanish: Hq(X, EkX) = 0. Then

de Rham’s theorem asserts that the singular cohomology with complex coefficients

(left-hand side) is given by the de Rham cohomology (right-hand side)

Hk(X,C) = Hk
d(X,C)

dfn
===

ker{d : H0(X, EkX) → H0(X, Ek+1
X )}

im{d : H0(X, Ek−1
X ) → H0(X, EkX)}

.

2.1.2 Dolbeault cohomology

Harmonic representatives

Definition 2.1.3. Define an adjoint

∂∗ = − ∗ ∂∗ : H0(X, Ep,q+1
X ) → H0(X, Ep,qX )

1Hodge’s initial arguments were completed in Kodaira and others in the 1940s.
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to the Dolbeault differential ∂ : H0(X, Ep,qX ) → H0(X, Ep,q+1
X ), a Laplacian ∆∂ =

∂ ∂∗ + ∂∗∂ and the corresponding space of harmonic forms

Hp,q dfn
=== ker{∆∂ : H

0(X, Ep,qX ) → H0(X, Ep,qX )} .

Theorem 2.1.4. We have a decomposition of the (p, q)-forms

H0(X, Ep,qX ) = Hp,q ⊕ ∂H0(X, Ep,q−1
X ) ⊕ ∂∗H0(X, Ep,q+1

X ) ,

and the ∂-closed forms are ker ∂ = Hp,q ⊕ ∂H0(X, Ep,q−1
X ). As a corollary, Hp,q

∂
(X,C)

is finite dimensional.

Remark 2.1.5. The Hodge ∗ operator commutes with ∆∂, and so induces the

Kodaira–Serre isomorphism

∗ : Hp,q → Hn−p,n−q .

Dolbeault’s theorem

The complex structure on X induces a decomposition EkX = ⊕p+q=k Ep,qX . The sheaves

Ep,qX are also fine. The exterior derivative d : EkX → Ek+1
X decomposes as d = ∂ + ∂

with ∂ : Ep,qX → Ep+1,q
X and ∂ : Ep,qX → Ep,q+1

X . Let Ωp
X = ker{∂ : Ep,0X → Ep,1X } denote

the sheaves of holomorphic p-forms. The Dolbeault theorem asserts that the sheaf

cohomology (left-hand side) is given by Dolbeault cohomology (right-hand side)

Hq(X,Ωp
X) = Hp,q

∂
(X,C) dfn

===
ker{∂ : H0(X, Ep,qX ) → H0(X, Ep,q+1

X )}
im{∂ : H0(X, Ep,q−1

X ) → H0(X, Ep,qX )}
.

For a proof see Example 5.4.21 and Example A.4.13.

Definition 2.1.6. Given a holomorphic vector bundle E → X, let OX(E) denote the

sheaf of holomorphic sections, and let Ep,qX (E) denote the sheaf of smooth, E-valued,

(p, q)-forms on X.

Exercise 2.1.7. Show that:
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(a) The operator ∂ : Ep,qX → Ep,q+1
X naturally induces a well-defined operator ∂E :

Ep,qX (E) → Ep,q+1
X (E) satisfying ∂2E = 0. Consequently we have a well-defined

Dolbeault cohomology groups

Hp,q

∂
(X,E)

dfn
===

ker{∂ : H0(X, Ep,qX (E)) → H0(X, Ep,q+1
X (E))}

im{∂ : H0(X, Ep,q−1
X (E)) → H0(X, Ep,qX (E))}

(b) The kernel of ∂ : E0
X(E) → E0,1

X (E) is OX(E).

Remark 2.1.8. The Dolbeault theorem generalizes to vector-bundle valued forms:

the sheaf cohomology (left-hand side) is given by

Hq(X,Ωp ⊗O(E)) = Hp,q

∂
(X,E) . (2.1.9)

2.2 Hodge theory on Kähler manifolds

In general, the two operators ∆d and ∆∂ are completely unrelated. However, if the

compact, complex manifold X is also Kähler (§1.2.2), then

∆ = 2∆∂ = 2∆∂ . (2.2.1)

As a corollary

Hk =
⊕
p+q=k

Hp,q and Hp,q = Hq,p ,

and we have the Hodge decomposition

Hk
d(X,C) =

⊕
p+q=k

Hp,q(X) ,

with Hp,q(X) the de Rham cohomology classes that can be represented by (p, q)–

forms.

Remark 2.2.2. The cohomology groups Hk
d(X,C) are topological invariants of X.

The Hodge decomposition depends on the complex structure. While the definition of

harmonic forms depends on the metric, the Hodge decomposition does not.
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Example 2.2.3 (Hodge numbers of projective space). We have

Hk(Pn,Z) =

{
Z , k ≡ 0 mod 2 ,

0 , k ≡ 1 mod 2 .

To see this note that Pn = Cn ⊔ Pn−1 is a CW-complex with exactly one cell in each

degree 2k for each 0 ≤ k ≤ n, and no cells in odd degree. The attaching maps are

zero, and the claim follows. It follows that the Hodge numbers are

hp,q(Pn) = δpq ,

for all 0 ≤ p, q ≤ n, and zero otherwise.

Example 2.2.4 (Hodge numbers of complex tori). Fix a complex torus X = Cg/Λ;

here Z2g ≃ Λ ⊂ Cg is a lattice. If (z1, . . . , zg) are complex coordinates on Cg,

then h =
∑

dza ∧ dza is a hermitian metric on X. Writing za = xa + iya, the

associated Riemannian metric and positive (1, 1)–form (of HW 1.2.18) are g = Reh =∑
(dxa ⊗ dxa + dya ⊗ dya) and ω = −Imh = 2

∑
dxa ∧ dya.

It is clear that dω = 0, so that X is a Kähler manifold.

The holomorphic 1-forms on X are H1,0(X) = span{dz1 . . . , dzg}. The Hodge

decomposition on H1(X,Z) determines the Hodge decomposition on Hk(X,Z) =∧kH1(X,Z):

Hp,q(X) = (
∧pH1,0(X))⊗ (

∧qH0,1(X)) and hp,q =

(
g

p

)(
g

q

)
=

(
g

p

)2

.

Exercise 2.2.5. Let X be a compact Kähler manifold. Show that the holomorphic

forms are harmonic.

Remark 2.2.6. The equation (2.2.1) is one of the so-called Kähler identities. An

important consequence of the identities is that ω ∧ η is harmonic whenever η is. In

particular, 0 ̸= ωk is harmonic for all 1 ≤ k ≤ dimX. An other useful Kähler identity

is

0 = ∂∗ ∂ + ∂ ∂∗ .
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Exercise 2.2.7. Let X be a compact Kähler manifold. Prove that the odd Betti

numbers are even, and the even Betti numbers are positive.

Remark 2.2.8. Hopf manifolds violate both these constraints on the Betti numbers,

and this is how one sees that they are non-Kähler complex manifolds.

Exercise 2.2.9. Let i : Y ↪→ X be a complex submanifold. Use the fact that i∗ω is

a Kähler form on Y to show that Y is not null-homologous in X.

Exercise 2.2.10 (∂∂-lemma). Let X be a compact Kähler manifold and η a closed

(p, q)-form. Prove that the following are equivalent:

(a) η is d-exact.

(b) η is ∂-exact.

(c) η is ∂-exact.

(d) η = ∂∂ρ. And if η is real, then ρ may be chosen so that iρ is also real.

Remark 2.2.11. The Hodge theory of the ∂ operator extends to Hermitian vec-

tor bundles E → X. There is a well-defined ∂E-Laplacian ∆∂E
on EkX(E) and

a notion of ∂E-harmonic sections Hp,q(E) = ker∆∂E
⊂ H0(X, Ep,qX (E)) yielding

Hp,q(E) = Hp,q

∂
(X,E). Consequences of this Hodge theory include Kodaira–Serre

duality (§A.3.12) and the Kodaira vanishing theorem (§A.3.10).

2.2.1 Example: Hodge numbers of a projective hypersurface

Let X ⊂ Pn+1 be a smooth projective hypersurface of degree d. The Hodge numbers

hp,q(X) = dimCH
p,q(X) may be computed from the Lefschetz hyperplane theorem,

Kodaira–Serre duality, and the Riemann–Roch–Hirzebruch theorem [Hir66]. (This

discussion follows the on-line notes of L.I. Nicolaescu.)

First, Example 2.2.3 and the Lefschetz hyperplane theorem (§A.3.7) imply hp,q(X) =

δp,q for all p + q < n. Then Kodaira–Serre duality (§A.3.12) implies hp,q(X) = δpq
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for all p + q > n. It remains to compute hp,q(X) for p + q = n. In this section we

will sketch how this may be done with the Riemann–Roch–Hirzebruch formula. The

approach of yields a generating function, from which extracting the Hodge numbers

is laborious. In §5.4.5 we will discuss a more computationally amenable approach via

the Jacobian ring.

Note that

χ(X,Ωp
X) =

∑
q≥0

(−1)q hp,q =

{
(−1)p + (−1)n−p hp,n−p , n ̸= 2p ,

(−1)p hp,p , n = 2p .
(2.2.12)

So we need to compute

χy(X)
dfn
===

∑
p≥0

yp χ(X,Ωp
X) =

∑
p,q≥0

(−1)q hp,q yp .

Set

chy(T
∨
X) =

∑
p≥0

yp ch(Ωp
X) .

Then the Riemann–Roch–Hirzebruch formula (§A.3.15) yields

χy(X) =
∑
p≥0

yp χ(X,Ωp
X) = ⟨td(X) chy(T

∨
X) , [X]⟩ . (2.2.13)

We compute td(X) as follows. Let H = OPn+1(1), and set h = c1(H) = c1(Pn).
Then ch(dH) = edh. The adjunction formula (§A.3.6) dH|X = NX and SES

0 → TX → TPn+1|X → dH|X → 0

and (A.3.15) yield

td(X) td(dH|X) = td(TPn+1 |X) .

To compute td(TPn+1), let Cn+2 → Pn+1 be the trivial line bundle, and define Q =

Cn+2/H∨. Then TPn+1 = H → Q, and we have a SES

0 → C → Hn+2 → TPn+1 → 0 . (2.2.14)
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Then (A.3.15) implies

td(TPn+1) = td(H)n+2 =

(
h

1− e−h

)n+2

,

so that

td(X) =

(
h

1− e−h

)n+2 ∣∣∣∣
X

1− e−dh

dh

∣∣∣∣
X

. (2.2.15)

We compute chy(T
∨
X) as follows. The SES

0 → TX → TPn+1|X → NX ≃ dH|X → 0

and (A.3.15) yield

chy(T
∨
X) = chy(T

∨
Pn+1)|X chy(−dH)−1|X .

Dualizing the SES (2.2.14), and again applying (A.3.15), we have

chy(T
∨
Pn+2) =

(1 + ye−h)n+2

1 + y
.

So

chy(T
∨
X) =

(1 + ye−h)n+2

(1 + y)(1 + ye−dh)

∣∣∣∣
X

. (2.2.16)

All together (2.2.13), (2.2.15) and (2.2.16) yield

χy(X) =

〈(
h

1− e−h

)n+2
1− e−dh

dh

(1 + ye−h)n+2

(1 + y)(1 + ye−dh)
, [X]

〉

Since dh is Poincaré dual to [X], we may rewrite this as

χy(X) =

〈
hn+2

(
1 + ye−h

1− e−h

)n+2
(1− e−dh)

(1 + y)(1 + ye−dh)
, [Pn+1]

〉

It follows that χy(X) is the coefficient of z−1 in the Laurent expansion of

f(z) =

(
1 + ye−z

1− e−z

)n+2
(1− e−dz)

(1 + y)(1 + ye−dz)
.
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By the residue formula, this is

χy(X) =
1

2πi

∫
|z|=ε

f(z)dz

The change of variables ζ = 1− e−z yields e−dz = (1− ζ)d and −dz = d log(1− ζ) =

−(1− ζ)−1dζ. And

χy(X) =
1

2πi

∫
Cε

(1 + y(1− ζ))n+2

ζn+2 (1− ζ)

(1− (1− ζ)d)

(1 + y)(1 + y(1− ζ)d)
.dζ

The integrand

g(ζ) =
(1− (1− ζ)d)

ζn+2 (1− ζ)

(1 + y(1− ζ))n+2

(1 + y)(1 + y(1− ζ)d)

has a pole of order n+ 1 at ζ = 0. Set

h(ζ) = ζn+1 g(ζ) =
(1− (1− ζ)d)

ζ (1− ζ)

(1 + y(1− ζ))n+2

(1 + y)(1 + y(1− ζ)d)
,

so that

χy(X) =
h(n)(0)

n!
. (2.2.17)

Example 2.2.18 (Planar curve). Let n = 1, so that X ⊂ P2 is a planar curve of

degree d. Then (2.2.12) and (2.2.17) yield

χy(X) = (1− g) + (g − 1) y = 1
2
d(d+ 3)(y − 1) ,

and we recover the degree–genus formula (§A.1.2)

g = 1
2
(d− 1)(d− 2) .

Exercise 2.2.19. Let n = 2, so that X ⊂ P3 is a surface of degree d. Show that the

Hodge numbers are

h2,0(X) = h0,2(X) = 1
6
(d− 1)(d− 2)(d− 3)

h1,1(X) = 1
3
d(2d2 − 6d+ 7) .
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2.2.2 Example: Hodge numbers of a complete intersection

curve

Let C ⊂ P3 be the complete intersection of two curves of degrees d1 and d2. The

adjunction formula (§A.3.6) yields NC = (d1H ⊕ d2H)|C . The SES

0 → TC → TP3|C → (d1H ⊕ d2H)|C → 0

and (A.3.15) yield

1 + c1(TC) = ch(TC) = ch(TP3)|C − ch(d1H)|C − ch(d2H)|C .

The SES (2.2.14), with n = 2 yields ch(TP3) = 4eh − 1, so that

1 + c1(TC) = (4eh − 1− ed1h − ed2h)|C .

Then e(C) = c1(TC) = (4− d1 − d2)h|C , and

χ(C) = ⟨e(C) , [C]⟩ = ⟨(4− d1 − d2)h|C , [C]⟩ .

Since [C] is Poincaré dual to d1d2h
2, we may rewrite this as

χ(C) = ⟨(4− d1 − d2)d1d2h
3 , [P3]⟩ = (4− d1 − d2)d1d2 .

We deduce

g(C) = 1 + 1
2
(d1 + d2 − 4)d1d2 .

This may be reinterpreted as a special case of the genus formula (§A.2.5) for a curve

on a surface.

Remark 2.2.20. The arguments above may be generalized. Let Xn ⊂ Pn+k be

a complete intersection of hypersurfaces of degrees d1, . . . , dk. Then Hirzebruch’s

signature formula [Hir66] is

∞∑
n=0

χy(X,OX(m)) zk+n =
(1 + zy)m−1

(1− z)m+1

k∏
j=1

(1 + zy)dj − (1− z)dj

(1 + zy)dj + (1− z)dj
(2.2.21)

Taking m = 0 we have

∞∑
n=0

χy(X,OX) z
k+n =

1

(1 + zy)(1− z)

k∏
j=1

(1 + zy)dj − (1− z)dj

(1 + zy)dj + (1− z)dj
. (2.2.22)

35



2.2.3 Primitive cohomology

Definition 2.2.23. Let (X,ω) be a compact Kähler manifold of dimension n. The

primitive cohomology is

P n−k(X) = ker{ωk+1 : Hn−k(X) → Hn+k+2(X)} ,

and inherits the Hodge decomposition

Pm(X) =
⊕
p+q=m

P p,q(X) , where P p,q(X) = P p+q(X) ∩Hp,q(X) .

Theorem 2.2.24 (Hard Lefschetz). The map ωk : Hn−k(X) → Hn+k(X) is an

isomorphism.

Corollary 2.2.25 (Lefschetz decomposition). We have

Hm(X) =
⊕

0≤k≤m/2

ωk ∧ Pm−2k(X) .

Exercise 2.2.26. Show that the Betti numbers of a compact Kähler manifold satisfy

bk(X) ≥ bk−2(X) for all k ≤ dimX.

Remark 2.2.27 (Geometric interpretation). Let ω be the Fubini-Study (1, 1) form on

Pm (HW 1.2.21). It can be shown that [ω] ∈ H2(Pm) is Poincaré dual to the homology

class [Pm−1] ∈ H2m−2(Pm), cf. Remark 1.3.13, and Exercises 1.3.6 and 1.3.14.

Let i : X ↪→ Pm be a nonsingular projective variety of dimension d. Then

ωX = i∗ω is Poincaré dual to the homology class [H] ∈ H2d−2(X) of the hyperplane

section H = X ∩ Pm−1. (Bertini’s theorem (§A.3.4) assures us H will be smooth for

generic choice of Pm−1.) Duality gives the hard Lefschetz theorem the following dual

formulation: the operation of intersecting with Pm−k ⊂ Pm defines an isomorphism

Hn+k(X,C) → Hn−k(X,C).
Poincaré duality identifies the primitive cohomology P n−k(X) with the subgroup

of (n−k) cycles that do not intersect H. This is the image of the map Hn−k(X\H) →
Hn−k(X). Regarding Pm−1 ⊂ Pm as the “hyperplane at infinity”, we call these the

finite cycles.
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Definition 2.2.28. Suppose n = k + ℓ, with k, ℓ ≥ 0. Define a bilinear pairing

Q : Hk(X)⊗Hk(X) → C by

Q(α, β) = (−1)k(k−1)/2

∫
X

α ∧ β ∧ ωℓ .

Exercise 2.2.29. Prove that Q(α, β) = (−1)kQ(β, α).

Theorem 2.2.30 (Hodge–Riemann bilinear relations).

Q(Hp,q, Hr,s) = 0 , if (p, q) ̸= (s, r) ,

ip−qQ(α, α) > 0 for all 0 ̸= α ∈ P p,q(X) ⊂ Pm(X) .

Exercise 2.2.31 (Hodge Index Theorem for surfaces). Let X be a Kähler manifold

of dimension 2. Show that Q has signature (1 + 2 dimH2,0(X) , dimH1,1(X)− 1).

Exercise 2.2.32 (Hodge filtration). Define a filtration F k ⊂ F k−1 ⊂ · · ·F 1 ⊂ F 0 =

Pm(X) by specifying

F k dfn
=== Pm,0(X) ⊕ Pm−1,1(X) ⊕ · · · ⊕ P k,m−k(X) .

(a) Prove that F k ∩ Fm−k = P k,m−k(X).

(b) Show that the first Hodge–Riemann bilinear relation is equivalent toQ(F k, Fm−k+1) =

0.

Definition 2.2.33. The Kähler manifold (X,ω) is Hodge if ω ∈ H2(X,Z). In this

case the primitive cohomology P (X) has the structure of a vector space over Q.

Example 2.2.34. Since H2(Pn,Z) = Z (Example 2.2.3), the Kähler form associated

with the Fubini-Study metric (HW 1.2.21) is proportional to an integral form. So

Pn is a Hodge manifold. Since the property of being Hodge is inherited by complex

submanifolds Y ⊂ X, it follows that every projective manifold X ⊂ P is Hodge.
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2.2.4 Example: abelian varieties

Suppose (X = Cg/Λ, ω) is an abelian variety (Theorem 1.1.32). Fix a basis {λ1, . . . , λ2g} ⊂
Λ ≃ H1(X,Z). Let (u1, . . . , u2g) : Cg → R2g be the dual R-coordinates of Hk(X,Z).
Then {duj}2gj=1 ⊂ H1(X,Z) is dual to the {λj}2gj=1. Define a skew-symmetric matrix

R = (rij) ∈ GL2g(Z) by ω = 1
2

∑
rijdui ∧ duj.

Exercise 2.2.35 (Smith normal form). (a) Show that there exists a choice of basis

{λj}2gj=1 so that

R =

[
0 −∆

∆ 0

]
, ∆ =


δ1

. . .

δg

 ,

with 0 < δi ∈ Z and δa|δa+1.

(b) Show that (δ1, . . . , δg) is an invariant of ω; that is, does not depend on the choice

of normalizing basis.

Assume this normalization is in effect.

The polarized Hodge structure

Note that {δ−1
1 λ1, . . . , δ

−1
g λg} is a complex basis of Cg. And

λ1
...

λg

λg+1

...

λ2g


=

[
∆

P

] 
δ−1
1 λ1
...

δ−1
g λg

 ,

with P = (pab) ∈ GLgC.
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Let (z1, . . . , zg) be the complex coordinates dual to the basis {δ−1
a λa}. Using

dza = δa dua+
∑
pab dub+g, one may check that the polarization on H1(X,Z) satisfies

Q(dza, dzb) = |δ|(pba − pab) and Q(dza, dzb) = |δ|(pab − pab) ,

where |δ| = δ1 · · · δg. The Hodge–Riemann bilinear relations (Theorem 2.2.30) then

force P to be symmetric with ImP positive definite, cf. Example 2.3.16.

Remark 2.2.36. Conversely, any symmetric P̃ , with Im P̃ positive definite, defines

a Hodge decomposition on HZ = H1(X,Z) with H̃1,0 = spanC{δa dua+
∑
p̃ab dub+g}.

Theta divisor

Definition 2.2.37. We call (δa)
g
a=1 the polarization type of (X,ω), and say that X

is principally polarized if all δa = 1.

Theorem 2.2.38 ([Mum08]). The polarization type (Definition 2.2.37) uniquely de-

termines the polarizing/ample line bundle L on X, up to translation, and dimH0(X,L) =

δ1 · · · δg.

Definition 2.2.39. If X is principally polarized, then the theta divisor PH0(X,L)

is uniquely determined up to translation.

2.3 Hodge structures

Fix a lattice HZ ≃ Zr of rank r. Given a field Q ⊂ k ⊂ C, let Hk = HZ ⊗Z k be the

associated vector space of dimension r. Fix an integer n ∈ Z and a non-degenerate

bilinear form

Q : HQ ×HQ → Q

that is (skew-)symmetric

Q(u, v) = (−1)nQ(v, u) , for all u, v ∈ HQ .
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Let Aut(H) ≃ GLr be the group of invertible linear maps H → H, and let End(H) ≃
glr be the Lie algebra of linear maps H → H. Let

G = Aut(H,Q) = {g ∈ Aut(H) | Q(gu, gv) = Q(u, v) , ∀ u, v ∈ H} (2.3.1)

be the Q-algebraic subgroup of automorphisms preserving Q, and let

g = End(H,Q) = {ξ ∈ End(H) | Q(ξu, v) +Q(u, ξv) = 0 , ∀ u, v ∈ H} (2.3.2)

be its Lie algebra.

Definition 2.3.3. A (pure, rational) Hodge structure of weight n ∈ Z on the lattice

HZ is given by either of the following two equivalent objects: A Hodge decomposition

HC
dfn
=== HZ ⊗Z C =

⊕
p+q=n

Hp,q , such that Hp,q = Hq,p . (2.3.4)

A (finite, decreasing) Hodge filtration

0 ⊊ Fm ⊂ Fm−1 ⊂ · · · ⊂ F n−m+1 ⊊ F n−m = HC , (2.3.5)

with ℓ = 2m− n ≥ 0 the level of the Hodge structure, and such that

HC = F k ⊕ F n+1−k .

The equivalence of the two definitions is given by

F k =
⊕
p≥k

Hp,n−p and Hp,q = F p ∩ F q .

The Hodge numbers h = (hp,q) and f = (fp) are

hp,q = dimCH
p,q and fp = dimC F

p .

The Hodge structure is effective if hp,q ̸= 0 implies both p, q ≥ 0. In this case n ≥ 0,

and the Hodge filtration is usually expressed as 0 ⊂ F n ⊂ F n−1 ⊂ · · · ⊂ F 1 ⊂ F 0 =

HC.
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Example 2.3.6. The Tate Hodge structure the pure, weight n = −2 Hodge structure

on the lattice Z(1) dfn
=== 2πiZ ↪→ C. Likewise, Z(m) is the pure, weight n = −2m

Hodge structure on the lattice Z(m)
dfn
=== (2πi)mZ ↪→ C.

Example 2.3.7 (effective, weight one). An effective, weight n = 1 Hodge structure

is given by a subspace H1,0 = F 1 ⊂ HC such that HC = H1,0 ⊕H1,0. We will denote

the Hodge numbers h = (h1,0, h0,1) = (g, g). The Hodge filtration is F 1 = H1,0. For

a geometric example, see Example 2.2.4.

Example 2.3.8 (effective, weight two). An effective, weight n = 2 Hodge structure

is given by subspaces H2,0 ⊕H1,1 ⊂ HC so that H1,1 = H1,1 and HC = H2,0 ⊕H1,1 ⊕
H2,0. We will denote the Hodge numbers h = (h2,0, h1,1, h0,2) = (a, b, a). The Hodge

filtration is F 2 = H2,0 and F 1 = H2,0 ⊕H1,1.

Example 2.3.9 (effective, weight three). An effective, weight n = 3 Hodge structure

is given by subspaces H3,0 ⊕ H2,1 ⊂ HC so that HC = H3,0 ⊕ H2,1 ⊕ H2,1 ⊕H3,0.

We will denote the Hodge numbers h = (h3,0, h2,1, h1,2, h0,3) = (a, b, b, a). The Hodge

filtration is F 3 = H3,0, F 2 = H3,0 ⊕H2,1, and F 1 = H3,0 ⊕H2,1 ⊕H1,2.

Remark 2.3.10. Note that (2.3.4) implies that dimH = 2g is even when n is odd.

Example 2.3.11 (compact Kähler manifolds). The n-th cohomology group H =

Hn(X,Q) of a compact Kähler manifold admits an effective Hodge structure of

weight n (§2.2). Here Hp,q = Hp,q(X) ⊂ Hn(X,C) are the de Rham cohomology

classes that can be represented by (p, q)–forms.

Remark 2.3.12. There are interesting and important Hodge structures that are not

effective. An important example is the induced weight zero Hodge structure on the

Lie algebra of the automorphism group (HW 2.3.24). We will see others when we

study mixed Hodge structures (Chapter 5). Regardless, every Hodge structure can

be converted to an effective Hodge structure via a Tate twist (Remark 2.3.21).
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Definition 2.3.13. The Hodge structure (Definition 2.3.3) is Q-polarized if the

Hodge–Riemann bilinear relations hold:

Q(Hp,q, Hr,s) = 0 if (p, q) ̸= (s, r) , (2.3.14)

ip−qQ(v, v̄) > 0 for all 0 ̸= v ∈ Hp,q . (2.3.15)

Example 2.3.16 (effective, weight one, polarized). The first Hodge–Riemann bi-

linear relation is Q(F 1, F 1) = 0. Note that F 1 is maximal with this property:

(F 1)⊥ = F 1. The second Hodge–Riemann bilinear relation is iQ(v, v̄) > 0 for all

0 ̸= v ∈ H1,0.

These PHS are realized geometrically by algebraic curves and abelian varieties

(Example 2.2.4).

Example 2.3.17 (effective, weight two, polarized). The first Hodge–Riemann bi-

linear relation is Q(F 2, F 1) = 0. In this case we have (F 2)⊥ = F 1. The second

Hodge–Riemann bilinear relation asserts that −Q(u, u) > 0 for all 0 ̸= u ∈ H2,0 and

Q(v, v) > 0 for all 0 ̸= v ∈ H1,1.

Example 2.3.18 (effective, weight three, polarized). The first Hodge–Riemann bilin-

ear relation is Q(F 2, F 2) = 0. Again, F 2 is maximal with this property: (F 2)⊥ = F 2.

The second Hodge–Riemann bilinear relation is −iQ(u, ū) > 0 for all 0 ̸= u ∈ H3,0,

and iQ(v, v̄) > 0 for all 0 ̸= v ∈ H2,1.

Example 2.3.19 (smooth projective varieties). Let X ⊂ PN be a projective manifold

of dimension d with hyperplane class ω ∈ H2(X,Z). Given n ≤ d, and keeping in mind

that X is Hodge (Definition 2.2.33), the primitive cohomology (Definition 2.2.23)

H = {α ∈ Hn(X,Q) | ωd−n+1 ∧ α = 0}

inherits the weight n Hodge decomposition

HC =
⊕
p+q=n

Hp,q(X) ∩HC

42



fromHn(X,Q). The Hodge–Riemann bilinear relations (Theorem 2.2.30) forX assert

that this Hodge structure is polarized by

Q(α, β) = (−1)n(n−1)/2

∫
X

α ∧ β ∧ ωd−n .

Exercise 2.3.20. Fix two lattices H1,Z and H2,Z. Set HZ = H1,Z ⊗ H2,Z. Given

Qj-polarized Hodge decompositions Hj,C = ⊕Hp,q
j of weight nj, show that

Hp,q =
⊕

p1 + p2 = p
q1 + q2 = q

Hp1,q1
1 ⊗Hp2,q2

2

defines a weight n = n1 + n2 Hodge decomposition HC = ⊕Hp,q that is polarized by

Q = Q1 ⊗Q2.

Remark 2.3.21. Recall the Tate Hodge structure (Example 2.3.6). Note that Z(m) =

Z(1)⊗m and Z(−m) = Z(−1)⊗m for all m ≥ 0. Moreover, given a weight n Hodge

structure on HZ, the induced Hodge structure on H(m)Z = HZ ⊗ Z(m) has weight

n− 2m, and is given by H(m)p,q = Hp+m,q+m. For m≫ 0, H(−m) will be effective.

Exercise 2.3.22. Show that the real automorphism groupGR
dfn
=== G(R) = Aut(HR, Q)

is isomorphic to:

• Sp(2g,R), where 2g = dimH, when n is odd;

• O(b, 2a), where

b =
∑
k

hm+2k,m−2k and 2a =
∑
k

hm+1+2k,m−1−2k ,

when n = 2m is even.

Exercise 2.3.23. Show that

H(u, v) = inQ(u, v̄)

defines a nondegenerate Hermitian form on HC of signature
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• (g, g), where 2g = dimH, when n is odd;

• (b, 2a), when n is even.

Exercise 2.3.24 (Induced Hodge structure on the endomorphism algebra). Fix a

Q-polarized Hodge structure on HZ of weight n. Let HC = ⊕Hr,s denote the Hodge

decomposition. Recall the Lie algebra g defined in (2.3.2). Show that

gp,−p = {ξ ∈ gC s.t. ξ(Hr,s) ⊂ Hr+p,s−p , ∀ r, s}

defines a weight zero Hodge structure on g.

Exercise 2.3.25. Show that the induced Hodge structure on g (HW 2.3.24) is po-

larized by −κ, where κ is the Killing form.

2.4 Complex tori constructed from Hodge struc-

tures

Many important complex tori (Example 2.2.4) are constructed from Hodge structures.

2.4.1 Albanese variety

The dual to the Picard variety (§A.3.13) is the Albanese variety

Alb(X) =
H0(X,Ω1

X)
∨

H1(X,Z)
=

H1,0(X)∨

H1(X,Z)
.

It has the universal property that any morphism from X to an abelian variety factors

uniquely through the Albanese map

α : X → Alb(X) , α(x)(η) =

∫ x

xo

η .

Exercise 2.4.1. Fix a basis ω1, . . . , ωg of H0(X,Ω1
X), and show that the Albanese

map may be identified with the map

α(x) =

[∫ x

xo

ω1 , . . . ,

∫ x

xo

ωg

]
.
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2.4.2 Jacobian variety of a curve

In the case that X is a nonsingular algebraic curve of genus g, the Albanese variety

is known as the Jacobian Jac(X) of the curve.

Exercise 2.4.2. Show that Jac(X) is a principally polarized abelian variety (Def-

inition 2.2.37). [Hint. The Hodge–Riemann bilinear relations imply that h(u, v) =

−iQ(u, v) is a positive definite hermitian form on H1,0(X).]

2.4.3 Griffiths tori

Fix a Q-polarized Hodge structure φ on HZ of odd weight n = 2p−1 (as in Definitions

2.3.3 and 2.3.13), and with Hodge decomposition

HC = Hn,0
φ ⊕ · · · ⊕ Hp,p−1

φ︸ ︷︷ ︸
Lφ

⊕ Hp−1,p
φ ⊕ · · · ⊕ H0,n

φ︸ ︷︷ ︸
Lφ

.

Exercise 2.4.3. (a) Show that the image of HZ ↪→ HC = Lφ⊕Lφ ↠ Lφ is a lattice.

The intermediate Jacobian is the associated complex torus J(φ) = Lφ/HZ.

(b) Show that h(u, v) = −iQ(u, v) defines a non-degenerate bilinear form on L of

signature (s+, s−) with s+ = hp−1,p + hp−3,p+2 + hp−5,p+4 + · · · .

(c) Show that the imaginary part of h = g−iω satisfies ω ∈ H1,1(J(φ))∩H2(J(φ),Z).

We call ω a pseudo-polarization. The intermediate Jacobian is an abelian

variety when s+ s− = 0. (Eg. whenever Lφ = Hp−1,p
φ .)

Example 2.4.4. Suppose that X is a nonsingular projective variety of dimension d.

Then the intermediate Jacobian J2d−1(X) = Hd−1,d(X)/H2d−1(X,Z) is an abelian

variety (s− = 0). Serre duality implies that J2d−1(X) can be identified with the

Albanese variety Alb(X) = H0(X,Ω1
X)

∨/H1(X,Z) of §2.4.1.
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Example 2.4.5. Suppose thatX is a nonsingular projective variety of dimension d. If

d = 2p−1 is odd, then Jd(X) = (Hp−1,p(X)⊕· · ·⊕H0,d(X))/Hd(X,Z). The intersec-
tion form on d-cycles is unimodular (this is essentially equivalent to Poincaré duality

[GH94]). So, if s− = 0, the Jacobian will be principally polarized.

Exercise 2.4.6. Suppose that s+ s− = 0, so that J(φ) is an abelian variety. Assume

that the polarization Q is unimodular on HZ: the matrix representation of with

respect to an integral basis has determinant ±1. Show that the polarization on J(φ)

is principal.

Theorem 2.4.7 (Griffiths). Two Hodge structures φ, φ′ ∈ D belong to the same GZ

orbit if and only if J(φ) ≃ J(φ′) as pseudo-polarized tori.

Remark 2.4.8. Replacing Lφ in the construction above with Hp−1,1
φ ⊕Hp−3,3⊕· · ·⊕

H0,n, we obtain the Weil torus I(φ), which is always polarized. However, the Weil

tori I(φ) do not vary holomorphically with φ ∈ D, while the Griffiths tori J(φ) do.

(The two tori may be interpreted as different complex structures on the real torus

HR/HZ).

2.5 Hodge structures: a third definition*

Recommended references: [GGK12, Pat16].

We have seen that a Hodge structure may be defined by either a Hodge decom-

position (2.3.4), or by a Hodge filtration (2.3.5). There is a third definition by group

homomorphisms.2 Let C× = C\{0} be the group of nonzero complex numbers. Define

a homomorphism

φ̃ : C× → Aut(HR) (2.5.1)

2We will not have much use for this third definition in this class (and this section is optional

reading). However, of the three this is in many respects the optimal definition (for example, if one

wishes to discuss Hodge tensors or Mumford–Tate groups), and so worthwhile including here.
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by specifying

φ̃(z) = zpz̄q v , for all v ∈ Hp,q ;

that is, we specify that the Hodge decomposition (2.3.4) is an eigenspace decomposi-

tion for φ̃.

Remark 2.5.2. Observe that (2.5.1) satisfies φ(x) = xn Id, for all nonzero real num-

bers x ∈ R×.

Exercise 2.5.3. (a) Verify that φ̃ does indeed take value in Aut(HR).

(b) Verify that the restriction φ̃|S1 takes value in Aut(HR, Q) if and only if the

Hodge structure satisfies the first Hodge–Riemann bilinear relation (2.3.14). In

this case, the Hermitian form inQ(u, v) is nondegenerate on Hp,q.

We wish to view C× as real group. At the very least you should think of it a real

Lie group. If you are familiar with algebraic groups, then you should think of C× as

the real points

S(R) =

{[
x −y
y x

] ∣∣∣∣∣ x, y ∈ R
x2 + y2 ̸= 0

}
of the Deligne torus, the R–algebraic group S = ResC/RGm,C. Likewise, we identify

S1 ⊂ C× with the maximal compact subgroup

U(R) =

{[
x −y
y x

] ∣∣∣∣∣ x, y ∈ R
x2 + y2 = 1

}
.

Exercise 2.5.4. Conversely suppose that you are given a homomorphism (2.5.1),

with the property that φ̃|R× is defined over Q.

(a) Show that H = ⊕n∈ZHn where

Hn = {v ∈ H | φ̃(x)(v) = xn Id , x ∈ R×} .

(b) Set Hp,q = {v ∈ HC | φ̃(z)(v) = zpz̄q v , ∀ z ∈ C×}. Show that Hn,C =

⊕p+q=nH
p,q is a Hodge decomposition of weight n.
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Definition 2.5.5. The upshot of the discussion above is that we may define a (real)

Hodge structure as a homomorphism (2.5.1) of R–algebraic groups. The Hodge struc-
ture is rational if φ̃|R× is defined over Q; it is pure of weight n ∈ Z if φ̃(r) = rn Id for

all r ∈ R×; and if the Hodge structure is Q–polarized, then φ = φ̃|S1 takes value in

Aut(HR, Q). We may identify the period domain D with the Aut(HR, Q) conjugacy

classes of φ, and the isotropy group H is clearly seen to be the centralizer of the circle

φ : S1 → Aut(HR, Q).
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Chapter 3

Families and period maps

3.1 Monodromy

Recommended reference: [Ara12, Voi07].

Consider a smooth surjective holomorphic mapping f : X → S of complex man-

ifolds with compact fibres. In this context “smooth” means df has maximal rank

everywhere; equivalently, f is a submersion as a map of smooth manifolds. In partic-

ular, the fibres Xs = f−1(s) are compact, complex submanifolds of X ; and we regard

f : X → S as a family compact, complex manifolds {Xs}s∈S that is parameterized

by S.

Suppose that U ⊂ S is open and contractible. Fix uo ∈ U . Then Ehresmann’s

theorem asserts that there is a diffeomorphism φU : f−1(U) → U ×Xuo so that

f−1(U) U ×Xuo

U

φU

f

commutes. In particular, the fibres Xs are all diffeomorphic. However, in general

they will not be biholomorphic. So f : X → S may also be viewed as a family of

complex structures on a fixed smooth manifold Xso .
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Consider f : X → S as a submersion of smooth manifolds. Since f is a submersion

V = ker df defines a subbundle of the (real) tangent bundle TX . Note that V|Xs =

TXs. Fix a Riemannian metric g on X and consider the decomposition TX = V ⊕H
given by H = V⊥.

Given a curve γ : [0, 1] → S and x0 ∈ Xγ(0) there is a unique lift γ̃(xo, ·) : [0, 1] →
X determined by γ(t) = f ◦ γ̃(xo, t), γ̃(xo, 0) = x0 and ∂tγ̃(xo, t) ∈ Hγ̃(xot). This

defines γ̃ : Xγ(0) × [0, 1] → X with γ̃(x, 0) = x for all x ∈ Xγ(0), and γ̃(x, 1) ∈ Xγ(1).

In particular, we have a map γ̃(·, 1) : Xγ(0) → Xγ(1). This map is a (homeomorphism)

diffeomorphism if γ is (piecewise) smooth; and induces a map µ(g, γ) : Hk(Xγ(0),Z) →
Hk(Xγ(1),Z).

Exercise 3.1.1. (a) Show that the map µ(g, γ) is independent of our choice of Rie-

mannian metric g on X .

(b) Show that the map µ(g, γ) = µ(γ) depends only on the homotopy class of γ

(with fixed endpoints).

Definition 3.1.2. In the case that the curve is closed so = γ(0) = γ(1), this yields

the monodromy representation

ρ : π1(S, so) → Aut(Hk(Xso ,Z)) . (3.1.3)

Example 3.1.4. In the case that f : ∆∗ → ∆∗ is given by f(x) = xk, and γ(t) =

e2πit so is a generator of π1(∆
∗) = Z, we have Γ(x, 1) = xe2πi/k, where xk = so. That

is, monodromy is analytic continuation of a branch of f−1(s) = k
√
s, and the image

of the monodromy representation is isomorphic to Z/kZ.

Definition 3.1.5. Suppose that f : X → ∆ is a proper surjective morphism, and that

the restriction of f to X ∗ = f−1(∆∗) is smooth (again, this means f is a submersion

on X ∗). Let γ ∈ π1(∆
∗, so) ≃ Z be a generator represented by a counter-clockwise

loop t 7→ e2πit so. The induced monodromy

T : H•(Xso ,Q) → H•(Xso ,Q) (3.1.6)

is the Picard–Lefschetz transformation of the family f .
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Definition 3.1.7. If xo ∈ X0 is a node (a.k.a. simple, isolated singularity), then there

exist local coordinates (z0, . . . , zn) on X and centered at x0 so that f(z) = z20 + · · · z2n.
The fibres Xs close to X0 contain a cycle αs ∈ Hn(Xs,Z) that is represented by an n-

sphere is : S
n ↪→ Xs. If we write s = r2 e2iθ, in polar coordinates, then the embedding

is maps ζ ∈ Sn 7→ reiθ ζ. We call αs a vanishing cycle because these spheres collapse

to a point as s→ 0. Cf. Figure 3.1.

Figure 3.1: Vanishing cycle

 

Exercise 3.1.8. The proof that αs ̸= 0 ∈ Hn(Xs,Z) is outlined below. Fill-in the

details.

Fix 0 < ρ < ε≪ 1. Define

B =
{
z s.t. |z0|2 + · · ·+ |zn|2 ≤ ε , |z20 + · · ·+ z2n| ≤ ρ

}
.

Fix s = ρ ∈ ∆∗. Write z = x+ iy, with x, y ∈ Rn+1.

(a) Show that we may identify

Xs ∩ B = {(x, y) ∈ Rn × Rn s.t. ∥x∥2 + ∥y∥2 ≤ ε ,

∥x∥2 − ∥y∥2 = ρ , x · y = 0
}
.

(b) Show that ∥x∥ ≠ 0 and ∥y∥2 ≤ 1
2
(ε − ρ). Prove that (x, y) 7→

(
x

∥x∥
,

2y

2− ρ

)
defines a homeomorphism

Xs ∩ B → {(x, y) ∈ Rn × Rn s.t. ∥x∥2 = 1 , ∥y∥2 ≤ 1 , x · y = 1} .
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(c) Show that Xs ∩ B deformation retracts onto the sphere Sn = {(x, 0) s.t. ∥x∥ =

1}.

(d) Conclude that Sn generates Hn(Xs ∩ B,Z) = Z, and Hk(Xs ∩ B,Z) = 0 for all

k ̸= 0, n.

It remains to observe that Poincaré duality implies Hn
cpt(Xs ∩B) ≃ Hn

d (Xs ∩B) ̸= 0.

So there exists a closed n-form η on Xs with compact support contained in Xs ∩ B,

so that
∫
is(Sn)

η ̸= 0. It follows that αs = [is(S
n)] ⊂ Hn(Xs,Z) is nonzero.

Theorem 3.1.9 (Picard–Lefschetz formulas). Assume that the simple singularity

xo ∈ X0 is the the unique singular point of the family f : X → ∆ (the unique point

where df drops rank). Then the Picard–Lefschetz transformation (3.1.6) is:

(i) the identity T = id on Hk(Xso ,Q) for all k ̸= n; and

(ii) given by T (β) = β + ϵ (β, αso)αso, for all β ∈ Hn(Xso ,Q), with

ϵ =

{
1 , if n ≡ 2, 3 mod 4 ,

−1 , otherwise,

and

T (αso) =

{
αso , if n ≡ 1, 3 mod 4 ,

−αso , otherwise.

Exercise 3.1.10. Fix a nonsingular projective variety X ⊂ Pm of dimension n, and

L ≃ Pm−2 ⊂ Pm.

(a) Write Pm = P(V ), with V a complex vector space of dimension m + 1. Show

that P̌m = P(V ∨) parameterizes the set of all hyperplanes H = Pm−1 ⊂ P(V ).

(b) Fix a projective subspace L ≃ Pm−2. Show that the set of all hyperplanes

H = Pm−1 containing L is parameterized by a P1.

Definition 3.1.11. A pencil of hypersurfaces on X is a family {Xs = X ∩Hs}s∈P1 .

We say the family is Lefschetz pencil if:
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(i) The intersection X ∩ L is nonsingular.

(ii) There is a finite set {p1, . . . , pk} ⊂ P1, so that Xs = X ∩ Hs is nonsingular for

all s ∈ S = P1\{p1, . . . , pk}.

(iii) For each pj, the variety Xpj has a single simple singularity xj ∈ L ∩Xpj .

Theorem 3.1.12. For a generic choice of L = Pm−2 the family {Xs}s∈P1 is Lefschetz

pencil.

Exercise 3.1.13. The set

X = {(x, s) ∈ X × S s.t. x ∈ Hs} .

is a fibre bundle over S. The monodromy representation (3.1.3) is computed as fol-

lows. Each pj determines vanishing cycle αj ∈ Hn(Xso ,Q).1 Fix a curve γj ∈ π1(S, so)

traveling from so to a point near pj, looping once around pj counter-clockwise, and

returning to so. Without loss of generality the paths γj are pairwise disjoint away

from so. The induced monodromy action Tj = ρ(γj) on Hk(Xso ,Q) is trivial if k ̸= n,

and is given by

Tj(β) = β + ϵ (β, αj)αj (3.1.14)

for all β ∈ Hn(Xso ,Q). Let Van = spanC{α1, . . . , αk} ⊂ Hn(Xso ,Q) be the subspace

spanned by the vanishing cycles. It can be shown that the intersection pairing is

nondegenerate on Van. Let Γ = ρ(π(S, so)) be the image of the monodromy repre-

sentation (3.1.3).

(a) Show that the subspace Van is invariant under the monodromy.

(b) Show that Hn(Xso ,Q) = Van ⊕ Inv with Inv = {β ∈ Hn(Xso ,Q) s.t. T (β) =

β , ∀ T ∈ Γ} = Van⊥ the cycles invariant under the monodromy representation.

(For a generalization, see Remark 5.4.31.)

1The cycle αj is defined only up to the action of the monodromy group. However, the space

spanned by the vanishing cycles is well-defined (HW 3.1.13).
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(c) Show that the monodromy acts irreducibly on Van (with no nontrivial invariant

subspaces).

[Hint. The loops γj generate π(S, so). So the Tj generate Γ.]

3.2 The compact dual

The first Hodge–Riemann bilinear relation (2.3.14) asserts that the Hodge filtration

(2.3.5) is Q–isotropic

Q(F p, F q) = 0 , for all p+ q = n+ 1 .

This is precisely the statement that the Hodge filtration is an element of the complex

flag manifold

Ď = FlagQ(f , HC) (3.2.1)

of Q–isotropic filtrations F = (F p) of HC satisfying dimF p = fp. The variety Ď is

the compact dual of the period domain D (which will be defined next).

Example 3.2.2 (effective, weight one). The compact dual is P1, when g = 1.

For g ≥ 1, the compact dual is the Lagrangian grassmannian LG(g,C2g) of g-

dimensional subspaces F 1 ⊂ HC ≃ C2g that are isotropic with respect to a nondegen-

erate skew-symmetric bilinear form.

Example 3.2.3 (effective, weight two). The compact dual is the Grassmannian

GrQ(a,C2a+b) of a–dimensional subspaces F 2 ⊂ HC ≃ C2a+b that are isotropic with

respect to the nondegenerate, symmetric bilinear form Q.

Example 3.2.4 (effective, weight three). The compact dual is the isotropic flag mani-

fold FlagQ(a, g;C2g), consisting of pairs F 3 ⊂ F 2 with F 2 ∈ LG(g,C2g), dimC F
3 = a,

and where g = a+ b.

Exercise 3.2.5. Show that the complex automorphism groupGC = G(C) = Aut(HC, Q)

acts transitively on Ď.
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3.3 Period domain

Definition 3.3.1. The period domain D = Dh,Q ⊂ Ď is the set of all Q-polarized

Hodge structures on HZ with Hodge numbers h.

Slogan. The compact dual Ď ⊂ Flag(f , HC) parameterizes filtrations satisfying

the first Hodge–Riemann bilinear relation, and the period domain D ⊂ Ď parame-

terizes filtrations satisfying both Hodge–Riemann bilinear relations.

Example 3.3.2 (effective, weight one). When g = 1 the period domain is the upper-

half plane, and Aut(HR, Q) = Sp(2,R) = SL(2,R) acts transitively.
For g ≥ 1, the period domain D = Sp(2g,R)/U(g) is the Siegel upper-half space

of symmetric g×g matrices with complex entries and positive definite imaginary part.

Alternatively D is the set of E ∈ LG(g,C2g) with the property that the Hermitian

form iQ(u, ū) restricts to be positive definite on E.

We recover the Hodge decomposition from E by setting H1,0 = E and H0,1 = E.

Example 3.3.3 (effective, weight two). The period domainD = O(b, 2a)/U(a)×O(b)

is the subset of elements E ∈ GrQ(a,C2a+b) on which the Hermitian bilinear form

−Q(u, v̄) restricts to be positive definite.

We recover the Hodge decomposition from E by setting H2,0 = E and H0,2 = E,

and H1,1 = (E ⊕ E)⊥.

Example 3.3.4 (effective, weight three). The period domain D = Sp(2g,R)/U(a)×
U(b) is the subset of filtrations (F 3 ⊂ F 2) ∈ FlagQ(a, g;C2g) with the property that

the Hermitian form −iQ(u, v̄) restricts to be positive definite on F 3, and nondegen-

erate on F 2 with signature (a, b).

Given a point φ ∈ D, the associated Hodge decomposition will be expressed as

HC = ⊕Hp,q
φ , and the associated Hodge filtration will be expressed as Fφ = (F p

φ).

Exercise 3.3.5. Show that the real automorphism group GR of (2.3.1) acts transi-

tively on D with compact isotropy L (stabilizer of a point φ ∈ D) isomorphic to:
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• U(hn,0)× · · · × U(hm+1,m), if n = 2m+ 1 is odd;

• U(hn,0)× · · · × U(hm+1,m−1)×O(hm,m), if n is even.

Exercise 3.3.6. Show that D ⊂ Ď is open (in the analytic topology). In particular,

D inherits the structure of a complex manifold from Ď, and is a “flag domain” in the

sense of [Wol69, FHW06].

Exercise 3.3.7. Fix a Hodge structure φ ∈ D. Recall the induced Hodge structure

of HW 2.3.24.

(a) Show that the Lie algebra of the stabilizer Lφ = StabGR(φ) has complexification

lC = g0,0φ .

(b) Show that the Lie algebra of the stabilizer Pφ = StabGC(φ) of φ ∈ Ď is p =

⊕p≥0 g
p,−p
φ .

3.4 Horizontal subbundle

The compact dual Ď = FlagQ(f , HC) naturally sits inside the flag manifold

Flag(f , HC) =

{
(F n, . . . , F 0) ∈

0∏
p=n

Gr(fp, HC) s.t. F
p ⊂ F p−1 , ∀ 1 ≤ p ≤ n

}
.

Exercise 3.4.1. Show that TFlag(f ,HC),F =
1⊕

p=n

Hom(F p, HC/F
p).

Let Fn ⊂ Fn−1 ⊂ · · · ⊂ F0 = Flag(f , HC) ×HC be the tautological filtration of

the trivial bundle. Then TFlag(f ,HC) =
1⊕

p=n

Hom(Fp,F0/Fp).

Definition 3.4.2 (Horizontal subbundle, first definition). The horizontal subbundle

of the flag manifold is

T h
Flag(f ,HC)

dfn
===

1⊕
p=n

Hom(Fp,Fp−1/Fp) .
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The horizontal subbundle of the compact dual is

T h
Ď

dfn
=== TĎ ∩ T h

Flag(f ,HC)
.

A holomorphic map f : M → Ď is horizontal (or satisfies the infinitesimal period

relation (IPR)) if f∗(TxM) ⊂ T h
Ď,f(x)

. The IPR is trivial if T h
Ď
= TĎ.

Example 3.4.3. A holomorphic curve γ(t) = (F p
t ) : ∆ → Ď is horizontal if and only

if for every curve e : ∆ → HC with e(t) ∈ F p
t , for all t, we have ė(t) ∈ F p−1

t . The

horizontal subbundle T h
Ď
⊂ TĎ is the set of all γ̇(t) with γ horizontal.

For this reason, the IPR is often expressed as

dF p ⊂ F p−1 .

Exercise 3.4.4. Suppose that D is a period domain parameterizing weight n = 1

polarized Hodge structures. Prove that the IPR is trivial.

Exercise 3.4.5. Suppose that D is a period domain parameterizing weight n = 2

polarized Hodge structures with Hodge numbers h = (1, h, 1). Prove that the IPR is

trivial.

Exercise 3.4.6. Suppose that D is a period domain parameterizing weight n = 2

polarized Hodge structures with Hodge numbers h = (2, h, 2). Prove that T h
Ď
⊂ TĎ

has corank 1. (In fact, T h
Ď
is a contact distribution.)

Definition 3.4.7 (Horizontal subbundle, second definition). Recall the notations of

HW 2.3.24, 3.2.5 and 3.3.7. A a homogeneous space the compact dual is Ď = GC ·φ =

GC/Pφ. In particular,

TĎ,φ ≃ gC/pφ

as vector spaces. As a homogeneous vector bundle, the holomorphic tangent bundles

is (dropping the subscript φ)

TĎ = GC ×P (gC/p) .
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The induced action of P on gC/p preserves F−1(gC)/p; the horizontal subbundle is

the associated homogeneous subbundle

T h
Ď

= GC ×P

(
F−1(gC)/p)

)
.

3.5 Period maps

Let S be a complex manifold with universal cover S̃, and Γ ⊂ GZ = Aut(HZ, Q). We

say that Φ : S → Γ\D is a period map if there is a commutative diagram

S̃ D

S Γ\D

Φ̃

Φ

(3.5.1)

with Φ̃ holomorphic and horizontal.

Example 3.5.2. The identity map D → D is a period map if and only if the IPR is

trivial.

Example 3.5.3. Fix a family f : X → S as in §3.1. Recall that each γ ∈ π1(S; s, s
′)

induces an isomorphism γ : Hn(Xs,Z) ≃ Hn(Xs′ ,Z). Assume that X ⊂ Pm× S, and

the map f is the restriction to X of the projection Pm × S → S. Then an integral

Kähler form ω ∈ H2(Pm,Z) ∩ H1,1(Pm) on Pm restricts to an integral Kähler form

ωs ∈ H2(Xs,Z) ∩H1,1(Xs) on the fibres. The ωs are invariant under monodromy, by

construction. And γ ∈ π1(S; s, s
′) maps Hn

prim(Xs,Z) onto Hn
prim(Xs′ ,Z). It can be

shown that the Hodge numbers hp,qs = dimCH
p,q
prim(Xs) are locally constant [Gri68].2

2The key point is that the dimension of the kernel (= Hp,q) of an ellipic opertor (the Laplacian on

Ep,q) depending smoothly on a parameter s is upper-semicontinuous. So, for s′ in a small disc about

s, we have dimHn(Xs′ ,C) =
∑

p+q=n dimHp,q(Xs′) ≤
∑

p+q=n dimHp,q(Xs) = dimHn(Xs,C).
Since Hn(Xs′ ,C) ≃ Hn(Xs,C), we necessarily have dimHp,q(Xs′) = dimHp,q(Xs). Cf. [CMSP17,

p. 138–139].
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Fix so ∈ S. Set X = Xso , and HZ = Hn
prim(X,Z)/{torsion}. Set Q(α, β) =

(−1)n(n−1)/2
∫
X
α ∧ β ∧ ωd−nso , where d = dimX. Let D be the period domain param-

eterizing Q–polarized Hodge structures on HZ with Hodge numbers h = (hp,q). Each

γ ∈ π1(S; so, s) defines a Q–polarized Hodge structure φ̃(s, γ) on HZ. In this way f

induces commutative diagram (3.5.1), with Γ the image of the monodromy represen-

tation π1(S, so) → Aut(HZ, Q). The lift Φ̃ is holomorphic and horizontal [Gri68]. In

this way f induces a period map Φ : S → Γ\D.

3.6 Derivative of the period map

Fix a family

X Pm × S

S

f (3.6.1)

as in Example 3.5.3. Fix so ∈ S and set X = f−1(so). Our goal here is to compute

the derivative of the induced period map Φ : S → Γ\D at so. Since this is a local

question we may assume that S is simply connected (for example, a polydisc), and

Γ = {1}.
Note that df induces an isomorphism NX/X,x → TsoS for all x ∈ X. So every

ξ ∈ TsoS defines ξ̃ ∈ H0(X,NX/X). The SES

0 → TX ↪→ TX |X ↠ NX/X → 0

induces δ : H0(X,NX/X) → H1(X,TX). The Kodaira–Spencer mapping

ρ : TS,so → H1(X,TX)

is defined by ρ(ξ) = δ(ξ̃).

Notice that the cup-product induces

H1(X,TX) × Hp,q(X) → Hp−1,q+1(X) .
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So we have a map

ε : H1(X,TX) →
⊕
p

Hom(Hp,q, Hp−1,q+1) ⊂ TD,Φ(so) . (3.6.2)

The derivative of the period map is [Gri68]

dΦso(v) = ε ◦ ρ(v) .

3.7 Deformations

A deformation of X is given by a family (3.6.1), with X ≃ f−1(so) for some so ∈ S.

The following theorem suggests that we regard H1(X,TX) as parameterizing the

“infinitesimal deformations” of X.

Theorem 3.7.1 (Frölicher–Nijenhuis 1957). If H1(X,TX) = 0, then there exists a

neighborhood so ∈ U ⊂ S so that f−1(u) is biholomorphic to X for all u ∈ U .

We say X is rigid when H1(X,TX) = 0.

Theorem 3.7.2 (Kodaira–Nirenberg–Spencer 1958). If H2(X,TX) = 0, then there

exists a complete deformation f : X → S of X over some polydisc S so that the

Kodaira–Spencer map is an isomorphism.

A few remarks on the theorem:

• Complete means that any other deformation g : Y → T ofX ≃ g−1(to) is obtained

from f : X → S by local base change: there exists a neighborhood to ∈ U ⊂ T

and a map ϕ : U → S so that ϕ(to) = so and the family g|U is isomorphic to

X ×S U .

• The fact that the Kodaira–Spencer map is an isomorphism implies the deforma-

tion f is versal : the differential dϕto is uniquely determined.

• As a complete, versal deformation of X, the family f : X → S in Theorem 3.7.2

is the Kuranishi family of X.
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• A complete family is universal if the germ of ϕ at to is uniquely determined.

The family f in the theorem is universal if H0(X,TX) = 0. In this case we say

that X satisfies the infinitesimal Torelli theorem if the differential dΦso : TsoS →
TD,Φ(so) is injective. (It is sometimes easier to check the dual statement that

⊕ (Hp,q ⊗Hd−p+1,d−q+1) surjects onto Hd−1(X,Ω1
X ⊗KX).)

Exercise 3.7.3. Suppose that KX is trivial. Show that Hk(X,TX)
∨ ≃ H1,d−k(X),

where d = dimX. [Hint. §A.3.12.]
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Chapter 4

Torelli theorems

4.1 Moduli space of polarized algebraic varieties

To every polarized algebraic variety (X,ω) of dimension d we associate the following

Hodge data: for each 0 ≤ n ≤ d, the lattice HZ = Hn
prim(X,Z)/{torsion}; the Hodge

numbers h = (hp,q), and the polarization Q(α, β) = (−1)n(n−1)/2
∫
X
α∧ β ∧ωd−n. Let

D be the associated period domain.

Let Xsm be the underlying smooth manifold. Let M be the moduli space of

polarized algebraic varieties (X̃, ω̃) with the same underlying smooth structure X̃sm =

Xsm, and the same Hodge data as (X,ω). We naturally have ψ : M → GZ\D.

Suppose that M admits the structure of an algebraic variety, and that f : X → S

is an algebraic deformation of (X,ω). If the natural map π : S → M is a morphism,

then we say M is the coarse moduli space for (X,ω). By construction we have

S Γ\D

M GZ\D .

Φ

π

Ψ

We say the global Torelli theorem holds for M if Ψ is an embedding of the closed

points; we say the local Torelli theorem holds for (X,ω) if dΨ is an inclusion of
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tangent spaces TM,[X] → TGZ\D,Ψ([X]); we say weak global Torelli holds if there exists

a Zariski-dense M′ ⊂ M so that Ψ|M′ embeds the closed points.

Analogous terminology may be applied to the family f and the period map Φ.

4.2 Algebraic curves

If dimX = 1, then H2(X,TX) = 0. The Kodaira–Nirenberg–Spencer Theorem 3.7.2

applies: there exists a complete deformation ofX over a polydisc so that the Kodaira–

Spencer map ρ : TS,so → H1(X,TX) is an isomorphism.

Exercise 4.2.1. (a) Show that H1(P1, TP1) = H0(P1,OP1(−4))∨ = 0.

(b) Let E be an elliptic curve (a curve of genus one). Show that Hq(E, TE) = C for

a = 0, 1. Note that the complete deformation is not universal.

(c) Let X be a curve of genus g ≥ 2. Show that H1(X,TX) = H0(X,K⊗2
X ) has

dimension 3g − 3. And H0(X,TX) = 0, so that the deformation is universal.

[Hint. §A.1.6.]

Let Mg denote the moduli space of genus g curves X.

Exercise 4.2.2. Let X be a curve of genus 0.

(a) Fix p ∈ X. Use the Riemann–Roch theorem (§A.1.7) to show that there exists

a meromorphic function f : X → P1 with a single pole of order one at p.

(b) Use the Riemann–Hurwitz theorem (§A.1.4) to conclude that f is a biholomor-

phism.

We conclude that there is only one algebraic curve of genus g = 0: the moduli space

M0 = {P1} is a point. This is consistent with HW 4.2.1(a).
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4.2.1 Elliptic curves

The moduli space for curves of genus g = 1 is M1 = A1 = SL(2,C)\H the quotient

of the upper half-plane by SL(2,Z). (Cf. HW 4.2.1(b).) The key observations are

the following:

(a) A curve X of genus g = 1 can be embedded in P1 as zy2 = 4x3 − g2xz
2 − g3z

3.

Two curves are isomorphic if and only if their j invariants coincide j(X) =

2632g32/(g
3
2 − 27 g23). And the map j : M1 → C is surjective. Thus M1 = A1.

(b) Every elliptic curve may be expressed as Eτ = C2/Πτ , with Π = Z + τ Z and

τ ∈ H. Two curves are isomorphic if and only if τ2 = (aτ1 + b)/(cτ1 + d), with(
a b

c d

)
∈ SL2(Z). Thus M1 = SL(2,C)\H.

(c) The two interpretations are related as follows. Define

g2(τ) = 60
∑

(m,n)∈Z2\{(0,0)}

(mτ + n)−4

g3(τ) = 140
∑

(m,n)∈Z2\{(0,0)}

(mτ + n)−6

j(τ) =
2632g2(τ)

3

g2(τ)3 − 27 g3(τ)2
.

4.2.2 Curves of general type

If g ≥ 2, then Mumford showed that Mg is quasi-projective of dimension 3g − 3

(cf. HW 4.2.1(c)).

Recall that the Jacobian Jac(X) is principally polarized (HW 2.4.2), and so carries

a theta divisor Θ (§2.2.4).

Theorem 4.2.3 (Global Torelli 1913 [GH94]). Any nonsingular projective curve X

may be reconstructed from its polarized Jacobian (Jac(X),Θ).

It is remarkable that the global Torelli theorem holds for curves, because the infinites-

imal Torelli theorem fails for hyperelliptic curves of genus g > 2. This is related to
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the observation that, given a Kuranishi deformation f : X → S of an hyperelliptic

curve X, the neighborhood of [X] in Mg is analytically isomorphic to the quotient

of S by an involution.

The key players in the proof are the canonical map and Albanese map. After

reviewing these, we outline the proof.

The canonical map

The complete linear system |KX | = PH0(X,KX) defines the canonical map

κ : X → PH0(X,KX)
∨ = Pg−1 ;

the point x ∈ X is mapped to the hyperplane {s ∈ H0(X,KX) s.t. s(x) = 0}. In

the following exercises you will show that κ is either an embedding, or a double cover

of P1 branched over 2g + 2 points. In particular, either KX is very ample, or X is

hyperelliptic.

Exercise 4.2.4. Assume g ≥ 2.

(a) Suppose that z is a local coordinate on a neighborhood xo ∈ U ⊂ X. Fix a basis

{ω1, . . . , ωg} of H0(X,KX). Show that κ|U can be identified with the map

z 7→
[
ω1(z)

dz
: · · · : ωg(z)

dz

]
.

(b) Show that |KX | is base point free. [Hint. Exercises A.1.7 and A.1.12.]

Exercise 4.2.5. Assume g = 2.

(a) Use degKX = 2 (Example A.1.8) to conclude that κ is 2-to-1 onto its image

κ(X) = P1. In particular, all genus two curves are hyperelliptic (§A.1.5).

(b) Use the Riemann–Hurwitz formula (§A.1.4) to show that the canonical map is

branched at four points.
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Exercise 4.2.6. Assume g ≥ 3. Show that ϕK⊗2
X

is a closed embedding (cf. HW

A.1.12).

Remark 4.2.7. If κ = ϕKX
is not a closed embedding (equivalently, KX is ample,

but not very ample) then κ is 2:1 onto its image κ(C) ≃ P1 (HW A.1.6).

Albanese map

Review the Albanese map α : X → Jac(X) of §§2.4.1-2.4.2. Let X(k) denote the k-th

symmetric power of X, and define αk : X(k) → Jac(x) by (x1, . . . , xk) 7→ α(x1) +

· · · + α(xk). The points of Ak = αk(X
(k)) parameterize equivalence classes of degree

k divisors on X:

Theorem 4.2.8 (Abel [GH94]). The divisor
∑k

i=1 xi−yi is linearly equivalent to zero

if and only if αk(x1, . . . , xk) = αk(y1, . . . , yk).

Exercise 4.2.9. Prove the following:

(a) The differential dαk is degenerate at (x1, . . . , xk) if and only if the points κ(x1), . . . , κ(xk)

lie in a Pk−2.

(b) The differential dαk is nondegenerate at a generic point.

Conclude that Z = α(g−1)(X
(g−1)) is a divisor in Jac(X).

Theorem 4.2.10 (Riemann). The divisors Θ and Ag−1 coincide up to a translation.

Proof of Global Torelli for curves of genus g ≥ 2

Let T0 = TJac(X),0 be the tangent space at the identity, and let ϕ : Gr(g−1, TJac(X)) →
Gr(g − 1, T0) = PT∨

0 be the Gauss map. Let Y ⊂ X(g−1) be the Zariski open subset

where the differential dαg−1 is nondegenerate (HW 4.2.9), and define ψ : Y → PT∨
0

by y 7→ ϕ(dαg−1(TyY )).

Exercise 4.2.11. Show that the map ψ : Y → PT∨
0 is finite-to-one, and of degree(

2g−2
g−1

)
. [Hint. Example A.1.8.]
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Note that we may naturally view the canonical curve κ(X) as sitting in PT0 = Pg−1.

Lemma 4.2.12 ([GH94]). Let B ⊂ PT∨
0 be the closure of the branch locus of ψ.

Then B = C∗.

If X is not hyperelliptic (§A.1.5), then the Global Torelli Theorem 4.2.3 follows from

Lemma 4.2.12. If X is hyperelliptic, then the proof requires the following modifica-

tions: The set B is the closure of the set of of hyperplanes H ⊂ Pg−1 that are either

tangent κ(X) or pass through a branch point of κ. It follows that we can reconstruct

both κ(X) and the branch points. Since κ(X) = P1, this suffices to determine X.

4.3 Infinitesimal Torelli for Calabi–Yau manifolds

Let X be a compact complex manifold of dimension n with trivial canonical bundle

KX = Ωn
X = det(Ω1

X).

Exercise 4.3.1. Show that the bundles Ωn−1
X and TX are isomorphic.

HW 4.3.1 implies that Hk(X,TX) ≃ Hk(X,Ωn−1
X ). In particular, H2(X,TX) =

H2(X,Ωn−1
X ) = Hn−1,2(X) = 0. The Kodaira–Nirenberg–Spencer Theorem 3.7.2

implies that the deformation space of X is unobstructed, and X has a Kuranishi

family f : X → S.

Definition 4.3.2. A Calabi–Yau manifold is a compact complex manifold of dimen-

sion n with trivial canonical bundle and H0(X,Ωk
X) = Hk,0(X) = 0 for all 0 < k < n.

A K3 surface is a Calabi–Yau manifold of dimension n = 2.

Exercise 4.3.3. Show that a smooth hypersurface X ⊂ Pn+1 of degree n + 2 is

a Calabi–Yau manifold. [Hint. The adjunction formula (§A.3.6) and the Lefschetz

hyperplane theorem (§A.3.7).]

Exercise 4.3.4. Let X be a K3 surface. Show that the Hodge numbers of H2(X)

are h = (1, 20, 1). [Hint. Noether’s formula (§A.2.1).]
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Exercise 4.3.5. Let X be a K3 surface.

(a) Let D be an effective divisor on X. Show that H0(X,D) = 2 + 1
2
D2. [Hint.

Kodaira vanishing (§A.3.10) and the Riemann–Roch formula (§A.2.4).]

(b) Let C ⊂ X be a(n irreducible and reduced) curve. Show that the arithmetic

genus satisfies pa(C) = 1 + 1
2
C2. [Hint. Genus formula (§A.2.5).]

Proof of infinitesimal Torelli for CYs. For the remainder of §4.3 we assume that X

is a Calabi–Yau manifold. Then H0(X,TX) = H0(X,Ωn−1
X ) = Hn−1,0(X) = 0. So

the Kuranishi family of X is a universal deformation (§3.7). Then X satisfies the

infinitesimal Torelli theorem if the map (3.6.2) is injective. That is, if H1(X,TX) =

H1(X,Ωn−1
X ) = Hn−1,1(X) injects into ⊕Hom(Hp,q(X), Hp−1,q+1(X)).

We claim that the map H1(X,TX) → Hom(Hn,0(X), Hn−1,1(X)) is an isomor-

phism. To see this, fix a generator η ∈ Hn,0(X) ≃ C. Any ξ ∈ H1(X,TX) may

be represented, in Dolbeault cohomology, by a closed (0, 1)-form taking values in

TX . And ξ(η) ∈ Hn−1,1(X) is precisely the image of ξ under the isomorphism

H1(X,TX) ≃ Hn−1,1(X).

4.4 Infinitesimal Torelli for hypersurfaces

Let X ⊂ Pn+1 be a smooth hypersurface of degree d and dimension n. The Lefschetz

hyperplane theorem (§A.3.7) implies that

Hk(X,Z) =

{
Z , k ≡ 0 mod 2

0 , k ≡ 1 mod 2 .

for all k < n. What about k = n? What is the Hodge decomposition Hn(X,C) =
⊕p+q=nH

p,q(X)?

4.4.1 Griffiths Jacobian ring

Let Sd ⊂ C[x0, . . . , xn+1] be the homogeneous polynomials of degree d. Set S =

C[x0, . . . , xn+1]. Then S = ⊕d≥0 S
d. We have X = {s = 0} for some f ∈ Sd. The
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Jacobian ideal Jf = (∂f/∂xj)
n+1
j=0 ⊂ S is the ideal generated by the partial derivatives

of f . The Jacobian ring is Rf = S/Jf .

Let F n ⊂ · · · ⊂ F 0 = Hn
prim(X,C) be the Hodge filtration. Note that F p/F p+1 ≃

Hp,n−p
prim (X). Define

t(p)
dfn
=== d(n+ 1− p)− (n+ 2) .

Then (§5.4.5)
F p/F p+1 ≃ R

t(p)
f .

In particular, the Hodge numbers are

dimHp,q
prim(X) = dimR

t(p)
f

for all p+ q = n.

Example 4.4.1. Let X = {xd0+xd1+xd2 = 0} ⊂ P2 be a planar curve of degree d.

• Then Rs = S/(xd−1
0 , xd−1

1 , xd−1
2 ) implies Rk

s = Sk if k ≤ d− 2.

• We have t(a) = d(2− a)− 3, so that t(1) = d− 3.

• It follows that g = h1,0 = 1
2
(d−1)(d−2), and we recover the degree–genus formula

(§A.1.2).

Exercise 4.4.2. Compute the Hodge numbers for n = 2 and d = 3, 4. [Hint. Remark

5.4.48.]

Exercise 4.4.3. Compute the Hodge numbers for n = 3 and d = 3, 4, 5. [Hint.

Remark 5.4.48.]

4.4.2 Moduli of hypersurfaces

The space of degree d hypersurfaces in Pn+1 is parameterized by PSd. Let U ⊂ PSd be
the locus of nonsingular hypersurfaces. Then G = PGL(n + 2) acts on U . Mumford

[Mum65] showed that the moduli space M = U/G of nonsingular hypersurfaces
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X ⊂ Pn+1 of degree d is a quasi-projective variety. (The nonsingular hypersurfaces

are GIT stable.) Suppose X = {s = 0} ∈ U . We have

TU,X = TPSd,X ≃ (C s)∨ ⊗ (Sd/C s) and T(GX),X ≃ (C s)∨ ⊗ (Jds /C s) .

Kodaira–Serre duality implies H0(X,TX)
∨ = Hn(X,Ω1

X ⊗KX) = H1,n(X,KX).

If d ≥ 3 and n ≥ 2, then H0(X,TX) = 0, implying the automorphism group Aut(X)

is finite. For generic X the automorphism group is trivial. Then [X] ∈ M is a smooth

point. It follows that

TM,[X] ≃ Rd
s .

4.4.3 Infinitesimal Torelli for hypersurfaces

Fix a simply connected neighborhood [X] ∈ S ⊂ M. Then we have a period map

Φ : S → D. Griffiths’ infinitesimal Torelli theorem asserts that Φ is a local embedding

(dΦ[X] is injective) if either d > 2 and n ̸= 2, or d > 3 and n = 2, [Gri69]. The idea

of the proof is to:

1. Show that the differential

dΦ[X] : TM,[X] →
1⊕

p=n

Hom(F p/F p+1, F p−1/F p)

is induced by multiplication in the Jacobian ring:

Rd
s × Rt(p)

s → Rt(p)+d
s .

2. Apply Macaulay’s theorem, which asserts that the pairing Ra
s × Rb

s → Ra+b
s is

nondegenerate for all a+ b ≤ (n+ 2)(d− 2).

4.5 Summary of some other Torelli results

1. The cubic threefold X ⊂ P4 has Hodge decomposition H3(X) = H2,1(X) ⊕
H1,2(X). This allows one to use ideas very similar to those in the proof of

Theorem 4.2.3 to establish a global Torelli theorem [CG72, Tju71].
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2. Global Torelli holds for K3 surfaces [Pvv71]. The period mapping is also surjec-

tive in this case [Kul77b].

3. The ideas of [Pvv71] led to a proof of the global Torelli theorem for elliptic

pencils [Cha84].

4. For smooth hypersurfaces X ⊂ Pn+1 of degree d and dimension n: generic Torelli

holds, with the following possible exceptions: if n = 2 and d = 3; d divides n+2;

d = 4 and 4|m; or d = 6 and n ≡ 1 mod 6 [Don83, DG84]. The proof builds on

the approach to the infinitesimal Torelli theorem developed by Griffiths (§4.4).
A key ingredient here is Donagi’s “symmetrizer lemma”, which is equivalent to

the vanishing of a Koszul cohomology group.

5. The global Torelli theorem holds for smooth cubic fourfolds X ⊂ P5 [Voi86].

(Note this case is not covered by Donagi’s result.)

6. The infinitesimal Torelli theorem fails for certain surfaces of general type [Kyn77,

Cat79, Tod80]; the global Torelli theorem also fails for these surfaces [Cat80,

Cha80].

7. For more results and counter-examples, see the collection [Gri84].
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Chapter 5

Mixed Hodge structures

Recommended references: [Dur83, EZT14, PS08].

5.1 Introduction

Mixed Hodge structures (Definition 5.1.2) are a generalization of (pure) Hodge struc-

tures (Definition 2.3.3). Recall that the cohomology of a compact Kähler manifold

admits a Hodge decomposition (§2.2). Analogously, we have

Theorem 5.1.1 (Deligne). Let X be an algebraic variety defined over C. Then the

cohomology groups Hn(X,Q) can be equipped with a natural mixed Hodge structure,

with the following properties:

(i) If f : X → Y is a morphism of algebraic varieties, then f ∗ : Hn(Y,Q) →
Hn(X,Q) is a weight zero morphism of mixed Hodge structure.

(ii) The weight filtration is 0 ⊂ W0 ⊂ W1 ⊂ · · · ⊂ W2n−1 ⊂ W2n = Hn(X,Q). If X

is complete, then Wn = Hn(X,Q); and if X is smooth, then Wn−1 = 0. If X if

smooth and complete, Deligne’s mixed Hodge structure coincides with the usual

(pure) Hodge structure.
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(iii) The mixed Hodge structure is compatible with algebraic constructions, including

duality, Künneth formulas, et cetera.

We will discuss Theorem 5.1.1 in two special, but important cases: X is complete,

simple normal crossing (§5.3); and X is smooth, but not necessarily complete (§5.4).

Definition 5.1.2. A mixed Hodge structure on a finite-dimensional rational vector

space HQ consists of:

◦ an increasing, rational weight filtration

0 ⊊ Wa ⊂ Wa+1 ⊂ · · · ⊂ Wb−1 ⊂ Wb = HQ , a ≤ b , and

◦ a decreasing, complex Hodge filtration

0 ⊊ Fm ⊂ Fm−1 ⊂ · · · ⊂ F ℓ+1 ⊊ F ℓ = HC , ℓ ≤ m,

such that F induces a pure Hodge structure of weight n on GrWn = Wn/Wn−1. Here

the induced Hodge filtration is

F p(GrWn ) =
F p ∩ Wℓ

F p ∩ Wℓ−1

.

Example 5.1.3. A pure Hodge structure of weight n is a mixed Hodge structure

with trivial weight filtration 0 = Wn−1 ⊂ Wn = HQ.

5.1.1 Two toy examples

Example 5.1.4 (Complete, singular curve [Dur83]). Suppose that X ⊂ P is an irre-

ducible curve with (at worst) ordinary double point singularities. Let S = {s1, . . . , sk}
denote the singular points, and let ρ : Y → X denote the normalization of X (as in

Figure 5.1). Then ρ−1(sj) = {pj, qj} consists of two points. Let T = ρ−1(S). Then

Y is smooth and the restriction ρ : Y \T → X\S is an isomorphism. Each of Hn(Y ),

Hn(S) and Hn(T ) admit pure Hodge structures of weight n; our goal is to use these
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Figure 5.1: Normalization

 

to describe the mixed Hodge structure on X. Let i : S ↪→ X and j : T ↪→ Y be the

inclusions. The maps

T

S Y

X

ρ j

i ρ

define a SES of sheaves

0 −→ QX QS ⊕ QY QT −→ 0
α=i∗⊕ρ∗ β=ρ∗−j∗

which induces a LES in cohomology

0 H0(X) H0(S)⊕H0(Y ) H0(T ) H1(X) H1(Y ) 0 .

Q Qk+1 Q2k

α0 β0 γ0 α1

This suggests the weight filtration 0 ⊂ W0 ⊂ W1 = H1(X,Q) defined by

W0H
1(X)

dfn
=== im γ0 ≃ coker β0 = Qk with GrW1 H

1(X) = H1(Y ) .
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Example 5.1.5 (Smooth, incomplete curve [Dur83]). Let X be a Riemann surface,

and D = {p1, . . . , pk} ⊂ X a finite set of points. Both Hn(X,Q) and Hn(D,Q) have

pure polarized Hodge structures of weight n. Our goal is to use these to describe the

mixed Hodge structure on U = X\D. What follows is a sketch of the approach, and

mixed Hodge structures of this type will be discussed in greater generality in §5.4.
Let j : U ↪→ X and i : D → X be the inclusion maps. The Gysin map i! :

H0(D) → H2(X) and residue map Res : H1(U) → H0(D) complete to a LES

0 H1(X) H1(U) H0(D) H2(X) H2(U) 0 .

Ck C C

j∗ Res i! j∗

Passing to the reduced cohomology, we have

0 H1(X) H1(U) H̃0(D) = Ck−1 0 .
j∗ Res

This suggests weight filtration 0 ⊂ W1 ⊂ W2 = H1(U) with W1 = H1(X) and

GrW2 = coker i∗ ≃ imRes = H̃0(D).

5.1.2 Induced mixed Hodge structures

Example 5.1.6. Given a mixed Hodge structure on H, the induced mixed Hodge

structure on H∨ is

Wp(H
∨) = Ann(W−p−1(H)) and F p(H∨) = Ann(F 1−p(H)) .

Example 5.1.7. Given mixed Hodge structures on H1 and H2,

Wn(H) =
∑
p+q≤n

Wa(H1)⊗Wb(H2) and F k(H) =
∑
p+q≥k

F p(H1)⊗ F q(H2)

defines a mixed Hodge structure on H = H1 ⊗H2.

Exercise 5.1.8. Together Examples 5.1.6 and 5.1.7 induce a mixed Hodge structure

on H = Hom(H1, H2) ≃ H2 ⊗H∨
1 . Show that this induced mixed Hodge structure is

F p(H) = {ϕ ∈ H s.t. ϕ(F k(H1)) ⊂ F k+p(H2) , ∀ k}

Wp(W ) = {ϕ ∈ H s.t. ϕ(Wk(H1)) ⊂ Wk+2p(H2) , ∀ k} .
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5.2 Morphisms

Definition 5.2.1 (Morphism of pure Hodge structure). A weight 2ℓ morphism of

(pure) Hodge structures is a Q–linear map ϕ : H1 → H2 such that ϕ(Hp,q
1 ) ⊂ Hp+ℓ,q+ℓ

2 .

Example 5.2.2 (Pullback). Given map f : X → Y of compact Kähler manifolds,

the pull-back f ∗ : Hn(Y,Q) → Hn(X,Q) is a weight zero morphism of pure Hodge

structures.

Definition 5.2.3 (Gysin map). Let f :M → N be a smooth map of compact oriented

manifolds of (real) dimensions m,n. The Gysin map f! : H
k
d(M) → Hk+n−m

d (N) is

characterized by ∫
N

f!(α) ∧ β =

∫
M

α ∧ f ∗(β) ,

and admits the following description. Use Poincaré duality to identify the pullback

f ∗ : Hℓ
d(N) → Hℓ

d(M) with a map Hn−ℓ
d (N)∗ → Hm−ℓ

d (M)∗. Now take the dual map

and set k = m− ℓ.

Exercise 5.2.4 (Gysin map). Let f : X → Y be a morphism of compact Kähler man-

ifolds of (complex) dimension m,n. Show that the Gysin map f! : Hk
d(X) →

H
k+2(n−m)
d (Y ) (Definition 5.2.3) is weight 2(n−m) morphism of Hodge structures.

Exercise 5.2.5. Let ϕ : H1 → H2 be a weight 2ℓ morphism of Hodge structures (as

in Definition 5.2.1).

(a) Prove that ϕ(F p
1 ) ⊂ F p+ℓ

2 .

(b) Show that the morphism is strict : ϕ(F p
1 ) = ϕ(H1) ∩ F p+ℓ

2 .

(c) Show that the kernel, cokernel and the image of a morphism of pure Hodge

structures are pure Hodge structures.

Definition 5.2.6 (Morphism of mixed Hodge structure). A weight 2ℓ morphism of

mixed Hodge structures is a Q–linear map ϕ : H1 → H2 that is compatible with the

weight and Hodge filtrations:

ϕ(Wp(H1)) ⊂ Wp+2ℓ(H2) and ϕ(F p(H1)) ⊂ F p+ℓ(H2) .
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Exercise 5.2.7. Show that a weight 2ℓ morphism ϕ : H1 → H2 of mixed Hodge

structures naturally induces a weight 2ℓ morphism ϕn : GrWn (H1) → GrWn+2ℓ(H2) of

pure Hodge structures.

Exercise 5.2.8. Let (H,W,F ) be a mixed Hodge structure.

(a) Show that there are naturally induced mixed Hodge structures on Wn(H) and

H/Wn(H).

(b) Show that the maps i : Wn(H) ↪→ H and j : H ↠ W/Wn(H) are weight zero

morphisms of mixed Hodge structures.

In general, mixed Hodge structures do not have direct sum decompositions like

the Hodge decomposition. The best we can say is the following

Lemma 5.2.9 (Deligne splitting [GS75]). Let (W,F ) be a mixed Hodge structure on

H. Define

Ip,qW,F
dfn
=== (F p ∩Wp+q) ∩

(
F q ∩Wp+q +

∑
i≥1

F q−i ∩Wp+q−i−1

)
. (5.2.10)

Then (5.2.10) is the unique splitting with the properties

HC =
⊕

Ip,qW,F , Ip,qW,F ≡ Iq,pW,F mod
⊕
r < p
s < q

Ir,sW,F ⊂ Wp+q−2 ,

Wℓ =
⊕
p+q≤ℓ

Ip,qW,F , F p =
⊕
r≥p

Ir,qW,F .

Moreover, the projection Ip,q ↪→ Wm → GrWm maps Ip,q isomorphically onto the Hodge

decomposition summand (GrWm )p,q, where m = p+q. And if ϕ : H1 → H2 is any weight

2ℓ morphism of mixed Hodge structure, then ϕ(Ip,q1 ) ⊂ Ip+ℓ,q+ℓ2 .

This lemma has a number of powerful consequences

Exercise 5.2.11. Let ϕ : H1 → H2 be a weight 2ℓ morphism of mixed Hodge

structure. Show that ϕ is strict :

ϕ(WmH1) = (Wm+2ℓH2) ∩ ϕ(H1) and ϕ(F pH1) = (F p+ℓH2) ∩ ϕ(H1) .
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Exercise 5.2.12. Let ϕ : H1 → H2 be a weight 2ℓ morphism of mixed Hodge

structure. Then there are induced mixed Hodge structures on kerϕ and cokerϕ.

Exercise 5.2.13. Let 0 → H1
α−→ H

β−→ H2 → 0 be an exact sequence of morphisms

of mixed Hodge structures, with α of weight 2ℓ and β of weight 2m. Prove that the

induced sequence 0 → GrWn−2ℓ(H1)
αn−→ GrWn (H)

βn−→ GrWn+2m(H2) → 0 is exact.

Hodge diamonds are very useful “hieroglyphics” that encode much of the discrete

data in a mixed Hodge structure (just as Dynkin diagrams and Young tableaux encode

representation theoretic data).

Definition 5.2.14 (Hodge diamond). Given a mixed Hodge structure (W,F ), the

Hodge diamond is a configuration of points (p, q) ∈ Z2, with each node labelled with

dimC I
p,q
W,F .

5.3 Complete, normal crossing varieties

The goal of this section is to describe Deligne’s mixed Hodge structure on the coho-

mology of a complete, simple normal crossing variety.

Definition 5.3.1. A varietyX is normal crossing if every point x ∈ X admits an ana-

lytic neighborhood U centered at x such that U ≃ {(z0, . . . , zd) ∈ ∆d+1 s.t. z0 z1 · · · zk =
0}. We say X is simple (or strict) normal crossing if the irreducible components of

X are smooth.

Let’s begin by considering the simplest nontrivial case. . .

5.3.1 Example: two irreducible components X = X1 ∪X2

Let X = X1 ∪X2 be complete and simple normal crossing. The SES

0 → QX
α−→ QX1 ⊕ QX2

β−→ QY → 0
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induces a LES (cohomology coefficients are suppressed to save space)

0 → H0(X)
α0−→ H0(X1) ⊕ H0(X2)

β0−→ H0(Y )
γ0−→ · · ·

...
...

...

· · · γk−2−−→ Hk−1(X)
αk−1−−−→ Hk−1(X1) ⊕ Hk−1(X2)

βk−1−−−→ Hk−1(Y )
γk−1−−→

γk−1−−→ Hk(X)
αk−→ Hk(X1) ⊕ Hk(X2)

βk−→ Hk(Y )
γk−→ · · ·

Since X1, X2 and Y = X1∩X2 are nonsingular, H
k(X1)⊕Hk(X2) has a HS of weight

k, and Hk−1(Y ) has a HS of weight k − 1. We will use these two HS to define the

weight filtration

0 = Wk−2 ⊂ Wk−1 ⊂ Wk = Hk(X,Q) .

To begin, note that βk is a weight zero morphism of Hodge structures (Definition

5.2.1). It follows that ker βk = imαk and im βk = ker γk and coker βk all have induced

Hodge structures of weight k (HW 5.2.5). So there is an induced Hodge structure of

weight k − 1 on

Wk−1
dfn
=== im γk−1 ≃ coker βk−1 .

Likewise,

GrWk =
Wk

Wk−1

=
Hk(X,Q)

im γk−1

=
Hk(X,Q)

kerαk
≃ imαk = ker βk

has an induced Hodge structure of weight k.

5.3.2 Example: curve X = ∪Xi

Suppose that each X = ∪Xi is complete, simple normal crossing, with each Xi a

nonsingular curve of genus gi. Let Xij = Xi ∩Xj The SES

0 → QX
α−→ ⊕iQXi

β−→ ⊕i<j QXij
→ 0

induces a LES (cohomology coefficients are suppressed to save space)

0 → H0(X)
α0−→ ⊕iH

0(Xi)
β0−→ ⊕i<j H

0(Xij)
γ0−→

γ0−→ H1(X)
α1−→ ⊕iH

1(Xi)
β1−→ 0

0
γ1−→ H2(X)

αk−→ ⊕iH
2(Xi)

βk−→ 0 .
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As in §5.3.1, the weight filtration on H1(X,Q) is

W0 = im γ0 ≃ coker β0 , and W1 = H1(X,Q) ,

with

GrW1 =
W1

W0

=
H1(X,Q)

kerα1

≃ imα1 = ⊕iH
1(Xi,Q) .

5.3.3 Deligne’s MHS

Assume X is a complete, simple normal crossing variety. The mixed Hodge structure

(W,F ) on Hn(X,Q) is obtained as follows. Write X = ∪Xi, with Xi the irreducible

components of X. Set

XI =
⋂
i∈I

Xi .

Then codimXI = |I| − 1. The XI are nonsingular, and Hn(XI ,Q) admits a pure

Hodge structure of weight n. Set

X(k) =
⊔
|I|=k

XI . (5.3.2)

Let ik : X
(k) → X be the map defined by the inclusions XI ↪→ X. Given 1 ≤ a ≤ k,

let ja : X
(k) → X(k−1) be the map defined by the inclusions XI ↪→ XI−{ia}. Define a

double complex Cp,q = (iq+1)∗EpX(q+1) with differentials D1 = d the exterior derivative,

and D2 the signed restriction
∑q+1

a=1 (−1)p+aj∗a. Deligne’s mixed Hodge structure on

Hn(X,Q) (Theorem 5.1.1) is exhibited by constructing a spectral sequence from the

associated simple/total complex (Cm = ⊕p+q=m, D = D1 +D2) that collapses at the

second page with

GrWq H
n(X,Q) = Ep,q

∞ = Ep,q
2 = Hp(E•,q

1 , d1)

= Hp(Hq(X(•+1),Q) , d1) (5.3.3)

=
ker {d1 : Hq(X(p+1)) → Hq(X(p+2))}
im {d1 : Hq(X(p)) → Hq(X(p+1))}

, p+ q = n ,
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where Ep,q
1 = Hq(X(p+1),Q) is equipped with the natural pure Hodge structure of

weight q, and the differential d1 : H
q(X(p+1),Q) → Hq(X(p+2),Q), which is induced by

a signed restriction map, is a morphism of Hodge structures. A number of corollaries

follow.

Corollary 5.3.4. (i) The weight filtration satisfies Wn = Hn(X,Q).

(ii) If X(k+1) = ∅, then Wn−k = 0.

Corollary 5.3.5. If X and Y are normal crossing varieties and f : X → Y is a

morphism, then f ∗ : Hn(Y,Q) → Hn(X,Q) is a weight zero morphism of mixed

Hodge structures.

It follows from this corollary and strictness of morphisms (HW 5.2.11) that we

have. . .

Corollary 5.3.6. If X is a normal crossing variety, Y is smooth and complete, and

f : X → Y is a morphism, then Wn−1H
n(X,Q) ∩ Im f = 0 is a weight zero morphism

of mixed Hodge structures.

The Lefschetz hyperplane theorem and Corollary 5.3.6 yield

Corollary 5.3.7. Let Z be a nonsingular projective variety of dimension d+ 1, and

let X ⊂ Z be an ample divisor (a hyperplane section of Z) with normal crossings.

Then Wn−1H
n(X,Q) = 0 when n < d.

Definition 5.3.8. The dual complex Γ(X) of X = ∪Xi is the polyhedron whose

vertices correspond to the irreducible components Xi of X. The vertices Xi0 , . . . , Xik

form a k-simplex if XI ̸= ∅.

Corollary 5.3.9. If Γ is the dual complex of a complete, normal crossing X, then

W0(H
k(X)) = Hk(|Γ|).

Proof. The key observation is that it follows from (5.3.3) and Corollary 5.3.4 that

W0H
k(X) = Hk(H0(X(∗+1)) , d1) ,
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keeping in mind that d1 is induced by a signed restriction map, and the definition of

the dual complex.

5.3.4 Example: surface X = ∪Xi

Let Cij = Xi ∩ Xj, i < j, denote the double curves; and Pijk, i < j < k, the triple

points. Then Corollary 5.3.9 implies W0H
n(X) = Hn(Γ). The observations that

follow are all consequences of (5.3.3) and the E1 page of the spectral sequence:⊕
i

H4(Xi) 0

⊕
i

H3(Xi) 0

⊕
i

H2(Xi)
⊕
i<j

H2(Cij) 0

⊕
i

H1(Xi)
⊕
i<j

H1(Cij) 0

⊕
i

H0(Xi)
⊕
i<j

H0(Cij)
⊕
i<j<k

H0(Cijk) 0 .

d1 d1

d1 d1

d1 d1 d1

In degree one Corollary 5.3.4 yields H1(X) = W1 ⊃ W0 ⊃ 0, and (5.3.3) yields

GrW1 H1(X) = ker

{
d1 :

⊕
i

H1(Xi) →
⊕
i<j

H1(Cij)

}
.

In degree two we have H2(X) = W2 ⊃ W1 ⊃ W0 ⊃ 0. The weight-graded quotient in

degree two is

GrW2 H2(X) = ker

{
d1 :

⊕
i

H2(Xi) →
⊕
i<j

H2(Cij)

}
.
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Moreover, if GrW2 H2(X,C) = H2,0
2 ⊕ H1,1

2 ⊕ H0,2
2 is the Hodge decomposition, then

H2,0
2 = ⊕iH

2,0(Xi). The weight-graded quotient in degree one is

GrW1 H2(X) = coker

{
d1 :

⊕
i

H1(Xi) →
⊕
i<j

H1(Cij)

}
.

5.4 Smooth quasi-projective varieties

Recommended reference: [PS08, §4].
Let U be a nonsingular algebraic variety. It follows from [Hir64, Nag62] that U

may be realized as U = X\D, for some nonsingular, complete algebraic variety X

and a simple normal crossing divisor D ⊂ X. Let j : U ↪→ X denote the inclusion.

Definition 5.4.1. Let Ωp
X(kD) ⊃ Ωp

X be the sheaf of meromorphic p-forms on X

that are holomorphic on U , and have a pole of order ≤ k on D. The sheaf of log

p-forms is

Ωp
X(logD) = {ω ∈ Ωp

X(D) s.t. dω ∈ Ωp+1
X (D)} ⊂ Ωp

X(D) .

The logarithmic de Rham complex is (Ω•
X(logD), d) ⊂ (j∗Ω

•
U , d).

As a complex manifold, every point x ∈ X admits a local coordinate chart z :

V
≃−→ ∆m centered at x so that D ∩ V = {z1 · · · zk = 0}.

Exercise 5.4.2. (a) Show that Ω1
X(logD)(V ) is the OX(V )–module generated by

d log z1, . . . , d log zk, dzk+1, . . . ,dzm.

(b) Show that Ωp
X(logD)(V ) =

∧pΩ1
X(logD)(V ).

Define a filtration

WℓΩ
p
X(logD)

dfn
=== Ωp−ℓ

X ∧ Ωℓ
X(logD) .

Let

F k Ωp
X(logD)

dfn
===

{
0 , p < k ,

Ωp
X(logD) , p ≥ k

be the trivial filtration on the complex.
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Theorem 5.4.3. Deligne’s mixed Hodge structure on Hk(U,C) is given as follows.

(i) We have Hk(U,C) = Hk(X,Ω•
X(logD)).

(ii) The weight filtration is

WℓH
k(U,C) = im{Hk(X,Wℓ−k Ω

•
X(logD)) → Hk(U,C)} .

We have WℓH
k(U) = 0 for all ℓ < k, and WkH

k(U) = im{Hk(X) → Hk(U)}.

(iii) The Hodge filtration is

F pHk(U,C) = im{Hk(X,F pΩ•
X(logD)) → Hk(U,C)} .

And GrpFH
p+q(U,C) = Hq(X,Ωp

X(logD)). (This is a consequence of the fact

that a spectral sequence associated with the filtration F kΩp
X(logD) collapses at

the E1 term, and Ep,q
1 = Hq(X,Ωp

X(logD)).)

(iv) The Hodge numbers hp,q of Hk(U) are nonzero only when p, q ≤ k ≤ p +

q. This is a consequence of the fact that GrWk+ℓH
k(U,Q) is a subquotient of

Hk−ℓ(D(ℓ),Q)(−ℓ). (The latter cohomology coincides with the E1 term of the

spectral sequence associated with the filtration W−ℓ = Wℓ that collapses at the

E2 term.)

The proof of Theorem 5.4.3 is much more complicated than the construction of the

mixed Hodge structure on Hk(Y,Q) when Y is a simple normal crossing variety

(summarized in §5.3.3). This is perhaps not surprising since the choice of completion

X ⊃ U is neither unique nor canonical. We will discuss (in §§5.4.1–5.4.3) the proof

in the very special case that D is smooth hypersurface.

5.4.1 Residue map

Let D ⊂ X be a smooth hypersurface. Define a map

ResD : Ωp
X(logD) → Ωp−1

D (5.4.4)
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as follows. Given x ∈ D, fix a local coordinate chart z : V
≃−→ ∆m centered at x so that

D ∩ V = {z1 = 0}. Any ω ∈ Ωp
X(logD)(V ) may be written as ω = η ∧ (d log z1) + η′,

with η ∈ Ωp−1
X (V ) and η′ ∈ Ωp

X(V ) not involving dz1.

Exercise 5.4.5. Show that η|D ∈ Ωp−1
D (D ∩ V ) is independent of our choice of local

coordinates z. Conclude that (5.4.4) is well-defined by ResD(ω) = η|D.

Exercise 5.4.6. Show that the residue map commutes with d.

Exercise 5.4.7. Show that

0 → Ωp
X → Ωp

X(logD)
Res−−→ Ωp−1

D → 0

is an SES of sheaves.

Remark 5.4.8. The residue map admits the following coordinate-free interpretation:

Fix a Riemannian metric onX. For sufficiently small ε > 0, the tubular neighborhood

T2ε(D) = {x ∈ X s.t. dist(x,D) < 2ε} is diffeomorphic to a neighborhood of the zero

section in the real normal bundle ND = TD⊥ ⊂ TX|D. Then Sε(D) = ∂Tε(D) =

{x ∈ X s.t. dist(x,D) = ε} maybe viewed as an S1–bundle over D. Let i : Sε(D) →
T2ε(D) be the inclusion. Let ρD : Hk(Sε(D)) → Hk−1(D) be the map given by

fibre-wise integration. Then

ResD(η) = ρD
(

1
2πi

i∗η
)
.

This interpretation is dual to the following. Let j : D → T2ε(D) denote the inclusion,

and π : Sε(D) → D the projection. The Gysin LES is

· · · → Hk(Sε(D))
i∗−→ Hk(T2ε(D))

j!−→ Hk−2(D)
Res∗D−−−→ Hk−1(Sε(D)) → · · ·

Informally the map j! is given by intersecting the cycle c ∈ Hk(T2ε(D)) with D.

Formally, the map is defined by

⟨τ ∧ π∗φ , c⟩ = ⟨φ , j!(c)⟩ , ∀ φ ∈ Hk−2(D)

where τD is the Thom class of the normal bundle ND.
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Exercise 5.4.9. The SES of HW 5.4.7 induces a LES in cohomology

H0(X,Ωp
X) H0(X,Ωp

X(logD)) H0(D,Ωp−1
D ) H1(X,Ωp

X) · · ·

Hp−1,0(D) Hp,1(X)

Res δ

Let i : D ↪→ X denote the inclusion. Show that the connecting map δ : Hp−1,0(D) →
Hp,1(X) is the (restriction of the) Gysin map i! : H

p−1(D,C) → Hp+1(X,C). [Hint.

Remark 5.4.8 and Stokes’ Theorem.]

Exercise 5.4.10. Show that

0 → H0(V,Ωp
V ) ↪→ H0(V,Ωp

V (logD ∩ V ))
Res−−→ H0(D ∩ V,Ωp−1

D∩V ) → 0

is exact. [Hint. HW 5.4.7 and Cartan’s Theorem B (§A.4.4).]

5.4.2 Hypercohomology

Hypercohomology is a generalization of sheaf cohomology that takes as its input

not a single sheaf, but a complex of sheaves. For this discussion, we take X to be an

arbitrary complex manifold. (While some of the discussion holds in greater generality,

this suffices for our purposes.) Suppose that (K•, d) is a complex of sheaves (bounded

below).

Definition 5.4.11. The cohomology sheaf (not to be confused with sheaf cohomol-

ogy) is the sheafification of the presheaf

U 7→ ker{d : Kq(U) → Kq+1(U)}
im {d : Kq−1(U) → Kq(U)}

;

that is,

Hq(K•, d)(U) =

{
σα ∈ Kq(Uα)

∣∣∣∣∣ {Uα} is an open cover of U , dσα = 0

and σα|Uαβ
− σβ|Uαβ

∈ d(Kq−1(Uαβ))

}/
∼ ,

where {σα ∈ Kq(Uα)} ∼ {σ′
µ ∈ Cq(U ′

µ)} if for all x ∈ Uα ∩ U ′
µ there exists an open

x ∈ V ⊂ Uα ∩ U ′
µ so that σα|V − σ′

µ|V ∈ d(Kq−1(V ))}.
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Definition 5.4.12. A morphism K•
1 → K•

2 of complexes is a quasi-isomorphism if

the induced maps Hk(K•
1) → Hk(K•

2) are isomorphisms. This is a local property that

can be checked at the level of stalks (HW A.4.4).

Remark 5.4.13. If the complex (K•, d) satisfies a Poincaré Lemma, thenHq(K•, d) =

0 for all q > 0, essentially by definition.

Example 5.4.14. Any resolution F ↪→ S• is a quasi-isomorphism of S• with the

trivial complex F → 0 → 0 → · · · .

Example 5.4.15 ([Voi07]). Suppose that (K•, d) is a complex, (C•,•, δ1, δ2) is a double

complex (δ2i = 0, δ1δ2 + δ2δ1 = 0), and there exists a morphism of complexes i :

(K•, d) ↪→ (C•,0, δ1) so that ip : Kp ↪→ Cp,0 is an injection, and Kp
ip
↪→ (Cp,•, δ2)

is a resolution. Let (C•, δ) be the associated simple complex Ck = ⊕p+q=kCp,q and

δ = δ1 + δ2. Then the induced map i : (K•, d) → (C•, δ) is a quasi-isomorphism.

One such example is given by (Kp, d) = (Ωp
X , ∂) and (Cp,q, δ1, δ2) = (Ep,qX , ∂, ∂), for

which we have (Ck, δ) = (EkX , d). Another example is given by the Čech resolution . . .

Definition 5.4.16. Let (Cp({Ui},Kq), δ) denote the Čech resolution of Kq (Example

A.4.14). Let d : Cp({Ui},Kq) → Cp({Ui},Kq+1) be the induced map. Then (Cp,q =

Cp({Ui},Kq); δ, d) is a double complex (Example 5.4.15). Let (C•, D) be the associated

simple complex. The hypercohomology of the complex is

Hk(X,K•)
dfn
=== lim−→

{Ui}
Hk(Γ(X, C•), D) . (5.4.17)

(See §A.4.6 for a more general discussion.)

Remark 5.4.18. There are two spectral sequences abutting to the hypercohomology

(Hk ≃ ⊕p+q=kE
p,q
∞ ) [GH94, p. 442]. The second pages are

′Ep,q
2 = Ȟp(X,Hq) and ′′Ep,q

2 = Hp
d(Ȟ

q(X,K•)) (5.4.19)

where Hq = Hq(K•, d) are the cohomology sheaves (§A.4.6). The first spectral se-

quence may be used to show: if ϕ : (K•
1, d1) → (K•

2, d2) is a quasi-isomorphism
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(induces an isomorphism of cohomology sheaves), then Hk(X,K•
1) = Hk(X,K•

2). The

second spectral sequence implies that in the computation (5.4.17) it suffices to work

with a cover {Ui} that is acyclic with respect to all the Kq.

Example 5.4.20 (Hypercohomology of a trivial complex). Fix a sheaf S, and let

(K•, d) be the trivial complex S → 0 → 0 → · · · . Then H0 = S and Hq = 0 for all

q > 0. Both ′Ep,q
2 and ′′Ep,q

2 are zero for q > 0. Since these spectral sequences are

supported in the positive quadrant, the differentials d′2 and d
′′
2 vanish. So Hk(X,K•) =

Hk(X,S) is the usual sheaf cohomology.

Example 5.4.21 (Dolbeault isomorphism). The ∂–Poincaré Lemma implies that

the trivial complex Ωk
X → 0 → 0 → · · · is quasi-isomorphic to the Dolbeault complex

(Ek,•X , ∂). So Hq(X,Ωk) = Hq(X, Ek,•X ) (Example 5.4.20).

The ∂–Poincaré Lemma also implies that the cohomology sheaves of (Ek,•X , ∂)

are H0 = Ωk
X and Hq = 0 for all q > 0. So ′Ep,0

2 = Hp(X,Ωk
X), and

′Ep,q
2 = 0 for

all q > 0. Likewise, the sheaves Ek,•X are fine, so that Ȟq(X, Ek,•) = 0 for all q > 0

(Example A.4.13), so that ′′Ep,0
2 = Hp

∂
(H0(X, Ek,•X )) = Hk,p

∂
(X) and ′′Ep,q

2 = 0 for

all q > 0. Since these spectral sequences are supported in the positive quadrant,

the differentials d′2 and d′′2 vanish. Whence we obtain the Dolbeault isomorphism

Hp(X,Ωk) = Hk,p

∂
(X).

Example 5.4.22. The holomorphic de Rham complex (Ω•
X , d) is a resolution of the

constant sheaf CX , but not an acyclic resolution. The complex satisfies a Poincaré Lemma,

so that the inclusion of the trivial complex CX → 0 → 0 → 0 · · · into (Ω•
X , d) is a

quasi-isomorphism. It follows (Example 5.4.20) that

Hk(X,C) = Hk(X,Ω•
X) .

(Keeping Example 5.4.15 in mind, we have Hk(X,Ω•
X) = Hk

d(H
0(X, E•

X)), which is

consistent.) We have ′′Ep,q
2 = Hp

d(Ȟ
q(X,Ω•

X)).

(a) If X is compact Kähler, then the differential d is trivial on Ȟq(X,Ωp) = Hp,q

∂
(X).

So ′′Ep,q
2 = Ȟq(X,Ωp) = ′′Ep,q

1 , and Hk(X,Ω•
X) ≃ ⊕k=p+q Ȟ

q(X,Ωp).
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(b) If X is Stein, then Cartan’s Theorem B (§A.4.4) implies Ȟq(X,Ωp
X) = 0 for all

q > 0. It follows that Hk(X,C) = Hk
d(H

0(X,Ω•
X)).

Remark. This argument also impliesHp(X,Ω•−1
X ) = Hp−1

d (H0(X,Ω•
X)) = Hp−1(X,C).

Exercise 5.4.23. Prove Theorem 5.4.24. [Hint. Remark 5.4.18.]

Theorem 5.4.24 (de Rham). Let X be a topological space and (K•, d) and exact

complex of sheaves on X.

(i) Define S = ker {d : K0 → K1}. We have a canonical identification Hq(X,S) =
Hq(X,K•).

(ii) If Hq(X,Kp) = 0 for all p and all q > 0, then we have Hq(X,K•) ≃ Hp
dR(X,K•)

dfn
===

Hp(Γ(X,K•), d).

5.4.3 The logarithmic de Rham complex

Assume thatX is a compact complex manifold andD ⊂ X is a simple normal crossing

divisor.

The local picture

The following lemma will play the role of a Poincaré lemma

Lemma 5.4.25. The inclusion Ω•(logD) ↪→ j∗E•
U is a quasi-isomorphism.

Corollary 5.4.26. We have Hk(X,Ω•
X(logD)) = Hk(X, j∗E•

U) = Hk(U,C).

Proof. Recall that the property of being quasi-isomorphic can be checked at the level

of stalks. If x ∈ U , then the stalks are Ω•
x = Ω(logD)x and E•

x = (j∗E•
U)x. The smooth

and holomorphic Poincaré lemmas imply that these stalks are zero.

It remains to consider the case that x ∈ D. For simplicity we assume that D is

smooth. (For the general argument, see [GH94, p. 451].) Then the local coordinate
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chart z : V
≃−→ ∆m satisfies U ∩ V ≃ ∆∗ × ∆m−1. The latter deformation retracts

onto a circle S1, so that

Hq
dR(U ∩ V,C) = Hq

dR(S
1,C) =

∧qH1
dR(S

1,C)

with H1
dR(S

1,C) = C d log z1. This yields Hq(j∗E•
U)x =

∧qH1
dR(S

1,C).
It is clear that the stalk Hq(Ω•

X(logD))x maps onto Hq(j∗E•
U)x. We need to show

that these maps are injective. Exercises 5.4.6 and 5.4.7 imply that we have a SES

0 → Ω•
V → Ω•

V (logD ∩ V )
Res−−→ Ω•−1

D∩V → 0

of complexes. This induces a LES in hypercohomology, that Example 5.4.22 and HW

5.4.27 allow us to write as

0 H0(V,C) H0(Ω•
X(logD))x 0

0 H1(Ω•
X(logD))x H0(D ∩ V,C) 0

0 Hp(Ω•
X(logD))x 0 , ∀ p ≥ 2 .

Exercise 5.4.27. Show that

Hp(V,Ω•
V (logD ∩ V )) = Hp

d(H
0(V,Ω•

V (logD ∩ V ))) = Hp(Ω•
X(logD))x .

[Hint. The second equality is essentially by definition of the cohomology sheaves.

For the first equality, consider the second page ′′Ep,q
2 in the second spectral sequence

computing the hypercohomology (5.4.19), keeping Example 5.4.22(b) in mind.]

The global picture

Assume that D ⊂ X is a smooth hypersurface. As noted above HW 5.4.6 and 5.4.7

imply that we have a SES

0 → Ω•
X → Ω•

X(logD)
Res−−→ Ω•−1

D∩V → 0
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of complexes. This induces a LES in hypercohomology, that Example 5.4.22 and

Corollary 5.4.26 allow us to write as

0 H0(X,C) H0(U,C) 0

0 H1(X,C) H1(U,C) H0(D,C) H2(X,C)

H2(U,C) H1(D,C) H3(X,C) H3(U,C)

H2(D,C) H4(X,C) H2(U,C) · · ·

j∗ Res Gys

j∗ Res Gys j∗

Res Gys j∗ Res

(5.4.28)

Example 2.3.6 and HW 5.2.4 and 5.4.9 imply that the mapsHp−1(D)(−1) → Hp+1(X)

are weight zero morphisms of Hodge structure. HW 5.2.5(c) implies

WkH
k(U)

dfn
=== im {Hk(X) → Hk(U)} = coker {Hk−2(D)(−1) → Hk(X)}

carries a pure Hodge structure of weight k. Likewise, setting Wk+1H
k(U) = Hk(U),

the weight graded quotient

GrWk+1H
k(U) = coker{Hk(X) → Hk(U)} = ker {Hk−1(D)(−1) → Hk+1(X)}

carries a pure Hodge structure of weight k + 1.

This completes our discussion of Theorem 5.4.3. We now turn to some important

corollaries.

5.4.4 Global Invariant Cycle Theorem

Let f : X ⊂ Pm × S → S be as in Example 3.5.3. The stalks of the higher direct

image are Rnf∗(QX )s = Hn(Xs,Q), cf. Example A.4.10 and HW A.4.11. Fix so ∈ S

and let ρ : π1(S, so) → Aut(Hn(Xso ,Q), Q) be the monodromy representation (3.1.3).

As a local system, we have

Rnf∗(QX ) S̃ ×ρ H
n(Xso ,Q)

S
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Let

Hn(Xso ,Q)π1 = {η ∈ Hn(Xso ,Q) s.t. ρ(γ) · η = η ∀ γ ∈ π1(S, so)}

denote the subspace upon which the monodromy acts trivially. We have a natural

identification

Hn(Xso ,Q)π1 ≃ H0(S,Rnf∗(QX )) (5.4.29)

of the invariant subspace with the global sections. Let is : Xs ↪→ X be the inclusion

map, and note that restriction to fibres defines a map

Hn(X ,Q) → H0(S,Rnf∗(QX )) , ξ 7→ (s 7→ i∗sξ) . (5.4.30)

Remark 5.4.31. Corollary A.4.16 implies that (5.4.30) is surjective. Then the iden-

tification (5.4.29) yields the following generalization of HW 3.1.13(b)

Hn(Xso ,Q) = ker {Hn(Xso ,Q) → Hn(X ,Q)} ⊕ Hn(Xso ,Q)π1 .

Theorem 5.4.32 (Global Invariant Cycle Thm, aka Thm of the Fixed Part [Del71]).

filler

(i) The invariant subspace Hn(Xso ,Q)π1 inherits a weight n Hodge structure from

Hn(Xso ,Q).

(ii) The induced Hodge structure on Γ(S,Rnf∗(QX )) does not depend on the choice

of so ∈ S.

(iii) If j : X ↪→ X is a smooth compactification (with X\X simple normal crossing),

then the composition

Hn(X ,Q)
j∗−→ Hn(X ,Q) → H0(S,Rnf∗(QX )) = Hn(Xso ,Q)π1

is surjective.

Proof. The pullback i∗so decomposes as

i∗so : H
n(X ,Q) ↠ H0(S,Rnf∗(QX )) ≃ Hn(Xso ,Q)π1 ↪→ Hn(Xso ,Q) .

92



Since i∗s is a morphism of Hodge structures (Theorem 5.1.1), the first claim of Theorem

5.4.32 follows from Remark 5.4.31. As a quotient of Hn(X ,Q), the Hodge structure

on H0(S,Rnf∗(QX )) is clearly independent of so. It remains to establish the third

claim. This follows from HW 5.4.33 below.

Exercise 5.4.33. Set js = j ◦ is : Xs → X . Both Hn(X ,Q) and Hn(Xs,Q) carry

weight n Hodge structures. By Theorem 5.4.3(ii) we have a mixed Hodge structure

on Hn(X ,Q) with

WnH
n(X ,Q) = im{j∗ : Hn(X ,Q) → Hn(X ,Q)} .

Use Theorem 5.1.1(i) and strictness of morphisms of MHS (HW 5.2.11) to show that

im{i∗s : Hn(X ,Q) → Hn(Xs,Q)} = im {j∗s : Hn(X ,Q) → Hn(Xs,Q)} .

Theorem 5.4.34 (Complete reducibility [Del71]). The monodromy representation

on Hn(Xso) is completely reducible.

Remark 5.4.35. The elements of ker {Hn(Xso ,Z) → Hn(X ,Z)} are the vanishing

cycles.

Remark 5.4.36. Let

In S̃ ×ρ H
n(Xso ,Q)π1 ⊂ Rnf∗(QX )

S

be the local subsystem defined by Hn(Xso ,Q)π1 ⊂ Hn(Xso ,Q). This local subsystem

is a constant sheaf. If η is a section of In, and is of Hodge type (p, q) at some point

s ∈ S, then Theorem 5.4.32 implies η is of Hodge type (p, q) at every point of S. With

more work, one may use the Global Invariant Cycle Theorem obtain results Hodge

classes [CS14].
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5.4.5 Hodge structure on a smooth projective hypersurface

Let X = {f = 0} ⊂ Pn+1 = P be a smooth projective hypersurface of degree d. Our

goal is to compute the Hodge decomposition of Hk
prim(X,Q).

The Lefschetz hyperplane theorem (§A.3.7) implies Hk(X,Z) = Hk(P,Z) for

all k < n. We have seen (Example 2.2.3) that H•(Pn+1,Z) = ⊕n+1
k=0Zωk, where

ω ∈ H2(Pn+1,Z) ∩ H1,1(Pn+1) is (a multiple of) the Fubini-Study Kähler form.

Then Poincaré duality implies Hk(X,Z) ≃ H2n−k(X,Z). So we need only compute

Hn
prim(X,Z).
Set U = P\X. In this setting the LES (5.4.28) reads

0 H2k−1(U,C) H2k−2(X,C) H2k(P,C)

H2k(U,C) H2k−1(X,C) 0 .

Res Gys

j∗ Res

Lemma 5.4.37. The pullback j∗ : H2k(P,Z) → H2k(U,Z) is the zero map if k > 0.

Proof. By duality it suffices to show that j∗ : H2k(U,Z) → H2k(P,Z) is the zero map.

Given α ∈ H2k(U,Z), define m ∈ Z by j∗(α) = m[Pk] ∈ H2k(P,Z). We have a disjoint

union P = U ⊔X, with [X] = d[Pn] ⊂ H2n(P,Z). So 0 = j∗(α) · [X] = dm[Pn+k−(n+1)]

forces m = 0 so long as k ≥ 1.

The lemma updates the LES to

0 H2k−1(U,C) H2k−2(X,C) H2k(P,C) 0 ,

0 H2k(U,C) H2k−1(X,C) 0 .

Res Gys

Res

Exercise 5.4.38. Use the Gysin map (Definition 5.2.3) to show that the ker {Hn(X,Q) →
Hn+2(P)} = Hn

prim(X,Q).

Exercises 5.2.4 and 5.4.38 imply

Hn
prim(X,Q) ≃ Hn+1(U,Q)(1) . (5.4.39)
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So to describe the Hodge decomposition of Hn
prim(X,Q), it suffices to describe the

mixed Hodge structure on Hn+1(U,Q). Theorem 5.4.3(ii) and Lemma 5.4.37 im-

ply that Wn+1H
n+1(U,Q) = 0. Then Theorem 5.4.3(iv) implies Wn+2H

n+1(U,Q) =

Hn+1(U,Q); this is, Hn+1(U,Q) is pure Hodge structure of weight n + 2. Moreover,

Theorem 5.4.3(iii) asserts

GrpFH
p+q(U) = Hq(P,Ωp

P(logX)) . (5.4.40)

Exercise 5.4.41. Show that the sequence

0 → Ωp
P(logX) ↪→ Ωp

P(X)
d−→ Ωp+1

P (2X)

Ωp+1
P (X)

d−→ Ωp+2
P (3X)

Ωp+2
P (2X)

d−→ · · ·

is exact.

Set

Kk =
Ωp+k

P ((k + 1)X)

Ωp+k
P (kX)

.

Exercise 5.4.41 implies that (K•, d) is a resolution of Ωp
P(logX). Keeping §5.4.2 in

mind, this implies

Hq(P,Ωp
P(logX)) = Hq(P,K•) .

Lemma 5.4.42. We have Hq(P,K•) =
ker {d : H0(P,Kq) → H0(P,Kq+1)}
im {d : H0(P,Kq−1) → H0(P,Kq)}

.

Proof. Bott vanishing (§A.3.10) asserts Hq(P,Ωp
P(k)) = 0 for all q, k > 0 and p ≥ 0.

This implies that the LES associated to the SES

0 → Ωp
P(kX) → Ωp

P((k + 1)X) → Ωp
P((k + 1)X)

Ωp
P(kX)

→ 0

is

0 → H0(P,Ωp
P(kX)) → H0(P,Ωp

P((k + 1)X)) → H0

(
P,

Ωp
P((k + 1)X)

Ωp
P(kX)

)
→ 0

for k > 0. In particular,

H0

(
P,

Ωp
P((k + 1)X)

Ωp
P(kX)

)
=

H0(P,Ωp
P((k + 1)X))

H0(P,Ωp
P(kX))
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and

Hq

(
P,

Ωp
P((k + 1)X)

Ωp
P(kX)

)
= 0 , ∀ q > 0 .

The lemma now follows from (5.4.19).

In the case p+ q = n+ 1, the lemma yields

Hq(P,Ωp
P(logX)) =

H0(P,Ωn+1
P ((q + 1)X))

H0(P,Ωn+1
P (qX)) + dH0(P,Ωn

P(qX))
. (5.4.43)

Exercise 5.4.44. Let (z0, . . . , zn+1) be coordinates on Cn+2. Define E =
∑
zi∂zi ,

and set

ϱ = iE(dz0 ∧ · · · ∧ dn+1) =
∑

(−1)izi dz0 ∧ · · · d̂zi · · · ∧ dn+1 ∈ Ωn+1
Cn+2 .

Let A,B ∈ C[z0, . . . , zn+1] be two homogeneous polynomials. Show that φ =
A

B
ϱ

descends to a well-defined (n+ 1)-form on P if and only if degA+ (n+ 2) = degB.

Remark 5.4.45. Exercise 5.4.44 implies

H0(P,Ωn+1
P (kX)) =

{
A

fk
ϱ s.t. A ∈ Symkd−n−2Cn+2

}
,

explicitly realizing the Bott–Borel–Weil assertionH0(P,Ωn+1
P (kX)) ≃ Symkd−n−2Cn+2.

Exercise 5.4.46. Keeping the notation of Exercise 5.4.44, show that

ψ =
1

B

∑
i<j

(−1)i+jAijdz0 ∧ · · · ∧ · · · d̂zi · · · ∧ · · · d̂zj · · · ∧ dn+1 ∈ Ωn
Cn+2

descends to a well-defined n–form on P if and only if degAij + n = degB and Aij =

ziAj − zjAi (the latter is equivalent to iE(ψ) = 0).

Set B = f q, and compute

dψ =

(
q

f q+1

∑
Aj

∂f

∂zj
− 1

f q

∑ ∂Aj
∂zj

)
ϱ .
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From this we see that φ =
A

f q+1
ϱ ∈ H0(P,Ωn+1

P ((q + 1)X) lies in the denomina-

tor of the right-hand side of (5.4.43) if and only if A lies in the Jacobian ideal Jf ⊂
C[z0, . . . , zn+1] generated by the partial derivatives ∂f/∂zi. LetRf = C[z0, . . . , zn+1]/Jf

be the Jacobian ring. Setting t′(p) = d(q + 1)− (n+ 2) = d(n+ 2− p)− (n+ 2), we

have

R
t′(p)
f

(5.4.43)
====== Hq(P,Ωp

P(logX))
(5.4.40)
====== GrpFH

n+1(U,C)
(5.4.39)
====== Grp−1

F Hn
prim(X,C) .

Set t(p) = t′(p+ 1) = d(n+ 1− p)− (n+ 2) for

dimCR
t(p)
f = hp,qprim(X) . (5.4.47)

Remark 5.4.48. The Hodge numbers are independent of our choice of smooth hy-

persurface X = {f = 0} of degree d (Example 3.5.3). So we might as well take the

Fermat hypersurface

f = zd0 + · · ·+ zdn+1 ,

which has the computational advantage that the Jacobian ring Jf = ⟨zd−1
0 , . . . , zdn+1⟩

is quite simply presented. Using this one may show that

hp,qprim(X) = #{λ ∈ Zn+1 s.t. qd <
∑
λi < (q + 1)d , 1 ≤ λi ≤ d− 1} .

Remark 5.4.49. Steenbrink extended the arguments here (§5.4.5) to quasi-smooth

hypersurfaces of weighted projective space P(a0, . . . , an+1). Here 1 ≤ a0 ≤ · · · ≤
an+1 ∈ Z and gcd(a0, an+1) = 1. In general, the weighted projective space will be

singular. Every weighted projective space is isomorphic to a well-formed weighted

projective space.1 The latter are characterized by gcd(a0, . . . , âj, . . . , an+1) = 1 for all

0 ≤ j ≤ n+ 1, and have singular locus

SingP(a0, . . . , an+1) =
⋃

p prime

{x ∈ P(a0, . . . , an+1) s.t. xj ̸= 0 =⇒ p|aj} .2

1For example, P(a, b) ≃ P1.
2In general, P(a0, . . . , an+1) is a normal irreducible projective algebraic variety; the singularities

are all cyclic quotient singularities; and a nonsingular P(a0, . . . , an+1) is isomorphic to Pn+1, [Dol82].
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For example,

SingP(1, 1, 2, 5) = {(0 : 0 : 1 : 0) , (0 : 0 : 0 : 1)} .

A hypersurface X ⊂ P(a0, . . . , an+1) cut out by a homogeneous polynomial f ∈
C[x0, . . . , xn+1]d of weighted degree d is quasi-smooth if the only singularity of {f =

0} ⊂ Cn+2 is the vertex 0 ∈ Cn+2. Set |a| =
∑
aj and w(p) = d(n + 1 − p) − |a|.

Then [Dol82, Theorem 4.3.2]

hp,qprim(X) = dimCR
w(p)
f . (5.4.50)

5.4.6 Hodge structure of a blow-up

Let Y ⊂ X be smooth projective varieties of dimensions n−m ≤ n. Let

π : X ′ = BlY (X) → X

denote the blow-up of X along Y (Definition 1.1.21). Our goal here is to sketch how

one computes the Hodge numbers of X ′ using Mayer–Vietoris exact sequences.

Let U = X\Y , and let Y ⊂ V ⊂ X be a tubular neighborhood of Y . Then

V deformation retracts onto Y , and U ∩ V deformation retracts to S2m−1 × Y . Set

U ′ = π−1(U) ≃ U and V ′ = π−1(V ). Note that U ′ ∩ V ′ ≃ U ∩ V , and V ′ deformation

retracts to P(NX/Y ). The Mayer–Vietoris sequences are

· · · Hk+1(X) Hk(U ∩ V ) Hk(U)⊕Hk(V ) Hk(X) · · ·

· · · Hk+1(X
′) Hk(U

′ ∩ V ′) Hk(U
′)⊕Hk(V

′) Hk(X
′) · · ·

π∗ π∗ π∗

Since V deformation retracts on to Y , we have

Hk(V ) = Hk(Y ) .

Likewise, the Künneth formula yields

Hk(U
′ ∩ V ′) = Hk(U ∩ V ) = Hk(S

2m−1 × Y ) = Hk(Y )⊕Hk+1−2m(Y ) .
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And the Leray–Hirsh Theorem yields

Hk(V
′) = Hk(P(NX/Y )) =

⊕
a+2b=k

Ha(Y )⊗H2b(Pm−1) .

This allows us to refine the Mayer–Vietoris sequences to

· · · Hk+1(X) Hk+1−2m(Y ) Hk(U) Hk(X) · · ·

· · · Hk+1(X
′)

{
Hk(Y ) ⊕

Hk+1−2m(Y )

} {
Hk(U) ⊕

Hk(P(NX/Y ))

}
Hk(X

′) · · ·

π∗ π∗

The maps are all morphisms of mixed Hodge structures. And this allows us to deduce

hp,q(X ′) = hp,q(X) , ∀ |p− q| > dimY .
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Chapter 6

Degenerations of algebraic varieties

6.1 Schmid’s nilpotent orbit theorem

Recommended reference: [Sch73].

Let
X ∗ P×∆∗

∆∗

f (6.1.1a)

be a commutative diagram with the property that f : X ∗ → ∆∗ is a smooth proper

surjective morphism of complex manifolds. Then each Xt = f−1(t), t ∈ ∆∗ is nonsin-

gular projective variety. Fix a point to ∈ ∆∗. Set

HQ = Hn
prim(Xto ,Q) .

Let

ρ : π1(∆
∗, to) = Z ↠ Γ ⊂ Aut(HQ, Q)

be the monodromy representation (§3.1). And let

z ∈ H D

e2πiz = t ∈ ∆∗ Γ\D

Φ̃

Φ

(6.1.1b)
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be the period map induced by the smooth family f : X ∗ → ∆∗ (Example 3.5.3). Here

H = {z ∈ C s.t. Im(z) > 0} is the upper-half plane, and D is the period domain

parameterizing Q–polarized Hodge structures of weight n on HZ = Hn
prim(Xto ,Z).

Note that t→ 0 if and only if Im z → +∞.

Let γ(s) = to e
2πis, 0 ≤ s ≤ 1, be a counter-clockwise generator of π1(∆

∗, to) = Z;
and let T = ρ(γ) ∈ Γ be the associated Picard–Lefschetz transformation (Definition

3.1.5). The generator γ acts on the universal cover H by γ · z = z + 1, and

Φ̃(z + 1) = Φ̃(γ · z) = T · Φ̃(z) . (6.1.2)

Lemma 6.1.3 (Borel [Sch73]). The eigenvalues of T are roots of unity.

Idea of the proof. Curvature properties of horizontal maps into D imply that Φ̃ is

distance non-increasing relative to the Poincaré metric onH and a suitably normalized

GR–invariant hermitian metric on D. The points ik and 1 + ik, k ∈ N have distance

1/k in H. Then (6.1.2) implies the conjugacy class of T in GR has an accumulation

point in the compact subgroup StabGR(Φ̃(i)). This forces the eigenvalues of T to

have norm one. On the other hand T ∈ Aut(HZ, Q) implies that the eigenvalues are

algebraic integers (roots of a monic polynomial in integer coefficients). The lemma

now follows from a result of Kronecker.

The lemma implies T is quasi-unipotent. Let 0 < m ∈ Z be the smallest positive

integer so that Tm is unipotent. Let

N =
1

m
log Tm

be the nilpotent logarithm of monodromy.

Theorem 6.1.4 (Local monodromy, Landman). The action of N on HZ = Hn
prim(Xto ,Z)

satisfies Nn+1 = 0.

Exercise 6.1.5. Show that Ψ̃(z)
dfn
=== exp(−mzN) · Φ̃(mz) descends to a well-defined

map Ψ : ∆∗ → Ď satisfying Ψ̃(z) = Ψ(e2πiz).
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Definition 6.1.6. Fix F ∈ Ď and a nilpotent N ∈ gQ with the property N(F p) ⊂
F p−1. Define a map θ : C → Ď by θ(z)

dfn
=== exp(zN) ·F . We say θ is a nilpotent orbit

if θ(z) ∈ D for Im z ≫ 0. In this case we say that (F,N) defines a nilpotent orbit.

Theorem 6.1.7 (Nilpotent Orbit Theorem [Sch73]). The map Ψ extends holomor-

phically over the origin 0 ∈ ∆. The pair (Ψ(0), N) is a defines a nilpotent orbit θ(z)

that asymptotically approximates Φ̃ in the sense that there exists β ≥ 0 so that

dist(θ(z), Φ̃(z)) ≤ (Im z)βe−2πm−1Im z

for Im z ≫ 0.

It turns out that a nilpotent orbit is equivalent to a polarized mixed Hodge

structure (Theorem 6.1.10).

Exercise 6.1.8. Let N : HQ → HQ be a nilpotent linear operator.

(a) Define 0 ≤ k ∈ Z by Nk ̸= 0 and Nk+1 = 0. Show that there is a unique

filtration

W (N)−k ⊂ W (N)1−k ⊂ · · · ⊂ W (N)k−1 ⊂ W (N)k = HQ

so that N(W (N)ℓ) ⊂ W (N)ℓ−2, for all ℓ, and the induced map Na : GrW (N)
a →

Gr
W (N)
−a is an isomorphism, for all a ≥ 0. [Hint. To get you started, note that

W−k = Nk(HQ) andWk−1 = kerNk. From here one may pass to a quotient space

and argue inductively. (It may be instructive to work out the cases k = 1, 2.)]

(b) Suppose that N ∈ gQ = End(HQ, Q); that is, 0 = Q(Nu, v) + Q(u,Nv) for all

u, v ∈ HQ. Show that W (N)• is Q–isotropic: Q(W (N)−a,W (N)a−1) = 0 and

the induced bilinear form Qℓ : Gr
W (N)
−a ×GrW (N)

a → Q is nondegenerate.

(c) Show that ker {N : HQ → HQ} ⊂ W (N)0.

Definition 6.1.9. Let (W,F ) be a mixed Hodge structure with F ∈ Ď. We say a

nilpotent element N ∈ gQ polarizes (W,F ) if:
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(i) We have Nn+1 = 0.

(ii) The nilpotent operator and weight filtration are related by W (N)ℓ = Wn+ℓ. We

express this as W = W (N)[−n]. Note that GrWn+ℓ = Gr
W (N)
ℓ .

(iii) The nilpotent operator and Hodge filtration are related by N(F p) ⊂ F p−1; equiv-

alently N ∈ gQ ∩ F−1(gC).

(iv) The induced weight n+ a Hodge structure on

P (N)n+a
dfn
=== ker{Na+1 : GrWn+a → GrWn−a−2}

is polarized by Q(·, Na·).

We call (W,F,N) a polarized mixed Hodge structure. And, since N determines the

weight filtration W , we say the pair (F,N) defines a polarized mixed Hodge structure.

Theorem 6.1.10 ([Sch73, CKS86]). The pair (F,N) defines a nilpotent orbit if and

only if the pair defines a polarized mixed Hodge structure.

Remark 6.1.11. We may interpret Theorems 6.1.7 and 6.1.10 as saying that the

family Φ(t) of (Γ–equivalence classes of) Hodge structures on HQ = Hn
prim(Xto ,Q)

degenerates to a polarized mixed Hodge structure (Ψ(0), N) on HQ as t → 0. Be

aware that the Hodge filtration Flim = Ψ(0) depends our choice of coordinates; only

N and the nilpotent orbit θ(z) are independent of this choice.

Exercise 6.1.12. Let (W,F,N) be a polarized mixed Hodge structure (Definition

6.1.9). Show that N is a weight 0 morphism of mixed Hodge structure (Definition

5.2.6).

Definition 6.1.13. Suppose that the family f : X ∗ → ∆∗ of (6.1.1a) extends over

the origin as

X ∗ X P×∆

∆∗ ∆

f f (6.1.14)
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with f : X → ∆ is a proper, flat1 holomorphic map of complex manifolds. Then we

say f : X → ∆ is a degeneration (of nonsingular projective varieties).

Example 6.1.15. For many naturally arising families the total space X will fail to

be smooth. Suppose that F,G,H ∈ C[x0, . . . , xn+1] are homogeneous polynomials

with degF = (degG)(degH). Consider the family (6.1.14) defined by

X = {tF +GH = 0} ⊂ Pn+1 ×∆ .

For generic choice of F,G,H, the restriction of f to X ∗ = f−1(∆∗) → ∆∗ is smooth

morphism of smooth manifolds; and the central fibre X0 = f−1(0) is a simple normal

crossing hypersurface in Pn+1. However, Sing (X ) = {t, F,G,H = 0}. In order

to obtain a degeneration in the sense of Definition 6.1.13, we need to resolve these

singularities.

Question. What is the relationship between Deligne’s mixed Hodge structure (§5)
on Hn(X0,Q), and Schmid’s limiting mixed Hodge structure (Remark 6.1.11) on

Hn(Xto ,Q)? When the family (6.1.14) is a semistable degeneration the answer is

given by the Clemens–Schmid exact sequence. (For results in more general settings,

see [KLS21, KL24].)

6.2 Clemens–Schmid exact sequence

Recommended reference: [Mor84].

Definition 6.2.1. The degeneration f : X → ∆ of (6.1.14) is semistable if the

central fibre X0 = f−1(0) is simple normal crossing (Definition 5.3.1). This implies

1Suppose that f : X → Y is a morphism of smooth algebraic varieties with equidimensional fibres.

Then miracle flatness states that f is flat. This means that the induced map on stalks fx : OY,f(x) →
OX,x makes OX,x a flat OY,f(x)–module: taking the tensor product OX,x⊗OY,f(x)

preserves exact

sequences. The fibres of a flat morphism have constant Hilbert polynomial, cf. [Har77, Proposition

III.9.9] or [Vak24]. And so, for example, a (nontrivial) blow-up is not flat.
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that every point xo ∈ X0 admits local coordinates (xj) on X with respect to which

the projection f is given by x1 · · ·xk = t.

Theorem 6.2.2 (Semistable reduction [KKMSD73]). Given a degeneration f : X →
∆, there exists a base change b : ∆ → ∆, mapping t 7→ tm, a semistable degeneration

g : Y → ∆ and a diagram

Y Xb X

∆ ∆

g
f

b

so that Y 99K Xb is a bimeromorphic (birational) map obtained by blowing up and

blowing down subvarieties of the central fibre.

Theorem 6.2.3 ([Cle77]). If f : X → ∆ is a semistable degeneration, then there

is a retraction X → X0. In particular, Hn(X ,Q) ≃ Hn(X0,Q) has a mixed Hodge

structure.

Theorem 6.2.4 ([Lan73]). Let f : X → ∆ be a degeneration.

(i) The Picard–Lefschetz transformation is quasi-unipotent, with index of unipotency

at most n. That is, there exists 0 < m ∈ Z so that Tm is unipotent (we assume

m is minimal with this property), and (Tm − Id)n+1 = 0.

(ii) If f : X → ∆ is semistable, then T is unipotent (m = 1).

Let i : Xto ↪→ X denote the inclusion, and i∗ : Hn(X ) → Hn(Xto) the pullback.

Note that i∗ is a weight 0 morphism of mixed Hodge structures, andN : Hn(Xto ,Q) →
Hn(Xto ,Q) is a weight −2 morphism of mixed Hodge structures (Definition 5.2.6).

Theorem 6.2.5 (Clemens–Schmid exact sequence [Cle77]). Assume that (6.1.14) is

a semistable degeneration, and the fibres Xt have dimension d. Then there is an exact

sequence

· · · H2d+2−n(X ,Q) Hn(X ,Q) Hn(Xto ,Q) Hn(Xto ,Q)

H2d−n(X ,Q) Hn+2(X ,Q) · · ·

α i∗ N

β α
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of morphisms of mixed Hodge structure. The morphisms i∗ and N are of weight 0 and

−2, respectively. The maps α and β are compositions of inclusions and Poincaré du-

ality maps, and are of weight d+ 1 and −d, respectively.

Exercise 6.2.6. Use the Clemens–Schmid exact sequence to show that H0(X0,Q) ≃
H0(X ,Q)

i∗−→ H0(Xto ,Q) is an isomorphism.

The statement of Theorem 6.2.5 contains the Local Invariant Cycle Theorem:

Corollary 6.2.7 (Local Invariant Cycle Theorem). The sequence

Hn(X ,Q)
i∗−→ Hn(Xto ,Q)

N−→ Hn(Xto ,Q)

is exact. That is, all cocycles in Hn(Xto ,Q) that are invariant under the Picard–

Lefschetz transformation come from cocycles on X .

Exercise 6.2.8. Recall (§5.3.3) that the weight filtration on Hn(X ,Q) = Hn(X0,Q)

satisfies

0 ⊂ W0H
n(X0) ⊂ W1H

n(X0) ⊂ · · · ⊂ WnH
n(X0) = Hn(X0) .

(a) Show that the Deligne’s weight filtration on Hn−2d−2(X ,Q) ≃ Hn−2d−2(X0,Q) is

0 ⊂ Wn−2d−2Hn−2d−2(X ) ⊂ Wn−2d−1Hn−2d−2(X ) ⊂ · · · ⊂ W−1Hn−2d−2(X )

⊂ W0Hn−2d−2(X ) = Hn−2d−2(X ) .

(b) Show that

im {α : H2d+2−n(X ,Q) → Hn(X ,Q)} = α(Wn−2d−2H2d+2−n(X ,Q)) .

[Hint. Strictness (Exercise 5.2.11) may be useful here.]

(c) Conclude that the restriction of i∗ : Hn(X ,Q) → Hn(Xto ,Q) to Wn−1H
n(X ,Q)

is injective.
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Corollary 6.2.9. Given k > 0, Nk : Hn(Xto ,Q) → Hn(Xto ,Q) is the zero map if

and only if Wn−k(H
n(X0,Q)) = 0. In particular, Nn+1 is always zero, and Nn = 0 if

and only if Hn(|Γ(X0)|) = 0. (Here Γ(X0) is the dual complex, cf. Definition 5.3.8.)

Exercise 6.2.10. Prove Corollary 6.2.9. [Hint. Corollary 5.3.9, Exercise 6.1.8, Defi-

nition 6.1.9, and Exercise 6.2.8.]

6.2.1 Degree one cohomology groups

Deligne’s mixed Hodge structure

Recall (§5.3.3) that Deligne’s weight filtration W0 ⊂ W1 on H1(X0,Q) is

W0H
1(X0,Q) ≃ H1(|Γ(X0)|) ,

GrW1 H
1(X0,Q) ≃ ker {d1 : H1(X

(1)
0 ,Q) → H1(X

(2)
0 ,Q)} .

HereX
(1)
0 = ⊔Xj

0 is the disjoint union of the irreducible componentsXj
0 ofX0 = ∪Xj

0 ,

andX
(2)
0 = ⊔j<kXj

0∩Xk
0 ; and Γ(X0) is the dual complex of the simple normal crossing

variety X0 (Definition 5.3.8 and Corollary 5.3.9). The Hodge diamond (Definition

5.2.14) of this mixed Hodge structure is given in Figure 6.1.

Figure 6.1: Hodge diamonds for H1
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Schmid’s mixed Hodge structure

In degree one, the nilpotent logarithm of monodromy N : H1(Xto ,Q) → H1(Xto ,Q)

satisfies N2 = 0 (Theorem 6.2.4), and the Schmid’s weight filtration W = W (N)[−1]

is

W0H
1(Xto ,Q) = imN

W1H
1(Xto ,Q) = kerN

W2H
1(Xto ,Q) = H1(Xto ,Q) .

Implications of the Clemens–Schmid exact sequence

The Clemens–Schmid sequence yields

0 H1(X ,Q) H1(Xto ,Q) H1(Xto ,Q) .α i∗ N

So

H1(X0,Q) ≃ ker {N : H1(Xto ,Q) → H1(Xto ,Q)} = W1H
1(Xto ,Q) ,

and

W0H
1(X0,Q) ≃ W0H

1(Xto ,Q) .

In the notation of Figure 6.1, this implies a = r = h1(|Γ(X0)|) and b = g − r.

Degenerations of curves

If we further assume that d = 1, so that X is a family of curves, then X
(2)
0 is the set

of double points Pjk = Xj
0 ∩Xk

0 , and we have (§5.3.2)

GrW1 H
1(Xto ,Q) ≃ GrW1 H

1(X0,Q) ≃ H1(X
(1)
0 ,Q) .

Let g = h1,0(Xto) denote the genus of the smooth fibres. Fix generators {α1, β1, . . . , αg, βg}
of H1(Xt,Z) satisfying αi · αj = 0 = βi · βj and αi · βj = 1. Suppose that as t → 0

some of the cycles αj collapse to nodes (as in Figure 6.2). Passing to the semistable
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Figure 6.2: Degeneration of curves
 

reduction replaces those nodes with P1’s. Then r +
∑
gj = g, where gj = h1,0(Xj

0) is

the genus of Xj
0 and r is the number of nodes (the number of vanishing cycles αj).

Note that N = 0 if and only if the dual graph has no cycles.

6.2.2 Degenerations of surfaces

Deligne’s mixed Hodge structure

If d = 2 (the fibres Xt are surfaces), then X
(2)
0 is the disjoint union of the double

curves Cjk = X i
0∩X

j
0 , and X

(3)
0 is the union of the triple points Pijk = X i

0∩X
j
0 ∩Xk

0 .
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Deligne’s weight filtrationW0 ⊂ W1 ⊂ W2 = H2(X0,Q) has graded quotients (§5.3.4)

W0H
2(X0,Q) = H2(|Γ(X0)|)

GrW1 H
2(X0,Z) =

⊕j<kH
1(Cjk)

im {d1 : ⊕j H1(Xj
0) → ⊕j<kH1(Cjk)}

(6.2.11)

GrW2 H
2(X0,Z) = ker {d1 : ⊕j H

2(Xj
0) → ⊕j<kH

2(Cjk)} .

In the notation of Figure 6.3

a = h2(|Γ(X0)|) ,

c =
∑

h2,0(Xj
0) ,

d− a ≤
∑

h1,1(Xj
0) .

Figure 6.3: Hodge diamonds for H2

Schmid’s mixed Hodge structure

In degree two, the nilpotent logarithm of monodromy N : H2(Xto ,Q) → H2(Xto ,Q)

satisfies N3 = 0 (Theorem 6.2.4), and the Schmid’s weight filtration W = W (N)[−1]

110



is

W0H
2(Xto ,Q) = imN2

W1H
2(Xto ,Q) = (imN) ∩ (kerN)

W2H
2(Xto ,Q) = (imN) + (kerN)

W3H
2(Xto ,Q) = kerN2

W4H
2(Xto ,Q) = H2(Xto ,Q) .

Implications of the Clemens–Schmid exact sequence

The Clemens–Schmid exact sequence yields

0 H2(X ) H2(Xto) H2(Xto) H2(X ) 0 ,α i∗ N β α

so that

H2(X0,Q) ≃ ker {N : H2(Xto ,Q) → H2(Xto ,Q)} .

In the notation of Figure 6.3

a+ b+ c = h2,0(Xto) ,

2b+ d = h1,1(Xto) ,

and ∑
j<k

h1,0(Cjk) −
∑
j

h1,0(Xj
0) ≤ b ≤

∑
j<k

h1,0(Cjk) .

6.3 Degeneration of K3 surfaces

Smooth K3 surfaces S are characterized by KS = OS and q(S) = 0 (§A.2.8). By

Exercise A.2.3, the Hodge numbers of H2(S) are h = (1, 20, 1). This allows for only

three possible types of Schmid MHS (W,F,N) on H3(Xto ,Q); these types are indexed

by their Hodge diamonds in Figure 6.4. Each of these three types can be realized

geometrically by a semistable degeneration.
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Figure 6.4: Hodge diamond of Schmid’s MHS on H2(K3) by Kulikov type

6.3.1 Eg. geometric realization of Type I degeneration

Any smooth hypersurface X ⊂ P3 of degree four is K3 surface. A popular example is

give the Fermat quartic, which is cut out by

F = x40 + x41 + x42 + x43 .

For a generic choice of degree four homogeneous polynomials P0, P1 ∈ C[x0, x1, x2, x3],
the hypersurfaces {Pj = 0} will be smooth, and dP1 and dP2 will be point-wise linearly

independent along {P0, P1 = 0}. Then the family

X = {P0 + tP1 = 0} ⊂ P3 ×∆

is a semistable degeneration that geometrically realizes Schmid’s Type I MHS (via

the Clemens–Schmid exact sequence).

6.3.2 Eg. geometric realization of Type II degeneration

For a generic choice of homogeneous polynomials Q1, Q2, P ∈ C[x0, x1, x2, x3] of de-
grees degQj = 2 and degP = 4, the hypersurfaces {Qj = 0} and {P = 0} are

smooth, and the differentials dP, dQ1, dQ2 are point-wise linearly independent along
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{Q1, Q2, P = 0}. The family

X ′ = {tP +Q1Q2 = 0} ⊂ P3 ×∆

has the properties that X ′
t is smooth for all t ̸= 0, and X ′

0 = {Q1Q2 = 0} = X ′
01 ∪

X ′
02 is simple normal crossing. The double curve C ′

12 = X ′
01 ∩ X ′

02 is an elliptic

curve (Example A.3.14). However this is not a semistable degeneration because X ′

is not smooth; there are 16 isolated singularities along the central fibre SingX ′ =

{t, P,Q1, Q2 = 0} ⊂ X ′
0.

Let π : Y → P3 ×∆ be the blow-up of P3 ×∆ at each of the 16 points in SingX ′.

Lemma 6.3.1. The strict transform

X dfn
=== π−1(X ′\SingX ′) ⊂ Y

X ′ is smooth, and a semistable degeneration. The fibre of ρ
dfn
=== π|X : X → X ′

over a singular point s ∈ SingX ′ is a smooth quadric surface Xs. The central fibre

of X → ∆ is a simple normal crossing X0 = ρ−1(X ′
0) = X01 ∪ X02 ∪ (∪sXs), with

X0j = ρ−1(X ′
0j\SingX ′) smooth quadric surfaces. The double curves are the elliptic

C12 = X01 ∩X02, and X0j ∩Xs ≃ P1. We have

W0H
2(X0,Q) = H2(|Γ(X0)|) = 0

GrW1 H
2(X0,Z) = H1(C12)

GrW2 H
2(X0,Z) = ker

{
d1 : ⊕j H

2(Xj
0) → H2(C12)

}
.

Remark 6.3.2. The Hodge numbers of the smooth quadric hypersurfaces X0j ⊂ P3

are h2(Xj
0) = (0, 2, 0), by either the Künneth formula (every smooth quadric surface

in P3 is isomorphic to the Segre embedding P1×P1 ↪→ P3), or Griffiths’ Jacobian ring

computation (Remark 5.4.48).

Proof. Fix a point s ∈ SingX ′, and choose Ua = {xa ̸= 0} ⊂ P3 so that s ∈ Ua ×∆.

Define p, qj : Ua → C by

p(x0 : x1 : x2 : x3)
dfn
=== P

(
x0
xa
, x1
xa
, x2
xa
, x3
xa

)
qj(x0 : x1 : x2 : x3)

dfn
=== Qj

(
x0
xa
, x1
xa
, x2
xa
, x3
xa

)
.
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The condition that the differentials dP, dQ1, dQ2 are point-wise linearly independent

along {Q1, Q2, P = 0} imply that (p, q1, q2, t) : U → C4 are local coordinates on some

neighborhood s ∈ U ⊂ P3 ×∆. In this coordinate neighborhood the blow-up π−1(U)

is the closure of the graph of U\{0} (p:q1:q2:t)−−−−−→ P3 in U × P3. The blow-up π−1(U) is

covered by four coordinate charts:

• (t, z1, z2, z3) 7→ ((tz1, tz2, tz3, t) ; (z1 : z2 : z3 : 1)) ∈ π−1(U). The exceptional di-

visor is cut out by t = 0, and X is cut out by z1 + z2 z3 = 0 (which is clearly

smooth).

The map f : X → ∆ is locally given by f = t, so that X0 is locally cut out by

{t, z1 + z2 z3 = 0}. The equation z1 + z2 z3 = 0 defines a (a Zariski open subset

of) a Segre embedding Xs = {P1 × P1 ↪→ P3}.

• (q2, z1, z2, z3) 7→ ((q2z1, q2z2, q2, q2z3) ; (z1 : z2 : 1 : z3)) ∈ π−1(U). The exceptional

divisor is cut out by q2 = 0, and X is cut out by z2 + z3 z1 = 0 (which is clearly

smooth).

The map f : X → ∆ is locally given by f = q2z3, so that X0 is locally cut out

by {q2z3, z2 + z3 z1 = 0}. If q2 = 0, then we get (a Zariski open subset of) the

Segre embedding Xs = {P1×P1 ↪→ P3}. If z3 = 0, then z2 = 0 gives us (a Zariski

open subset of) X01 ≃ X ′
01 = {Q1 = 0}. These two surfaces intersect along (a

Zariski open subset of) X01 ∩Xs = P1 ⊂ P3.

• (q1, z1, z2, z3) 7→ ((q1z1, q1, q1z2, q1z3) ; (z1 : 1 : z2 : z3)) ∈ π−1(U). The exceptional

divisor is cut out by q1 = 0, and X is cut out by z2 + z3 z1 = 0 (which is clearly

smooth).

The map f : X → ∆ is locally given by f = q1z3, so that X0 is locally cut out

by {q1z3, z2 + z3 z1 = 0}. If q1 = 0, then we get (a Zariski open subset of) the

Segre embedding Xs = {P1×P1 ↪→ P3}. If z3 = 0, then z2 = 0 gives us (a Zariski

open subset of) X02 ≃ X ′
02 = {Q2 = 0}. These two surfaces intersect along (a

Zariski open subset of) X02 ∩Xs = P1 ⊂ P3.
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• (p, z1, z2, z3) 7→ ((p, pz1, pz2, pz3) ; (1 : z1 : z2 : z3)) ∈ π−1(U). The exceptional

divisor is cut out by p = 0, and X is cut out by z3 + z1 z2 = 0 (which is clearly

smooth).

The map f : X → ∆ is locally given by f = pz3, so that X0 is locally cut out

by {pz3, z3 + z1 z2 = 0}. If p = 0, then we get (a Zariski open subset of) the

Segre embedding P1 ×P1 ↪→ P3. If z3 = 0, then z1 z2 = 0 gives us (a Zariski open

subset of) X01 ∪ X02 ≃ X ′
01 ∪ X ′

02 = {Q1Q2 = 0}. These two surfaces intersect

(in a Zariski open subset of) Xs ∩ (X01 ∪X02) ≃ P1 ∪ P1

6.3.3 Eg. geometric realization of Type III degeneration

The family

X ′ = {x0x1x2x3 + t(x40 + x41 + x42 + x43) = 0} ⊂ P3 × ∆

has the properties that X ′
t is smooth for all t ̸= 0, and X ′

0 = ∪3
j=0X

′
0j is the “tetrahe-

dron” formed by the coordinate planes X ′
0j = {xj = 0} (and simple normal crossing).

However this is not a semistable degeneration because X ′ is not smooth; the singular

locus

SingX ′ = {(1 : α : 0 : 0) , (1 : 0 : α : 0) , (1 : 0 : 0 : α)

(0 : 1 : α : 0) , (0 : 1 : 0 : α) , (0 : 0 : 1 : α) s.t. α4 = −1
}

⊂ X ′
0

consists of 24 points on the central fibre (Figure 6.5).

Let π : Y → P3 ×∆ be the blow-up of P3 ×∆ at each of the 24 points in SingX ′.

Lemma 6.3.3. The strict transform

X dfn
=== π−1(X ′\SingX ′) ⊂ Y

of X ′ is smooth, and a semistable degeneration. The fibre of ρ
dfn
=== π|X : X → X ′

over a singular point s is a smooth quadric surface Xs. The central fibre of X →
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Figure 6.5: SingX ′




































































































































∆ is a simple normal crossing X0 = ρ−1(X ′
0) = (∪3

j=0X0j) ∪ (∪sXs). The Xj
0 =

ρ−1(X ′
0j\SingX ′) are rational surfaces. The double curves are the Cjk = X0j ∩X0k ≃

P1 and Cjs = X0j ∩Xs ≃ P1. We have

W0H
2(X0,Q) = H2(|Γ(X0)|) = Q ,

GrW1 H
2(X0,Z) = 0

GrW2 H
2(X0,Z) = ker

{
d1 : H

2(X
(1)
0 ) ≃ Q52 → H2(X

(2)
0 ) ≃ Q54

}
≃ Q19 .

Proof. Fix a singular point s = (1 : α : 0 : 0) ∈ X ′
0. Let U0 = {x0 ̸= 0} ⊂ P3 be

an affine coordinate chart, and define (v1, v2, v3) : U0 → C3 by v1 = 1
x40
(x40 + x41 +

x42 + x43), v2 = x2/x0 and v3 = x3/x0. Then the differentials dv1, dv2, dv3 are linearly

independent at s. It follows that (v1, v2, v3, t) are local coordinates (centered at s)

on some neighborhood s ∈ U ⊂ P3 × ∆. Let ξ(v1, v2, v3) be the local coordinate

expression for the function x1/x0. Then X ′ is locally cut out by {tv1 + ξv2v3 = 0}.
Note that ξ(0, 0, 0) = α at s, so we may assume that ξ is nowhere zero on U .

Over the coordinate neighborhood the blow-up π−1(U) is the closure of the graph

of U\{0} (v1:v2:v3:t)−−−−−−→ P3 in U × P3. The blow-up π−1(U) is covered by four coordinate

charts:

• (t, z1, z2, z3) 7→ ((tz1, tz2, tz3, t) ; (z1 : z2 : z3 : 1)) ∈ π−1(U). The exceptional divi-

sor is cut out by t = 0, and X is cut out by z1 + ξ(tz1, tz2, tz3) z2 z3 = 0 (which is

clearly smooth).
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The map f : X → ∆ is locally given by f = t, so that X0 is locally cut out

by {t, z1 + α z2 z3 = 0}. The equation z1 + α z2 z3 = 0 defines a (a Zariski open

subset of) a Segre embedding Xs = {P1 × P1 ↪→ P3}.

• (v3, z1, z2, z3) 7→ ((v3z1, v3z2, v3, v3z3) ; (z1 : z2 : 1 : z3)) ∈ π−1(U). The excep-

tional divisor is cut out by v3 = 0, and X is cut out by z3 z1+ξ(v3z1, v3z2, v3) z2 = 0

(which is smooth since ξ is nowhere zero).

The map f : X → ∆ is locally given by f = v3z3, so that X0 is locally

cut out by {v3z3, z3 z1 + ξ(v3z1, v3z2, v3) z2 = 0}. If v3 = 0, then the equation

z3z1 + αz2 = 0 defines (a Zariski open subset of) the Segre embedding Xs =

{P1 × P1 ↪→ P3}. If z3 = 0, then z2 = 0 gives us (a Zariski open subset of)

X02 ≃ X ′
02 = {x2 = 0} ⊂ P2. These two surfaces intersect in (a Zariski open

subset of) C2s = P1 ⊂ P3.

• (v2, z1, z2, z3) 7→ ((v2z1, v2, v2z2, v2z3) ; (z1 : 1 : z2 : z3)) ∈ π−1(U). The excep-

tional divisor is cut out by v2 = 0, and X is cut out by z3 z1+ξ(v2z1, v2, v2z2) z2 = 0

(which is smooth since ξ is nowhere zero).

The map f : X → ∆ is locally given by f = v2z3, so that X0 is locally

cut out by {v2z3, z3 z1 + ξ(v2z1, v2, v2z2) z2 = 0}. If v2 = 0, then the equation

z3z1 + αz2 = 0 defines (a Zariski open subset of) the Segre embedding Xs =

{P1 × P1 ↪→ P3}. If z3 = 0, then z2 = 0 gives us (a Zariski open subset of)

X03 ≃ X ′
03 = {x3 = 0}. These two surfaces intersect in (a Zariski open subset of)

C3s = P1 ⊂ P3

• (v1, z1, z2, z3) 7→ ((v1, v1z1, v1z2, v1z3) ; (1 : z1 : z2 : z3)) ∈ π−1(U). The excep-

tional divisor is cut out by v1 = 0, and X is cut out by z3+ξ(v1, v1z1, v1z2) z1 z2 = 0

(which is clearly smooth).

The map f : X → ∆ is locally given by f = v1z3, so that X0 is locally

cut out by {v1z3, z3 + ξ(v1, v1z1, v1z2) z1 z2 = 0}. If v1 = 0, then the equation

z3 + α z1 z2 = 0 cuts out (a Zariski open subset of) the Segre embedding Xs =

{P1 × P1 ↪→ P3}. If z3 = 0, then z1z2 = 0 gives us (a Zariski open subset of)
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X02 ∪X03 ≃ X ′
02 ∪X ′

03 = {x2x3 = 0}. These two surfaces intersect in (a Zariski

open subset of) C2s ∪ C3s = P1 ∪ P1.

A similar analysis applies to the other singular points.

6.3.4 Kulikov degenerations

Each of the three types of Schmid MHS may be geometrically realized by a semistable

degeneration of a particularly nice form:

Theorem 6.3.4 (Kulikov [Kul77a], Persson–Pinkham [PP81]). A semistable degen-

eration of K3 surfaces is birational to one for which the central fibre X0 is one of the

three types.

Type I: X0 is a smooth K3 surface.

Type II: X0 = X0
0 ∪ X1

0 ∪ · · · ∪ Xk+1
0 . Each Xa

0 meets only Xa±1
0 . Each double

curve Ca = Xa
0 ∩ Xa+1

0 is an elliptic curve. The “tails” X0
0 and Xk+1

0 are rational

surfaces. The Xa
0 , with 1 ≤ a ≤ k, are ruled; and both Xa±1

0 are sections of the ruling.

Type III: all components Xj
0 of X0 are rational surfaces; X i

0∩ (∪j ̸=iXj
0) is a cycle

of rational curves, and |Γ(X0)| = S2.

Remark 6.3.5. The Type II example in §6.3.2 is not in Kulikov form: the central

fibre X0 does not have the property that Xa
0 meets only Xa±1

0 . And some of the

double curves are rational (not elliptic).

Similarly the Type III example in §6.3.3 is not in Kulikov form: the central fibre

does not have the property that X i
0 ∩ (∪j ̸=iXj

0) is a cycle; nor is |Γ(X0)| = S2.
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Chapter 7

Horikawa surfaces of general type

Recommended references: [BHPVdV04, Hor78, Hor79]. This chapter is adapted from

the notes [GGLR17].

7.1 I-surfaces

Definition 7.1.1. An I-surface is a smooth, regular minimal surface X of general

type such that K2
X = 1 and pg(X) = 2. Cf. [BHPVdV04, Chapter VII].

Exercise 7.1.2. (a) Use Noether’s formula (§A.2.1) to show that h1,1(X) = 29.

(b) Since 2 = pg(X) = h2,0(X) = dimH0(X,KX), we see that |KX | = PH0(X,KX) ≃
P1 is a pencil. Use the genus formula (§A.2.5) to show that pa(X) = 2 for every

C ∈ |KX |.

7.1.1 Projective realization

Fix projective coordinates (x0 : x1 : x2 : x3) ∈ P3. Let

Q0 = {x0x2 = x21} ⊂ P3
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be quadric with singular point

p = (0 : 0 : 0 : 1) ∈ Q0 .

Proposition 7.1.3 ([GGLR17]). A general I-surface is realized via the bi-canonical

map φ2KX
: X → PH0(X, 2KX)

∨ = P3 as a 2:1 covering of Q0 branched over p and

V ∩Q0 where V ∈ |OP3(5)| is a general quintic surface not passing through p.

Proof. Given C ̸= C ′ ∈ |KX | we have C ·C ′ = K2
X = 1. So any two distinct canonical

divisors intersect at a unique point with multiplicity one. This point is the base locus

of the linear system. Bertini’s theorem (§A.3.4) asserts that a general C ∈ |KX | is
smooth away from the base locus. Since X is general, we may assume that C is

smooth. The genus formula (§A.2.5) implies g(C) = 2.

Fix a basis {t0, t1} ∈ H0(X,KX) with C = {t0 = 0}. Since P2 = 4 (Exercise

A.2.5), we see that there exists u ∈ H0(X, 2KX) that completes {t20, t0t1, t21} to a

basis. The adjunction formula (§A.3.6) implies KC = 2KX |C . The SES

0 → KX
t0−→ 2KX → KC → 0

induces a LES

0 → H0(X,KX) → H0(X, 2KX) → H0(C,KC) → H1(X,KX) = H2,1(X) = 0 ,

where the vanishing of the last term is due to h2,1(X) = q(X) = 0. It follows that the

restrictions of t21, u to C give a basis of H0(C,KC). This in turn implies that |2KX |
is base-point free. Using the basis {t20, t0t1, t21, u} ⊂ H0(X, 2KX) as homogeneous

coordinates on PH0(X, 2KX)
∨, the bi-canonical map is

φ2KX
: X → Q0 ⊂ P3 .

Since t0(p) = t1(p) = 0, it follows that u(p) ̸= 0. So φKC
: C → P1 is given by

t21/u near p. It follows that φKC
= φ2KX

|C is a 2:1 covering of one of the rulings

P1 ⊂ Q0 that is branched at p. The Riemann–Hurwitz formula (§A.1.4) implies that

φKC
is branched over an additional 5 points in the ruling P1. It follows that φ2KX

is

branched over p+ V , where V ∈ |Q0(5)| does not pass through p (Figure 7.1).
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Figure 7.1: Bi-canonical realization of general I-surface




































































































































Proposition 7.1.4 ([GGLR17]). A general I-surface is realized via the 5-canonical

map φ5KX
: X → PN as a hypersurface

z2 = F5(t0, t1, u) v + F10(t0, t1, u)

in P(1, 1, 2, 5) with homogeneous coordinates (t0 : t1 : u : v) and Fk a weighted

homogeneous polynomial of degree k.

Proof. We have seen that H0(X, 2KX) has dimension 4, and that a basis is given

by the weighted degree 2 monomials in t0, t1, u, where t0, t1 have weight 1 and u has

weight 2.

By Exercise A.2.5, P3 = dimH0(X, 3KX) = 6. We see that a basis is given by

the weighted degree 3 monomials in t0, t1, u.

Likewise P4 = dimH0(X, 4KX) = 9. A basis is given by the weighted degree 4

monomials in t0, t1, u.

Next P5 = dimH0(X, 5KX) = 13. The weighted degree 5 monomials in t0, t1, u

span a codimension 1 subspace. So there exists a weighted degree five v ∈ H0(X, 5KX)

completing the monomials to a basis.

Exercise 7.1.5. Let RX = ⊕m≥0H
0(X,mKX) denote the pluri-canonical ring. We

have C[t0, t1, u] ⊕ vC[t0, t1, u] ⊂ RX . Show that equality holds. [Hint. Both rings

are graded. Show that the dimension agree (and are finite) in each graded degree.]
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It follows that for RX there is a generating relation v2 = F5(t0, t1, u) v+F10(t0, t1, u).

Exercise 7.1.6. Show that φ5KX
contracts an irreducible curve E ⊂ X to a point if

and only if E is a (−2)-curve (§A.2.6). [Hint. §A.2.5.]

A priori the five-canonical map φ5KX
could contract some (−2) curves. Nonetheless,

Y = φ5KX
(X) ⊂ P(1, 1, 2, 5) is an I-surface: Remark 5.4.49 yields Hodge numbers

h2
prim(Y ) = (2, 28, 2). And the Lefschetz hyperplane theorem implies that Y is regular.

Corollary 7.1.7. Since X = ProjRX it follows that φ5KX
(X) ⊂ P(1, 1, 2, 3) is a

smooth surface isomorphic to X.

Remark 7.1.8. The two realizations of X given in Propositions 7.1.3 and 7.1.4 are

related as follows: Begin with the second

X ≃ {v2 = vF5(t0, t1, u) + F10(t0, t1, u)} ⊂ P(1, 1, 2, 5) .

Define a rational map P(1, 1, 2, 5) 99K P(1, 1, 2) by (t0 : t1 : u : v) 7→ (t0 : t1 : u). Let

ρ : X → P(1, 1, 2) denote the restriction of this map to X. The quadratic formula

implies that ρ is branched over {F5(t0, t1, u)
2 − 4F10(t0, t1, u) = 0} ⊂ P(1, 1, 2), a

curve of genus 16 (Remark 5.4.49). The second veronese map v2 : P(1, 1, 2) → P3,

sending (t0 : t1 : u) 7→ (t20 : t0t1 : t21 : u), identifies P(1, 1, 2) with the singular

quadric Q0 = {x0x2 = x21} ⊂ P3. And there exists a unique homogeneous polynomial

G ∈ C[x0, x1, x2, x3] of degree five so that F 2
5 − 4F10 = ρ∗(G); that is, F5(t0, t1, u)

2 −
4F10(t0, t1, u) = G(t20, t0t1, t

2
1, u).

7.1.2 Moduli

The automorphism group G = AutP(1, 1, 2, 5) naturally acts on the locus U ⊂
PC[t0, t1, u, v]10 of quasi-smooth hypersurfaces of weighted degree 10. The stabilizer

of X ∈ U in G is finite:
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Theorem 7.1.9 ([Bun21]). The automorphism group of weight projective space P(a0, . . . , an+1)

acts on a quasi-smooth hypersurface of weighted degree ≥ max{a0, . . . , an+1}+2 with

finite stabilizer.

It follows from [KM97] that the algebraic stack [U/G] admits a coarse moduli space

M as an algebraic space.

Proposition 7.1.10 ([GGLR17]). The coarse moduli space M of I-surfaces is of

dimension 28.

Proof. The space of weighted degree 10 polynomials in C[t0, t1, u, v] is spanned by

{v2, vu2P1(t0, t1), vuP3(t0, t1), vP5(t0, t1), u
5, u4P2(t0, t1), u

3P4(t0, t1), u
2P6(t0, t1),

uP8(t0, t1), P10(t0, t1)}, where the Pk ∈ C[t0, t1] are homogeneous polynomials of

degree k. In particular, dimC[t0, t1, u, v]10 = 49.

Any automorphism ϕ ∈ G of P(1, 1, 2, 5) = ProjC[t0, t1, u, v] is determined by

the induced ϕ∗ : C[t0, t1, u, v] → C[t0, t1, u, v]. The automorphisms of P(1, 1, 2, 5) are
given by

t0 7→ P1(t0, t1)

t1 7→ Q1(t0, t1)

u 7→ au+ U2(t0, t1)

v 7→ bv + u2V1(t0, t1) + uV3(t0, t1) + V5(t0, t1)

with Pd, Qd, Ud, Vd ∈ C[t0, t1]d, dP1 ∧ dQ1 ̸= 0 and 0 ̸= a, b ∈ C. In particular,

dimAutP(1, 1, 2, 5) = 21.

Remark 7.1.11. According to [Bun21], M will be quasi-projective if P(1, 1, 2, 5)
satisfies “condition (C)”. Unfortunately, condition (C) appears to fail for P(1, 1, 2, 5).
In the notation of that paper, Zmin = Zss,LG

min is point (0 : · · · : 0 : 1) corresponding to

the hypersurface z2 = 0 (Lemma 5.5 loc.cit). The stabilizer of Zmin in the unipotent

radical UG of G is not trivial: We have G = LG ⋉ UG, with UG = {P1 = t0, Q1 =

t1, a, b = 1} the unipotent radical of G, and LG = {Ud, Vd = 0} a reductive Levi
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factor. The stabilizer of Zmin in UG is the nontrivial {Vd = 0} ⊂ UG. (See Remark

5.19 for discussion of possible approach when condition (C) fails.)

7.1.3 Local Torelli

The primitive Hodge numbers are h2
prim(X) = (2, 28, 2). The associated period do-

main D has dimension 57, and the infinitesimal period relation is a contact system

on D.

Proposition 7.1.12 ([GGLR17]). The period map Φ : M → Γ\D satisfies the local

Torelli property. In particular, the period map is a maximal integral manifold of the

IPR.

Proof. Very similar to the arguments of §4.4.
Let P = P(a0, . . . , an+1) be a weighted projective space as in Remark 5.4.49.

One must show that Rd
f × R

w(2)
f → R

d+w(2)
f is non-degenerate. For a quasi-smooth

hypersurface {f = 0} of weighted degree d = 10, we have w(2) = 1 and it is a

calculation to verify that R10
f ×R1

f → R11
f is nondegenerate.

Remark 7.1.13. There is also a generic global Torelli result for these surfaces [PZ19].

7.1.4 Degenerations of I-surfaces

There are six types of Schmid PMHS associated to the period domain (Figure 7.2.

Each of those types may be realized (via the Clemens–Schmid exact sequence) by

a degeneration of I-surfaces [CFPR22]. Moreover, the various polarized relations

[KPR19] between the PMHS may also be realized geometrically (loc. cit.). These

geometric realizations may all be given by double covers of Q0 branched over Q ∩ V ,

where V ∈ |OP3(5)| is a union of hyperplanes [CFPR22].

Here we will consider degenerations not coming from hyperplane arrangements.
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Figure 7.2: Hodge diamonds of Schmid’s PMHS
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Example

Given s ∈ ∆, let

Fs(t0, t1, u, v) = v2 + s(u5 + t101 + t100 ) + (u+ t21 + t20)(u
4 + t81 + t80) ∈ C[t0, t1, u, v]10 ,

and consider the family

X ′ = {Fs = 0} ⊂ P(1, 1, 2, 5)×∆ .

Notice that the central fibre

X ′
0 = {F0 = 0}

does not pass through either of the singular points of P(1, 1, 2, 5). Shrining ∆ if

necessary, we may assume that none of the fibres X ′
s pass through the two singular

points of P(1, 1, 2, 5).
[To be continued. . . ]
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7.2 H-surfaces
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Appendix A

Some results from complex

algebraic geometry

A.1 Curves

There is an overwhelming volume of literature on algebraic curves. Expository ac-

counts, from a variety of perspectives, include: [Cle03, Gri89, Mir95].

Terminology

All “curves” are algebraic curves over C. In particular, they have dimC = 1 and

dimR = 2. A smooth curve is a Riemann surface; and a morphism of smooth curves

is a holomorphic map of Riemann surfaces.

A.1.1 Genus

The geometric genus pg(C) of a curve C is the topological genus of C viewed as a

surface of of real dimension two: the number of handles or donut holes. The arithmetic

genus is pa(C) = 1−χ(OC). When the curve is smooth, the geometric and arithmetic
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genus agree and are denoted g(C). In this case

g(C) = h1,0(C) = dimH0(C,KC) .

Here KC = T∨
C is the canonical line bundle.

If C is not smooth, the geometric genus pg(C) is the genus g(C ′) of the nor-

malization C ′ → C. If the curve is singular, with only ordinary singularities, then

pg(C) < pa(C). More precisely, an ordinary singularity of multiplicity r decreases the

genus by 1
2
r(r − 1).

A.1.2 Degree–genus formula

If C ⊂ P2 is a curve of degree d, then the arithmetic genus of C is pa =
1
2
(d−1)(d−2).

See Example 2.2.18.

A.1.3 Bezout’s Theorem

Suppose that C1, C2 ⊂ P2 are curves with no common component. Then C1 · C2 =

(degC1) · (degC2).

Remark A.1.1. Bezout’s theorem holds for curves defined over any algebraically

closed field, and generalizes to hypersurfaces X1, . . . , Xn ⊂ Pn.

Exercise A.1.2. Let f : C → C ′ be a morphism of smooth curves. Fix p ∈ C,

and show that there exist local coordinates on C and C ′, centered at p and f(p),

respectively, so that f(z) = zn.

Definition A.1.3. The integer n in HW A.1.2 is the ramification index rp of f at p.

The map f is ramified at p if rp ≥ 2.
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A.1.4 Riemann–Hurwitz formula

Let f : C → C ′ be a morphism of smooth curves. Then

χ(C) = (deg f)χ(C ′) −
∑
p∈C

(rp − 1) .

A.1.5 Hyperelliptic curves

Hyperelliptic curves are characterized by the existence of a degree two morphism

C → P1. (The field of functions is a quadratic extension of the field of rational

functions.) They may be realized as hypersurfaces C = {z = f(x, y)} ⊂ P(1, 1, d) in
weighted projective space. Here f(x, y) is a homogenous polynomial of degree d with

the property that {f(x, y) = 0} ⊂ P2 consists of d distinct solutions.

Exercise A.1.4. Show that d = 2g(C) + 2. [Hint. Riemann–Hurwitz formula

(§A.1.4.)

Exercise A.1.5. Show that a curve C of genus g ≥ 1 is hyperelliptic if and only if

C admits a base point free (§A.3.4) line bundle L with h0(C,L) = 2.

Exercise A.1.6. Let L be the line bundle of HW A.1.5, and recall the notations of

§A.3.4. Note that ϕL⊗(g−1) = ϕOP1 (g−1) ◦ ϕL

C P1 Pg−1 .
ϕL

ϕOP1 (g−1)

(a) Show that L⊗(g−1) has degree 2g − 2.

(b) Show that the pullback H0(Pg−1,O(1)) → H0(C,L⊗(g−1)) is injective. Conclude

that h0(C,L⊗(g−1)) ≥ g.

(c) Show that h0(C,L⊗(g−1)) = g. Deduce that L⊗(g−1) = KC . [Hint. Riemann–

Roch (§A.1.6).]

(d) Conclude that κ : ϕKC
: C → Pg−1 is 2:1 onto the image κ(C) ≃ P1.
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A.1.6 Riemann–Roch for line bundles

Let C be a smooth curve equipped with a line bundle L.

Exercise A.1.7. Suppose that C ̸= P1. Suppose that degL = 1. Show that

h0(C,L) < 2. [Hint. If h0(C,L) ≥ 2, then C admits a degree one meromorphic

function.]

The Riemann–Roch formula is

h0(C,L) − h0(C,L−1 ⊗KC) = degL + 1 − g(C) .

The Riemann–Roch inequality is h0(C,L) ≥ degL+ 1− g.

Example A.1.8. (a) Taking L = O yields h0(C,KC) = g(C).

(b) Taking L = KC yields degKC = 2g(C)− 2.

Exercise A.1.9. Show that any line bundle of degree zero is trivial.

Exercise A.1.10. Compute the plurigenera Pn = dimCH
0(C,K⊗n

C ).

Exercise A.1.11. Suppose that degL > 2g(C)− 2. Prove that h0(C,L) = degL +

1− g(C).

A.1.7 Riemann–Roch for divisors

Given a divisor D on a smooth curves C, let ℓ(D) = dimH0(C, [D]) be the dimension

of the vector space of meromorphic functions f on C so that (f) + D ≥ 0 (cf. HW

1.3.16(c)). Then

ℓ(D) − ℓ(KC −D) = degD + 1 − g .

The Riemann–Roch inequality is ℓ(D) ≥ degD + 1− g.

Exercise A.1.12 (Kodaira embedding for curves). Let D be an effective divisor

(§1.3) on C. With the terminology and notations of §A.3.4:
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(a) Show that ℓ(D) − ℓ(D − p) ∈ {0, 1}. [Hint. Let L = [D] and consider the SES

0 → L(−p) → L→ Lp → 0.]

(b) Show that the complete linear system |D| is base point free if ℓ(D−p) = ℓ(D)−1

for all p ∈ C.

(c) Show that the map ϕ|D| : C → PH0(C, [D])∨ is a closed embedding if ℓ(D− p−
q) = ℓ(D) − 2 for all p, q ∈ C (including p = q). Equivalently, the line bundle

[D] is very ample.

A.2 Surfaces

Recommended reference: [BHPVdV04, Bea96].

Terminology

All “surfaces” are algebraic surfaces over C. In particular, they have dimC = 2 and

dimR = 4.

A.2.1 Noether’s formula

The holomorphic Euler characteristic of a smooth projective surface S is

χS(OS) = 1 − h0,1(S) + h0,2(S) .

The topological Euler characteristic is

e(S) = c2(S) = 2 − 2b1(S) + b2(S)

= 2 − 4h1,0(S) + 2h2,0(S) + h1,1(S) .

The canonical bundle of S is KS =
∧2T∨

S . The first Chern class satisfies c1(S)
2 =

KS ·KS. These quantities are related by Noether’s formula

χS(OS) =
c1(S)

2 + c2(S)

12
=

KS ·KS + e(S)

12
.
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A.2.2 Irregularity

The irregularity q(S) = h1,0(S) of S is the dimension of the Albanese variety (§2.4.1).
The surface is regular if q(S) = 0.

A.2.3 Genus

The geometric genus is pg(S) = h2,0. The arithmetic genus is pa(S) = pg(S)− q(S) =
h2,0 − h1,0.

A.2.4 Riemann–Roch for surfaces

The holomorphic Euler characteristic of a divisor D on S is

χS(D) = dimH0(S,O(D)) − dimH1(S,O(D)) + dimH2(S,O(D))

= h0,0(S,D) − h0,1(S,D) + h0,2(S,D) .

If D is a divisor on a smooth projective surface S, then

χS(D) = χS(OS) + 1
2
D · (D −KS) .

A.2.5 Genus formula

Assume S is smooth, and C ⊂ S is reduced and irreducible. Then 2 pa(C) − 2 =

C ·C +KS ·C. In the smooth case, this can be deduced from the adjunction formula

(§A.3.6) and the Riemann–Roch formula (§A.1.6). Alternatively, see §2.2.2.

A.2.6 Exceptional curves

Given a nonsingular surface X, we say a compact, reduced, connected curve C ⊂ X

is exceptional if there is a birational map π : X → Y that contracts C to a points

y ∈ Y and there exist neighborhoods C ⊂ U ⊂ X and y ⊂ V ⊂ Y so that π restricts

to an isomorphism U\C → V \{y}.
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Grauert’s criterion

A reduced, compact connected curve C with irreducible components Ci on a smooth

surface is exceptional if and only if the intersection matrix (Ci ·Cj) is negative definite.

Exercise A.2.1. A (−1)-curve is a nonsingular rational curve with self-intersection

−1. Show that an irreducible curve C ⊂ X is a (−1) curve if and only if C2 < 0 and

KX · C < 0.

A (−2)-curve is a nonsingular rational curve with self-intersection C2 = −2.

A.2.7 Minimal models and Castelnuovo’s Theorem

Every irreducible projective curve C is birational to a unique smooth projective curve

C ′, the minimal model. In this sense, the theory of minimal models is trivial for curves.

A smooth surface S is minimal if every birational morphism S → S ′ of smooth

surfaces is necessarily an isomorphism. For example, a blowup BlpS is never minimal.

Castelnuovo’s theorem describes the process of constructing a minimal model of S.

A (-1)-curve on S is a smooth rational curve C with C ·C = −1. (Eg. the exceptional

curve of a blowup S = Blp(S
′).) Castelnuovo’s theorem asserts that every nontrivial

birational morphism S → S ′ must contract a (−1)-curve; and conversely every such

curve can be smooth contracted: there exists a smooth surface S ′ and a birational

morphism S → S ′ that contracts C to a point and is an isomorphism away from C.

A.2.8 Enriques classification

The plurigenera Pn = dimH0(S,Kn
S) are birational invariants. The Kodaira dimen-

sion κ(S) is −∞ if Pn = 0 for all n; otherwise, κ(S) is the smallest number so that
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Pn/n
κ is bounded for all n. Enriques showed that

κ = −∞ ⇐⇒ P12 = 0 ,

κ = 0 ⇐⇒ P12 = 1 ,

κ = 1 ⇐⇒ P12 > 1 and K ·K = 0 ,

κ = 2 ⇐⇒ P12 > 1 and K ·K > 0 .

Up to birational equivalence, every smooth algebraic surface over a field of charac-

teristic zero is of one of the following types: ruled surface (which includes rational

surfaces), abelian variety, K3 surface, elliptic surface, surface of general type.

Rational surfaces

A rational surface S is any surface birationally equivalent to P2. Examples include

P1 × P1 and Hirzebruch surfaces Σr = P(OP1 ⊗OP1(−r)).

Exercise A.2.2. (a) Show that Σ0 ≃ P1 × P1.

(b) Show that Σ1 is isomorphic to the blow-up of P2 at point.

The plurigenera Pn(S) all vanish, and the fundamental group is trivial. Castelu-

ovo’s Rationality Criterion classifies rational surfaces as those with second plurigenera

P2(S) = 0 and irregularity q(S) = 0.

Every smooth rational surface may be realized by successively blowing-up a mini-

mal rational surface. The minimal rational surfaces are P2 and the Hirzebruch surfaces

Σr with r = 0, 2, 3, 4, . . .. The nonzero Hodge numbers of a smooth rational surface

are h0,0(S) = h2,2 = 1, and h1,1(S) = 1 + m. We have h1,1(P2) = 1, h1,1(Σr) = 2,

and h1,1(S) > 2 for all other smooth rational surfaces. The Picard group is the odd

unimodular lattice I1,n; expect in the case of the Hirzebruch surfaces Σ2m, where it is

the even unimodular lattice II1,1.
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Ruled surface

A ruled surface of genus g is any smooth surface that is birationally equivalent to

P1×C, with C a smooth curve of genus g ≥ 0. A geometrically ruled surface of genus

g is morphism π : S → C with fibres π−1(x). Every geometrically ruled surface is of

the form S = PC(E) with E → C a rank two vector bundle. (The geometrically ruled

surfaces of genus g = 0 are the Hirzebruch surfaces.) Moreover, S ≃ S ′ if and only if

E ′ = E⊗L for some line bundle L. Every geometrically ruled surface admits a section

(Noether–Enriques Theorem). These surfaces have Pic(S) = π∗(C) ⊕ Zσ, where σ
is the class of some section; irregularity q(S) = g(C); Hodge numbers h2,0 = 0 and

h1,1 = 2; and plurigenera P12 = 0.

Any smooth minimal ruled surface is geometrically ruled. If S ′ is a minimal ruled

surface, then:

(i) There exists a curve E such that E ·KS′ < 0.

(ii) For any divisor D on S ′, there exists no so that the linear system |D+nKS′| = ∅
for all n ≥ no.

Abelian variety

The surface S may be realized as a complex torus C2/Λ. These surfaces are charac-

terized p12 = 1, pg = 1 and pa = −1.

K3 surface

These surfaces are characterized by KS = OS and q(S) = 0.

Exercise A.2.3. (a) Use Riemann–Roch (§A.2.4) to show that pg(S) = 1 and

χ(OS) = 2.

(b) Use Noether’s formula (§A.2.1) to show that the second Betti number is b2(S) =

22, and Euler characteristic e(S) = 24.
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(c) Use the genus formula (§A.2.5) to show that the arithmetic genus of an irre-

ducible curve C ⊂ S is pa(C) = 1 + 1
2
C2.

Elliptic surface

The surface admits a morphism π : S → C, onto a smooth curve C, with the property

that the generic fibre of π is a smooth elliptic curve. The surfaces are characterized

by K2
S = 0 and p12 ≥ 2; or p12 = 1 and pg(S) = 0.

The Euler characteristic satisfies e(S) =
∑

x∈C e(π
−1(x)). Elliptic surfaces admit

unique minimal models, characterized by the property that the fibre of π does not

contain any exceptional curve of arithmetic genus 1.

Surface of general type

These surfaces are characterized by K2
S > 0 and p12 ≥ 2.

Theorem A.2.4 ([BHPVdV04]). Fix 0, 1 ̸= m ∈ Z. A surface of general type is

minimal if and only if H1(S,mKS) = 0.

Exercise A.2.5. Let S be a surface of general type.

(a) Use Kodaira–Serre duality (§A.3.12) to show thatH2(S,mKX) = 0 for allm ≥ 2.

(b) Assume S is a minimal surface of general type. Use Riemann–Roch (§A.2.4) and
Theorem A.2.4 to show that the plurigenera are Pm = χ(S) + 1

2
m(m− 1)K2

S.

Suppose S is a minimal surface of general type. We have q(S) ≤ pg(S). Moreover,

pg(S) = 2 + 1
2
K2
S if K2

S is even, and pg(S) =
1
2
(K2

S + 3) if K2
S is odd. The Bombieri–

Kodaira theorem asserts that the pluricanonical map φmKS
: S → PPm−1 is a birational

morphism onto its image for all m ≥ 5. We have KS · D ≥ 0 for every effective

divisor D. If C ⊂ S is an irreducible curve, then KS · C = 0 if and only if C is a

(−2) curve. The number of (−2) curves on S is bounded above by ρ(S) − 1, where

ρ(S) = dimH1,1(S)∩H2(S,Z) is the Picard number. The intersection form is negative
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definite on the subspace of H2(S,Z) spanned by the (−2) curves. The pluricanonical

map φmKS
is injective and of maximal rank away from the (−2) curves as long as

m ≥ 5. It follows from [Gra62] that the image is a normal variety.

A.3 Complex geometry

Recommended reference: [Ara12, GH94, Huy05, Voi07].

The purpose of this section is to collect some of the standard results in complex

geometry that we will utilize. In general, M will denote a complex manifold, and X

an algebraic variety. We will write X ⊂ P to indicate that X is projective algebraic.

A.3.1 Commutative algebra

Recommended reference: [GH94].

Unique factorization domain

An integral domain R is a unique factorization domain if every may be expressed as

a product of a unit with a finite number of irreducible elements.

Gauss’s Lemma

If R is a UFD, then so is R[z].

Example A.3.1. The polynomial ring C[z1, . . . , zn] is a UFD.

Euclidean algorithm

If R is a unique factorization domain and u, v ∈ R[t] are relatively prime, then there

exist relatively prime α, β ∈ R[t] and γ ̸= 0 ∈ R so that αu+ βv = γ.
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Hilbert basis theorem

If R is a commutative noetherian ring, then so is R[z].

A commutative ring R is noetherian if every sequence I1 ⊂ I2 ⊂ I3 ⊂ · · · stabi-

lizes: there exists m ≥ 1 so that Im = In for all n ≥ m.

Example A.3.2. Every field is noetherian ring. As a corollary of the Hilbert basis

theorem, we see that C[z1, . . . , zn] is noetherian.

Hilbert’s Nullstellensatz

If V = V (I), then {f ∈ C | f |V ≡ 0} =
√
I. Abbr. I(V (I)) =

√
I.

A.3.2 Weierstrass theorems

Recommended reference: [GH94, §0.1].

Definition A.3.3. Let On denote the sheaf of analytic functions on Cn, with respect

to the (usual) analytic topology. This topology has neighborhood basis given by

polydiscs

∆n
a,ε = {z ∈ C s.t. |zj − aj| < ε}

of radius ε > 0 centered at a ∈ Cn. Let On,a be the ring of germs of analytic functions

at a ∈ Cn. That is, On,a consists of equivalence classes [f, U ] of analytic functions

f : U → C defined on a neighborhood a ∈ U ⊂ Cn, with f1 ∼ f2 if f1 = f2 on U1∩U2.

Exercise A.3.4. The ideal mn,a = {f ∈ On,a | f(a) = 0} of germs vanishing at a is

the unique maximal ideal of On,a.

Definition A.3.5. Let (z, w) ∈ Cn−1×C. AWeierstrass polynomial is a holomorphic

function of the form

p(z, w) = wd + a1(z)w
d−1 + · · ·+ ad(z)

with aj(z) holomorphic functions defined in a neighborhood 0 ∈ U ⊂ Cn−1, and

aj(0) = 0. We regard p(z, w) as an element of On−1,0[w].
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Weierstrass preparation theorem

Suppose that f(z, w) is holomorphic in a neighborhood of (0, 0) ∈ Cn−1 × C, that
f(0, 0) = 0, and that f(0, w) is not identically zero. Then in some neighborhood

of the origin, f can be uniquely factored as f(z, w) = g(z, w)p(z, w) with p(z, w) a

Weierstrass polynomial, and g(z, w) holomorphic and no-where vanishing in a neigh-

borhood of (0, 0) ∈ Cn−1 × C.

Exercise A.3.6. Use Gauss’s Lemma (§A.3.1) and the Weierstrass preparation the-

orem to show that On,0 is a unique factorization domain.

Exercise A.3.7. (a) Show that O1,0 is noetherian.

(b) Use the Hilbert basis and Weierstrass preparation theorems to deduce that On,0

is noetherian.

Exercise A.3.8. Use the Euclidean algorithm (§A.3.1) to show that if f, g are rela-

tively prime in On,0, then they are relatively prime in On,z for |z| < ε.

Weierstrass divison theorem

Given any Weierstrass polynomial p(z, w) of degree d and a holomorphic function

f ∈ On,0, we can write f(z, w) = g(z, w)p(z, w) + r(z, w) with r(z, w) ∈ On−1,0[w] a

polynomial of degree ≤ d− 1.

Exercise A.3.9. Use the Euclidean algorithm and the Weierstrass theorems to prove

the Weak Nullstellensatz : if f ∈ mn,0 is irreducible, and h ∈ On,0 vanishes on the set

{f = 0}, then f divides h.

A.3.3 Positivity of transverse intersections

The intersection number of two analytic varieties meeting transversely is always pos-

itive (≥ 1), cf. [GH94, §0.4]. In fact something stronger is true: if M is a compact,
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complex manifold, and A,B ⊂M are analytic subvarieties such that dimA+dimB =

dimM , and A ∩B ̸= ∅ is a finite set of points, then A ·B ≥ #(A ∩B) ≥ 1.

(More generally, we recall that given two cycles, a ∈ Hk(M,Z) and b ∈ H2n−k(M,Z),
dimRM = 2n, intersection number may be computed by integrating the fundamental

classes πa ∈ H2n−k
d (M) and πb ∈ Hk

d(M): a · b =
∫
b
πa =

∫
M
πa ∧ πb. Here the first

equality is essentially the definition of πa via Poincaré duality; the second equal-

ity is the assertion that the intersection pairing is dual to the cup product of the

fundamental classes.)

A.3.4 Bertini’s theorem

A complete linear system is the collection |D| = PH0(X, [D]) of effective divisors

that are linearly equivalent to a fixed divisor D. A linear system is a projective linear

subspace d = Pλ, with λ ⊂ H0(X, [D]) a linear subspace. The base locus of d is

the set of points x ∈ X with the property that every section s ∈ λ vanishes at x;

equivalently, it is the set of points x ∈ X that are supported on every effective divisor

(s) ∈ d. The linear system is base point free if the base locus is empty.

Bertini’s theorem asserts: if X ⊂ P is smooth and quasi-projective, then a very

general member of d is smooth away from the base locus.

The linear system defines a rational map ϕd : X → d∨ = Pλ∨, mapping x ∈ X to

the hyperplane P{s ∈ λ | s(x) = 0}. The map is regular away from the base locus.

Exercise A.3.10. (a) Show that the image ϕd(X) is linearly nondegenerate; that

is, ϕd(X) is not contained in a proper linear subspace of d∨.

(b) Fix a basis {s0, . . . , sd} of λ. Given s ∈ λ, and let U = {x ∈ X s.t. s(x) ̸=
0}. Show that ϕd|U may be identified with the map U → Pd sending x 7→[
s0(x)
s(x)

: · · · : sd(x)
s(x)

]
.

Bertini’s theorem is equivalent to the statement that ϕ−1
d (H) is smooth away from

the base locus (where ϕd is not defined) for all hyperplanes in some dense open subset
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of d.

Remark A.3.11. If a line bundle L over X admits a meromorphic section s (Remark

1.3.17), then we may take D = (s). In this case the complete linear system is denoted

|L| = PH0(X,L), and the rational map ϕ|D| is denoted ϕL : X → PH0(X,L).

A.3.5 Canonical line bundle

Let M be a complex manifold of dimension n. The canonical line bundle is KM =∧nT∨M . We have

KPn = OPn(−n− 1) .

Theorem A.3.12 (Finite generation of the canonical ring). Let RX = ⊕m≥0H
0(X,mKX)

be the canonical ring.

(i) If X is a surface of general type, then the RX is a finitely generated noetherian

ring [BHPVdV04].

(ii) If X is a smooth projective variety over field of characteristic zero, then RX is

finitely generated [BCHM10, Siu08].

A.3.6 Adjunction formula

Let i : D ↪→ M be a smooth divisor in a complex manifold M . The normal bundle

ND/M = i∗(TM)/TD extends to a line bundle O(D) on M . The ideal sheaf of D is the

dual O(−D). In particular, the conormal bundle is N∨
D/M = i∗O(−D). We have

KD = i∗(KM ⊗O(D)) .

As canonical classes we have

KD = (KM +D)|D .

Example A.3.13. If i : X ↪→ Pn+1 is a smooth hypersurface of degree d, then

KX = i∗KPn+1 ⊗OX(d) ≃ OX(d− n− 1).
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Example A.3.14. Suppose that C is the complete intersection of hypersurfaces in

Pn+1 of degrees d1, . . . , dn. The adjunction formula implies KC = OC(−n−2+
∑
dj).

The degree of this line bundle is deg(KC) = (−n− 2 +
∑
dj)

∏
dj. Keeping in mind

that degKC = 2g(C)− 2, we find g(C) = 1− 1
2
(n+ 2−

∑
dj)

∏
dj.

A.3.7 Lefschetz hyperplane theorem

Let Y be a hyperplane section of a smooth Xn+1 ⊂ P so that X\Y is smooth. Then

Hk(X,Z) = Hk(Y,Z) , ∀ k < n ,

Hn(X,Z) ↪→ Hn(Y,Z) .

A.3.8 Chern curvature

Let L → M be a holomorphic line bundle on a compact Kähler manifold, equipped

with a hermitian metric h. The Chern connection form is the (1,0)-form ∂ log h; the

Chern curvature is the (1,1)-form

ωL = ∂∂ log h .

The Chern class is

c1(L) =
[

i
2π
ωL
]

∈ H2(M,R) ∩ H1,1(M) .

The line bundle is positive (or ample) if c1(L) > 0; that is, ωL(v, v) > 0 for all

0 ̸= v ∈ TM .

The short exact sequence

0 → Z 2πi−→ OM
exp−→ O×

M → 0

induces a long exact sequence in cohomology with boundary map

· · · → H1(M,O×
M)

c1−→ H2(M,Z) i−→ H2(M,OM) → · · · .

The cohomology group H1(M,O×
M) parameterizes isomorphism classes of line bundles

on M ; and the boundary map is the sends L to the Chern class c1(L).
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A.3.9 Lefschetz theorem on (1,1)-classes

Let M be a compact Kähler manifold. The boundary map c1 : H1(M,O×
M) →

H2(M,Z) ∩H1,1(M) is surjective.

Why. Hodge theory implies H2(M,OM) = H0,2(M). The map i : H2(M,Z) →
H2(M,OM) is the restriction of the projection H2(M,C) ↠ H2,0(M).

A.3.10 Positivity implies vanishing

Kodaira vanishing

Let L → M be a positive holomorphic line bundle on a compact Kähler manifold.

Then Hq(M,KM ⊗ L) = 0 for all q > 0.

Bott vanishing

Let L→ X be an ample line bundle on a projective toric variety. Then Hq(X,Ωp
X ⊗

L) = 0 for all q > 0 and p ≥ 0 [BC94].

A.3.11 Kodaira embedding

Let L → M be a positive holomorphic line bundle on a compact Kähler manifold.

There exists a holomorphic embedding ϕ : M → P so that L⊗m = ϕ∗OP(1) for some

m > 0.

Slogan. Positivity implies algebraicity.

A.3.12 Kodaira–Serre duality

Given a holomorphic vector bundle E → M over a compact, complex manifold of

dimension d, we have

Hp,q(M,E) ≃ Hd−p,d−q(M,E∨)∨ .
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An useful corollary is the following: Given any algebraic vector bundle E → X over

a smooth, proper (a.k.a. complete) algebraic variety of dimension d, we have

Hq(X,E) ≃ Hd−q(X,KX ⊗ E∨)∨ .

More precisely, the natural trace map on Hd(X,KX) is a perfect pairing

Hq(X,E) × Hd−q(X,KX ⊗ E∨) → Hd(X,KX) → C .

A.3.13 Picard variety

The Picard group of any ringed space (Y,OY ) is the group Pic(Y ) = H1(Y,O∗
Y ) of

isomorphism classes of line bundles (or invertible sheaves) on Y . The Picard vari-

ety of a smooth, proper algebraic variety (X,OX) is the connected identity compo-

nent Pic0(X), and has the structure of an abelian variety. The Neron–Severi group

NS(X) = Pic(X)/Pic0(X) is a finitely generated abelian group. The rank of NS(X)

is the Picard number ρ(X).

A.3.14 Bogomolov–Miyaoka–Yau inequality

IfX is an n-dimensional minimal model of general type, then (−1)n(2n+2) c1(X)n−2 c2(X) ≥
(−1)nn c1(X)n.

A.3.15 Riemann–Roch–Hirzebruch

The holomorphic Euler characteristic of a holomorphic vector bundle E → M on a

compact Kähler manifold is

χ(M,E) =
∑
q≥0

(−1)qdimCH
q(M,E) .

The Riemann–Roch–Hirzebruch formula is

χ(M,E) = ⟨td(M)ch(E), [M ]⟩ =

∫
M

td(M)ch(E) ,
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where td(M) = td(TM) is the Todd class of M and

ch(E) =
[
tr(exp i

2π
Ω)
]

is the Chern character of E. The Chern character is an additive and multiplicative

invariant: ch(E1 ⊕ E2) = ch(E1) + ch(E2) and ch(E1 ⊗ E2) = ch(E1) ch(E2). It is

related to the Chern classes ck(E) ∈ H2k(M) by∑
k

ck(E)t
k =

[
det
(

i
2π
tΩ + Id

)]
=
∏
j

(1 + αj(E)t) ,

and

ch(E) = rank(E) + c1(E) + 1
2

(
c1(E)

2 − 2c2(E)
)

+ 1
6

(
c1(E)

3 − 3c1(E)c2(E) + 3c3(E)
)
+ · · · .

The Todd class is

td(E) =
∏
j

αj(E)

1− e−αj(E)

= 1 + 1
2
c1(E) + 1

12

(
c1(E)

2 + c2(E)
)
+ 1

24
c1(E) c2(E)

+ 1
720

(
−c1(E)4 + 4c1(E)

2c2(E) + c1(E)c3(E) + 3c2(E)
2 − c4(E)

)
+ · · · .

The Todd class is an exponential invariant in the sense that td(E1⊕E2) = td(E1)td(E2).

Given a SES 0 → A→ B → C → 0 of vector bundles we have

td(B) = td(A)td(C) and ch(B) = ch(A) + ch(C) . (A.3.15)

A.4 Very little sheaf theory

Recommended references: [GH94, Voi07].
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A.4.1 A few definitions

The defining property of a presheaf is that the restriction maps satisfy resU,U = id,

and resW,V ◦resV,U = resW,U for allW ⊂ V ⊂ U . The defining properties of a sheaf are

that given any open cover {Uα} of U we have: (i) if σ, τ ∈ S(U) and σ|Uα = τ |Uα for

all α, then σ = τ ; and (ii) if σα ∈ S(Uα) satisfy σα|Uαβ
= σβ|Uαβ

, then σα = σ|Uα for

some σ ∈ S(U). Examples of presheaves that are not sheaves include: the presheaf of

constant functions (whose sheafification is the sheaf of (locally) constant functions);

and the sheaf of exact forms (whose sheafification is the sheaf of closed forms).

The sheafification of a presheaf P is the sheaf P#(U) = {(ρx ∈ Px)x∈U s.t. ∀ x ∈
U , ∃ open x ∈ V ⊂ U , σ ∈ P(V ) with σy = ρy ∀ y ∈ V }.

Exercise A.4.1. Suppose that P is a subpresheaf of a sheaf S. Show that P#(U) =

{σ ∈ S(U) | ∃ open cover {Uα} of U s.t. σ|Uα ∈ P(Uα) ∀ α}.

Exercise A.4.2. Let ϕ : S → T be a morphism of sheaves of abelian groups.

(a) Show that U 7→ ker {ϕU : S(U) → T (U)} is a sheaf, the kernel sheaf kerϕ ⊂ S.
We have (kerϕ)x = ker (ϕx).

(b) Show that U 7→ im {ϕU : S(U) → T (U)} is a presheaf, but need not be a

sheaf. [Hint. Consider the exponential map O∆∗ → O×
∆∗ .] The sheafification is

a subsheaf imϕ ⊂ T whose sections may be described as in HW A.4.1. We have

(imϕ)x = im (ϕx).

(c) Show that U 7→ coker {ϕU : S(U) → T (U)} is a presheaf, but need not be a

sheaf. The sheafification is

(cokerϕ)(U) =

{
σα ∈ T (Uα)

∣∣∣∣∣ {Uα} is an open cover of U and

σα|Uαβ
− σβ|Uαβ

∈ ϕUαβ
(S(Uαβ))

}/
∼ ,

where {σα ∈ T (Uα)} ∼ {σ′
µ ∈ T (U ′

µ)} if for all x ∈ Uα ∩ U ′
µ there exists an

open x ∈ V ⊂ Uα ∩ U ′
µ so that σα|V − σ′

µ|V ∈ ϕV (S(V ))}. We have (cokerϕ)x =

coker (ϕx).
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Exercise A.4.3. Show that the following are equivalent:

(a) ϕ is injective;

(b) ϕU : S(U) → T (U) is injective for all open U .

Exercise A.4.4. Show that the following are equivalent:

(a) ϕ is injective (resp. surjective, an isomorphism)

(b) ϕx : Sx → Tx is injective (resp. surjective, an isomorphism) for all x.

A.4.2 Functors

Exact functors

A functor is exact if it preserves short exact sequences. A covariant functor F is

left-exact if 0 → A
ϕ−→ B

ψ−→ C exact implies 0 → F (A)
F (ϕ)−−→ F (B)

F (ψ)−−−→ F (C) is

exact. A contravariant functor F is right-exact if 0 → A
ϕ−→ B

ψ−→ C exact implies

F (C)
F (ψ)−−−→ F (B)

F (ϕ)−−→ F (A) → 0 is exact

Example A.4.5. If V is a vector space over a field k, then V ∨ = Homk(V, k) is an

exact (contravariant) functor on the category of k vector spaces.

Example A.4.6. If M is an abelian group, the (covariant) functor A 7→ Hom(M,A)

of the category of abelian groups to itself is left-exact.

Example A.4.7. If Sh(M,ZM) is the category of sheaves of abelian groups over a

topological space M , then the (covariant) global sections functor Γ(S) = S(M) is

left-exact.

Let (X,OX) be either an algebraic variety or a complex analytic space. Let Sh(X)

denote the category of sheaves on X; let Sh(X,ZX) denote the category of sheaves of

abelian groups on X, and let Sh(X,OX) denote the category of OX–modules on X.

Let f : (X,OX) → (Y,OY ) be a morphism.
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Direct image functor

The direct image functor f∗ : Sh(X,OX) → Sh(Y,OY ) maps S ∈ Sh(X,OX) to the

direct image (or pushforward) sheaf defined by (f∗S)(V ) = S(f−1(V )) for all open

V ⊂ Y .

(i) If Y is a point, then f∗ is the global sections functor.

(ii) The direct image functor is left-exact.

(iii) If f : X → Y is the inclusion of a closed subspace, then f∗ is exact (pre-

serves SES), and an equivalence of categories between Sh(X) and the category

of sheaves on Y supported on X.

Direct image functor with compact support

The direct image with compact support functor f! : Sh(X) → Sh(Y ) maps S ∈ Sh(X)

to the sheaf defined by (f!S)(V ) = {s ∈ S(f−1(V )) s.t. f : supp(s) → V is proper}
for all open V ⊂ Y .

(iv) If f is proper, then f! = f∗.

(v) If f is an open embedding, then f! is the extension by zero functor.

Inverse image functor

The inverse image functor f−1 : Sh(Y ) → Sh(X) maps T ∈ Sh(Y ) to the inverse im-

age (or pullback) sheaf f−1T , the sheaf associated to the presheaf U 7→ lim
V⊃f(U)

T (V ).

(vi) The stalks are (f−1T )x = Tf(y).

(vii) The functor f−1 is exact (preserves SES).

(viii) The direct image functor is right adjoint to the inverse image functor: HomSh(X)(f
−1T ,S) =

HomSh(X)(T, f∗S).
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If T ∈ Sh(Y,OY ), then in general f−1T ̸∈ Sh(X,OX). In this case it is better to

work with the sheaf f ∗T dfn
=== f−1T ⊗f−1OY

OX .

Example A.4.8. If f is the inclusion of a point y ∈ Y , then f−1(T ) is the stalk Ty.
If T ∈ Sh(Y,OY ), then f

−1(OY ) = OY,y, and f
∗(OY ) = C.

(ix) In general f ∗ is right exact. If f ∗ is exact, we say f is flat.

A.4.3 Sheaf cohomology

Enough injectives

Fact. Let Sh(X,OX) denote the category of sheaves of OX–modules. This category

has enough injectives.

Why. Because the category of R–modules has enough injectives (because the

category of R–modules has injective hulls). One then uses Godement’s construction

to show that Sh(X,OX) has enough injectives: S ↪→
∏

Sx ↪→
∏
Ix.

Remark. Since abelian groups are Z–modules, we see that the category Sh(X,ZX)
of sheaves of abelian groups also has enough injectives.

Consequence: existence of injective resolutions. Every sheaf S ∈ Sh(X,RX)

admits an injective resolution: there exist injective objects Ik ∈ Sh(X,RX), and

maps j : S ↪→ I0 and dk : Ik → Ik+1 so that im j = ker d0 and im dk = ker dk+1.

Right derived functors

Given a left-exact functor F , the right derived functors RkF are

RkF (S) dfn
=== Hk(F (I•)) =

ker {Fdk : FIk → FIk+1}
im {Fdk−1 : FIk−1 → FIk}

.

Remark. If 0 → A → B → C → 0 is a SES of sheaves, then 0 → F (A) → F (B) →
F (C) is exact. The “job” of the right derived functors are to complete this to a LES

0 → F (A) → F (B) → F (C) → R1F (A) → R1F (B) → R1F (C) → · · · . Injective

sheaves have the property RkF (I) = 0 for all k > 0.

149



Example A.4.9 (Sheaf cohomology). Sheaf cohomology is the right derived functor

RkΓ associated to the global sections functor Γ:

Hk(X,S) = RkΓ(S) .

Example A.4.10 (Higher direct images). Given a morphism f : (X,OX) → (Y,OY ),

the higher direct images are the right derived functors Rkf∗. Given S ∈ Sh(X,OX),

Rkf∗(S) is the sheaf associated to the presheaf V 7→ Hk(f−1(V ),S).

Exercise A.4.11. Let f : X → S be a smooth surjective morphism of complex

manifolds with compact fibres (as in §3.1). Show that the stalks are Rkf∗(QX )s =

Hk(Xs,Q), where Xs = f−1(s).

Acyclic resolutions

A sheaf A is F -acyclic if RqF (A) = 0 for all q > 0. In particular, a sheaf is Γ-acyclic

if Hq(X,A) = 0 for all q > 0. A resolution S → A• is F -acyclic if each Ak is F -

acyclic. Injective objects are acyclic (for any functor). Any acyclic resolution is chain

homotopic to an injective resolution S → I•. This means that acyclic resolutions can

be used to compute right-derived functors.

Example A.4.12. A sheaf S is flasque if the restriction map S(V ) → S(U) is

surjective for all open U ⊂ V . (Godement’s construction is flasque.) Flasque sheaves

are Γ-acyclic.

Example A.4.13. Let M be a paracompact Hausdorff space. A fine sheaf on M is

a sheaf of RM–modules, where RM is a sheaf of rings with the property that every

open cover of M admits a subordinate partition of unity. For example, if M is a

smooth manifold, then any sheaf of C∞
M–modules is fine. Fine sheaves are Γ-acyclic.

This yields the de Rham and Dolbeault theorems

Hn(M,C) =
ker {d : En(M) → En+1(M)}
im {d : En−1(M) → En(M)}
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and

Hq(X,Ωp
X) =

ker {∂ : Ep,q(X) → Ep,q+1(X)}
im {∂ : Ep,q−1(X) → Ep,q(X)}

.

Given a smooth manifold M , let Sh(M, C∞
M ) denote the category of sheaves of

C∞
M–modules.

Example A.4.14 (Čech resolution). Fix an open cover {Ui}i∈N. Given I = {i0 <
i1 < · · · < ik} ⊂ N, let UI = ∩i∈I Ui denote the finite intersections, and jI : UI ↪→ X

the inclusion. Define sheaves

Ck({Ui},S) =
⊕

|I|=k+1

jI∗(S|UI
) ,

and sheaf morphisms δ : Ck({Ui},S) → Ck+1({Ui},S) by

(δσ)i0···ik+1
=
∑

(−1)aσi0···̂ia···ik+1
|Ui0···ik+1

, i0 < · · · < ik+1 .

Then δ2 = 0, and the map j : S → C0({Ui},S) sending σ 7→ σ|Ui
realizes (C•({Ui},S), δ)

as a resolution of S. The global sections of Ck({Ui},S) are

Γ(X, Ck({Ui},S)) =
⊕

|I|=k+1

S(UI) .

The resolution S ↪→ C•({Ui},S) is Γ–acyclic if {Ui} is a Leray cover Hk(UI ,S) = 0

for all k > 0.

A.4.4 Vanishing theorems

Cartan’s Theorems A & B

Suppose that S is a coherent sheaf (Definition 1.1.40) on a Stein manifold X (a

submanifold of Cm). The sheaf is spanned by its global sections H0(X,S), and

Hq(X,S) = 0 for all q > 0 [Car53].
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Serre vanishing

Analogous results were established by Serre for a quasi-coherent sheaf over an affine

scheme (X,OX): if S is quasi-coherent, then Hq(X,S) = 0 for all q > 0 [Har77].

A.4.5 Leray spectral sequence

Via de Rham cohomology

Suppose that π :M → N is a smooth fibre bundle with compact fibres (in particular,

π is a submersion). Let V = ker π∗ ⊂ TM denote the vertical subbundle. (Note that

Vx the tangent space to the fibre π−1(π(x)) through x.) Let V ⊥ ⊂ T ∗M denote the

annihilator V ⊥
x = {η ∈ T ∗

xM s.t. η(v) = 0 ∀ v ∈ Vx}. If we fix local coordinates (u, v)

on M so that π(u, v) = u, then { ∂
∂vj

} is a local framing of V , and {dua} is a local

framing of V ⊥.

Define a filtration of
∧nT ∗M by

F p(
∧nT ∗M)

dfn
=== (

∧pV ⊥) ∧ (
∧n−pT ∗M) .

Note that {duI ∧ dvJ s.t. |I| ≥ p , |I|+ |J | = n} is a local framing of F p(
∧nT ∗M).

Let

En(M) = F 0En(M) ⊂ F 1En(M) ⊂ · · · ⊂ F nEn(M) ⊂ F n+1En(M) = 0

be the induced filtration on the space of smooth n-forms on M . We have d :

F pEn(M) → F p(En+1(M)). So we have a filtration of the de Rham complex. This

yields a spectral sequence [GH94, p. 464].

The E0 page is

Ep,q
0 =

F p(Ep+q(M))

F p+1(Ep+q(M))
.

Locally an element of Ep,q
0 may be represented by η =

∑
|I|=p ηI ∧ duI , with ηI =

ηI(u, v, dv) a q–form involving only the dvj. And d0 : Ep,q
0 → Ep,q+1

0 maps d0η =∑
|I|=p(dvηI) ∧ duI . Then elements of Ep,q

1 = ker d0/im d0 are represented by p-forms
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on N that take value in the bundle Hq
dR(π−fibre) with fibre over x ∈ N give by

Hq(π−1(x)). Given one such form, d1 : E
p,q
1 → Ep+1,q

1 acts by d1η
∑

|I|=p(duηI) ∧ duI .

So

Ep,q
2 = Hp

dR(N,H
q
dR(π−fibre)) = Hp(N,Rqπ∗C) .

In general Ep,q
2 ̸= Ep,q

∞ . However, . . .

Leray for a family of compact Kähler manifolds

Theorem A.4.15 ([Del68]). Let f : X → S be a smooth surjective holomorphic

mapping f : X → S of Kähler manifolds with compact fibres (as in §3.1). Then

Hn(X ,Q) ≃
⊕
p+q=n

Hp(S,Rqf∗QX ). And if S is simply connected, then Hn(X ,Q) ≃⊕
p+q=n

Hp(S,Q)⊗Hq(Xs0 ,Q).

Idea of the proof. Use the Hard Lefschetz Theorem 2.2.24 to show that the Leray

Spectral Sequence (§A.4.5) collapses at the second page, cf. [GH94, p. 466].

Corollary A.4.16. The cohomology Hn(X ,Q) surjects onto Gr0Hn(X ,Q) = H0(S,Rnf∗QX ).

As a special case of the Grothendieck spectral sequence

If A G−→ B F−→ C are left-exact covariant functors of abelian categories with enough

injectives, it is natural to ask if there is a relationship between the right derived

functors of FG and those of F andG. IfG(I) is F -acyclic for every injective object I ∈
A, then for every A ∈ A, there exists a spectral sequence Ep,q

2 = (RpF )(RqG)(A) =⇒
Rp+q(FG)(A).

Example A.4.17 (Leray spectral sequence). Let f : (X,OX) → (Y,OY ) be a mor-

phism, and fix S ∈ Sh(X,OX). We obtain the Leray spectral sequence by taking

Sh(X,OX)
f∗−→ Sh(Y,OY )

Γ(Y,·)−−−→ Ab, and noting that Γ(Y, ·) ◦ f∗ = Γ(X, ·). One uses

the fact that f∗ is right adjoint to the exact f−1 to show that f∗ maps injectives to

injectives.
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One may show that

0 → H1(Y, f∗S) → H1(X,S) → H0(Y,R1f∗S) → H2(Y, f∗S) → H2(X,S)

is exact.

Grothendieck’s spectral sequence is constructed as follows. Fix an injective res-

olution A ↪→ I•. As a complex in a category with enough injectives G(I•) admits a

fully injective resolution G(I•) ↪→ J•,•. This means that G(Ia) ↪→ Ja,• is an injective

resolution and each of

ker {G(Ia) → G(Ia+1)} ↪→ ker {Ja,• → Ja+1,•}

im {G(Ia−1) → G(Ia)} ↪→ im {Ja−1,• → Ja,•}

Ha(G(I•)) ↪→ Ha(J•,0) → Ha(J•,1) → · · ·

is an injective resolution. Then one considers the spectral sequences associated to the

double complex F (J•,•).

Via Čech cohomology

Let f : (X,OX) → (Y,OY ) be a morphism, and fix S ∈ Sh(X,OX).

Fix a cover {Vi} of Y , and a cover {Uia} of f−1(Vi) so that {Uia} is a Leray

cover of X with respect to S; that is, Ȟq(UI ,S) = 0 for all q > 0 and I. Let

C•({Uia},S) ∈ Sh(X,OX) be the acyclic Čech resolution of S (Example A.4.14). Then

K• = f∗C•({Uia},S) ∈ Sh(Y,OY ) is a complex. The associated cohomology sheaves

are Hq(K•) = Rqf∗S. Following Definition 5.4.16 we consider the double complex

Cp({Vi},Kq) = Cp({Vi} , f∗Cq({Uia},S)). Then Hk(Y,K•) = Hk(Y, f∗C•({Uia},S)) =
Hk(X,S). We conclude that

′Ep,q
2 = Ȟp(Y,Rqf∗S) =⇒ Hp+q(X,S) .
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A.4.6 Hypercohomology

Hypercohomology is a generalization of sheaf cohomology that takes as its input not

a single sheaf, but a complex of sheaves. In particular, a SES

0 → A• → B• → C• → 0

of complexes of sheaves will induce a LES

0 → H0(A•) → H0(B•) → H0(C•) → H1(A•) → H1(B•) → · · ·

in hypercohomology. Suppose that (K•, d) is a complex of sheaves. Given K•, there

exists a quasi-isomorphism K• → I• with each Ik an injective object, and each

Kk → Ik an injective map [Voi07]. Given a left-exact functor F , we define

RkF (K•)
dfn
=== Hk(F (I•)) .

A quasi-isomorphismK•
1 → K•

2 induces a canonical isomorphismRkF (K•
1) ≃ RkF (K•

2).

For a quasi-isomorphism K• → A•, with each Ak F -acyclic, we have RkF (K•) =

Hk(F (A•)).

We obtain hypercohomology by taking the global sections functor

Hk(X,K•) = RkΓ(K•) = Hk(Γ(A•)) .

See §5.4.2 for further discussion.
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surfaces of type K3. Izv. Akad. Nauk SSSR Ser. Mat., 35:530–572, 1971.

[PZ19] Gregory Pearlstein and Zheng Zhang. A generic global Torelli theorem

for certain Horikawa surfaces. Algebr. Geom., 6(2):132–147, 2019.

[Sch73] Wilfried Schmid. Variation of Hodge structure: the singularities of the

period mapping. Invent. Math., 22:211–319, 1973.

[Siu08] Yum-Tong Siu. Finite generation of canonical ring by analytic method.

Sci. China Ser. A, 51(4):481–502, 2008.

[Tju71] A. N. Tjurin. The geometry of the Fano surface of a nonsingular cubic

F ⊂ P 4, and Torelli’s theorems for Fano surfaces and cubics. Izv.

Akad. Nauk SSSR Ser. Mat., 35:498–529, 1971.

[Tod80] Andrei N. Todorov. Surfaces of general type with pg = 1 and (K, K) =
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